Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = pyrolysis completeness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 315 KiB  
Article
Ameliorating Saline Clay Soils with Corncob Biochar for Improving Chickpea (Cicer arietinum L.) Growth and Yield
by Marcos Alfonso Lastiri-Hernández, Javier Pérez-Inocencio, Eloy Conde-Barajas, María de la Luz Xochilt Negrete-Rodríguez and Dioselina Álvarez-Bernal
Soil Syst. 2025, 9(3), 71; https://doi.org/10.3390/soilsystems9030071 - 8 Jul 2025
Viewed by 1515
Abstract
Biochar is a carbon-rich material produced through the pyrolysis of agricultural waste. It effectively enhances the physical, chemical, and biological properties of salinity-affected soils. Chickpea (Cicer arietinum L.) is the world’s third most important legume crop, currently cultivated in over 50 countries. [...] Read more.
Biochar is a carbon-rich material produced through the pyrolysis of agricultural waste. It effectively enhances the physical, chemical, and biological properties of salinity-affected soils. Chickpea (Cicer arietinum L.) is the world’s third most important legume crop, currently cultivated in over 50 countries. However, no study has yet established recommended biochar application rates for this crop under saline soil conditions. Therefore, this study aimed to assess the chemical properties of a clay soil following the application of varying rates of biochar and NaCl, and to evaluate their subsequent effects on the growth and yield of Cicer arietinum L. To evaluate the effect of biochar, a completely randomized experimental design with ten replicates was implemented. The biochar was produced from corncobs (Zea mays) and applied at two rates (1.5% and 3%). Soil salinity levels were classified into three groups: non-saline (S1 = 1.2 dS·m−1), low/moderate salinity (S2 = 4.2 dS·m−1), and moderate salinity (S3 = 5.6 dS·m−1). The treatments were placed in pots for 100 days. The results demonstrated that biochar applications at 1.5% and 3% rates improved both soil chemical properties (pH, EC, SAR, and ESP) and the growth of C. arietinum across all evaluated treatments. The 3% biochar treatment showed superior effects compared to the 1.5% application. Therefore, biochar application in C. arietinum production emerges as an effective agronomic strategy to mitigate abiotic stress while simultaneously enhancing crop productivity and sustainability. Full article
14 pages, 5672 KiB  
Article
Numerical Study of the Combustion-Flow-Thermo-Pyrolysis Process in an Innovative Externally Heated Oil Shale Retort
by Lixin Zhao, Yingxue Mei and Luwei Pan
Symmetry 2025, 17(7), 1055; https://doi.org/10.3390/sym17071055 - 3 Jul 2025
Viewed by 322
Abstract
A novel externally heated retort for Jimsar oil shale resources is proposed, and the symmetrical mathematical model of the transport process in the retort is established through intensively studying the mechanisms of shale gas flows, heat transfer, and pyrolysis reactions in the retort. [...] Read more.
A novel externally heated retort for Jimsar oil shale resources is proposed, and the symmetrical mathematical model of the transport process in the retort is established through intensively studying the mechanisms of shale gas flows, heat transfer, and pyrolysis reactions in the retort. The descriptions of axial and radial movements and temperature of oil shale and gases, and the distribution of pyrolysis reaction and yielding of gaseous products and semi-coke in various regions of the retort are simulated. The results show that oil shale can pyrolyze gradually from the region near the wall to the core region of the retorting chamber and pyrolyze completely at the bottom of the retorting zone through receiving the heat flux transferring from the combustion channels. The final pyrolysis temperature of oil shale is 821.05 K, and the outlet temperature of semi-coke cooled by cold recycled gas is 676.35 K, which are in agreement with the design requirements. In total, 75 toil shales can be retorted in one retorting chamber per day, and the productivity of the retort can be increased by increasing the number of retorting chambers. The fuel self-sufficiency rate of this externally heated oil shale retort can reach 82.83%. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

15 pages, 2017 KiB  
Article
Assessment of Harmful Emissions from Multiple Binder Systems in Pilot-Scale Sand Casting
by Erika Garitaonandia, Andoni Ibarra, Angelika Kmita, Rafał Dańko and Mariusz Holtzer
Molecules 2025, 30(13), 2765; https://doi.org/10.3390/molecules30132765 - 27 Jun 2025
Viewed by 283
Abstract
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests [...] Read more.
This study investigates hazardous emissions from foundry binder systems, comparing organic resins (phenolic urethane, furan, and alkaline-phenolic) and clay-bonded green sand with inorganic alternatives (sodium silicate and geopolymer). The research was conducted at the Fundaciόn Azterlan pilot plant (Spain), involving controlled chamber tests for the production of 60 kg iron alloy castings in 110 kg sand molds. The molds were evaluated under two configurations: homogeneous systems, where both mold and cores were manufactured using the same binder (five trials), and heterogeneous systems, where different binders were used for mold and cores (four trials). Each mold was placed in a metallic box fitted with a lid and an integrated gas extraction duct. The lid remained open during pouring and was closed immediately afterward to enable efficient evacuation of casting gases through the extraction system. Although the box was not completely airtight, it was designed to direct most exhaust gases through the duct. Along the extraction system line, different sampling instruments were strategically located for the precise measurement of contaminants: volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), phenol, multiple forms of particulate matter (including crystalline silica content), and gases produced during pyrolysis. Across the nine trials, inorganic binders demonstrated significant reductions in gas emissions and priority pollutants, achieving decreases of over 90% in BTEX compounds (benzene, toluene, ethylbenzene, and xylene) and over 94% in PAHs compared to organic systems. Gas emissions were also substantially reduced, with CO emissions lowered by over 30%, NOx by more than 98%, and SO2 by over 75%. Conducted under the Greencasting LIFE project (LIFE 21 ENV/FI/101074439), this work provides empirical evidence supporting sodium silicate and geopolymer binders as viable, sustainable solutions for minimizing occupational and ecological risks in metal casting processes. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

16 pages, 6652 KiB  
Article
Combustion Characteristics of Moxa Floss Under Nitrogen Atmosphere
by Yukun Feng, Yifan Wu, Pengzhou Du, Yang Ma and Zhaoyi Zhuang
Fuels 2025, 6(2), 48; https://doi.org/10.3390/fuels6020048 - 13 Jun 2025
Viewed by 447
Abstract
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier [...] Read more.
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) of their carbonized products in nitrogen environment. Through TG-DTG analysis, the thermal degradation patterns of the twelve moxa floss samples under nitrogen atmosphere were systematically examined to elucidate their pyrolysis behaviors, with particular emphasis on the influence of pyrolysis temperature and leaf-to-floss ratio on combustion characteristics. The pyrolysis process occurred in three distinct stages, with the most significant mass loss (120–430 °C) observed in the second stage. Higher leaf–fiber ratios and longer storage years were found to promote more complete pyrolysis. Kinetic analysis was performed to fit thermogravimetric data, establishing a reaction kinetic model for moxa pyrolysis. Results indicated that samples with higher leaf–fiber ratios required greater activation energy, while storage duration showed negligible impact. Notably, Nanyang moxa demanded higher pyrolysis energy than Qichun moxa. FTIR analysis identified the primary components of carbonized products as water, ester compounds, flavonoids, and cellulose. These findings suggest that moxa carbonization products retain chemical reactivity, demonstrating potential applications in adsorption and catalysis processes. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

24 pages, 3887 KiB  
Article
Applying Quantitative Fluorescence Techniques to Investigate the Effectiveness of Deep-Seated Mudstone Caprocks in the Junggar Basin, NW China
by Jiangxiu Qu, Keshun Liu, Hailei Liu, Minghui Zhou, Xiujian Ding and Ming Zha
Geosciences 2025, 15(6), 215; https://doi.org/10.3390/geosciences15060215 - 10 Jun 2025
Viewed by 2356
Abstract
The Central Depression of the Junggar Basin relies heavily on Permian lacustrine mudstone for deep-seated hydrocarbon sealing. This research investigated how the fluorescence parameters of caprock samples responded to the leakage of palaeo-oil zones based on measurements from SEM, Rock-Eval, and X-ray diffraction [...] Read more.
The Central Depression of the Junggar Basin relies heavily on Permian lacustrine mudstone for deep-seated hydrocarbon sealing. This research investigated how the fluorescence parameters of caprock samples responded to the leakage of palaeo-oil zones based on measurements from SEM, Rock-Eval, and X-ray diffraction analysis. First, two sets of control experiments were conducted to establish the proper grain-size range of 100–140 mesh for testing caprock samples in the research area using quantitative fluorescence technology. Subsequently, based on the examination of the rock pyrolysis parameters and the fluorescence parameters against TOC values, the conjecture was formed that the quantitative fluorescence technology test results were mostly unaffected by the primary hydrocarbons. Lastly, four fluorescence parameters were used to assess seal integrity: quantitative grain fluorescence intensity of the extract (QGF E intensity, the meaning of QGF is the same in this study), QGF spectral peaks (QGF λmax), the ratio of QGF intensity to fluorescence intensity at 300 nm on the QGF spectrum (QGF index), and total scanning fluorescence spectral ratio R1 (TSF R1). The Permian caprock can effectively seal hydrocarbons as evidenced by the decrease of QGF E intensity and QGF index values with depth. When hydraulic fracturing causes caprock failure, it can lead to complete leakage of hydrocarbons from the palaeo-oil zones. As the depth becomes shallower, the QGF E intensity value increases, the QGF index value decreases. Due to the differences in the migration pathways of hydrocarbons in the caprock, those leaked from the Permian palaeo-oil zone into the well PD1 caprock are mainly condensate and light–normal crude oil, while the hydrocarbons from the Carboniferous palaeo-oil zone into the well MS1 caprock consist predominantly of light–normal crude oil and medium–heavy crude oil. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

23 pages, 1202 KiB  
Article
Harnessing Pyrolysis for Industrial Energy Autonomy and Sustainable Waste Management
by Dimitrios-Aristotelis Koumpakis, Alexandra V. Michailidou and Christos Vlachokostas
Energies 2025, 18(12), 3041; https://doi.org/10.3390/en18123041 - 8 Jun 2025
Viewed by 1135
Abstract
This study describes the step-by-step development of a simplified system which can be implemented in industrial facilities with the help of their own surplus of plastic waste, mainly packaging waste, to reach a level of energy autonomy or semi-autonomy. This waste is converted [...] Read more.
This study describes the step-by-step development of a simplified system which can be implemented in industrial facilities with the help of their own surplus of plastic waste, mainly packaging waste, to reach a level of energy autonomy or semi-autonomy. This waste is converted to about 57,500 L of synthetic pyrolysis oil, which can then be used to power industries, being fed into a Combined Heat and Power system. To achieve this goal, the design has hydrocarbon stability at elevated temperature and restricted oxygen exposure, so that they can be converted to new products. Pyrolysis is a key process which causes thermo-chemical changes—ignition and vaporization. The research outlines the complete process of creating a basic small-scale pyrolysis system which industrial facilities can use to generate energy from their plastic waste. The proposed unit processes 360 tons of plastic waste yearly to produce 160 tons of synthetic pyrolysis oil which enables the generation of 500 MWh of electricity and 60 MWh of heat. The total investment cost is estimated at EUR 41,000, with potential annual revenue of up to EUR 45,000 via net metering. The conceptual design proves both environmental and economic viability by providing a workable method for decentralized waste-to-energy solutions for Small and Medium-sized Enterprises. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Efficiently Degrading RhB Using Bimetallic Co3O4/ZnO Oxides: Ultra-Fast and Persistent Activation of Permonosulfate
by Bai Sun, Rui Liu, Fengshou Zhao, Shengnan He, Yun Wang, Xiangxiang Wang, Hao Huang, Mingjian Yi and Shuguang Zhu
Molecules 2025, 30(10), 2237; https://doi.org/10.3390/molecules30102237 - 21 May 2025
Viewed by 376
Abstract
To address the issues of poor Co2+ regeneration and limited interfacial electron transfer in heterogeneous catalytic systems, this study proposes the synthesis of highly efficient and stable Co3O4/ZnO composites through the pyrolysis–oxidation reaction of Co/Zn MOFs for the [...] Read more.
To address the issues of poor Co2+ regeneration and limited interfacial electron transfer in heterogeneous catalytic systems, this study proposes the synthesis of highly efficient and stable Co3O4/ZnO composites through the pyrolysis–oxidation reaction of Co/Zn MOFs for the degradation of rhodamine B (RhB) using activated peroxymonosulfate (PMS). The results confirmed that the catalyst exhibited a high electron transfer capacity, and the synergistic effect between the bimetals enhanced the reversible redox cycle of Co3+/Co2+. Under optimal conditions, complete removal of RhB was achieved in just 6 min using the Co3O4/ZnO composite, which demonstrated excellent stability after five cycles. Furthermore, the catalyst exhibited a high degradation efficiency in real water samples with a total organic carbon (TOC) removal rate of approximately 65% after 60 min. The electrochemical measurements, identification of active species, and X-ray photoelectron spectroscopy (XPS) analysis revealed that non-radicals (1O2 and direct charge transfer) played a major role in the degradation of RhB. Finally, the potential mechanisms and degradation pathways for RhB degradation using this catalyst were systematically investigated. This study opens new avenues for the development of efficient and stable PMS catalysts, and provides insights into the preparation of other emerging metal oxides. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

14 pages, 2359 KiB  
Article
Impacts of Thermal Maturity on the Carbon Isotopes of Hopane Compounds in Lacustrine Shale During Compaction Pyrolysis Experiments
by Lu Li, Yan Liu, Xing Wang, Yaohui Xu, Zhigang Wen, Haowei Chen, Gang Yan, Zhongdeng Lu, Zulin Chen and Zeyang Guo
Appl. Sci. 2025, 15(10), 5469; https://doi.org/10.3390/app15105469 - 13 May 2025
Viewed by 416
Abstract
The carbon isotopic behavior of hopane compounds during thermal maturation remains ambiguous due to limitations in current detection techniques. In this study, a low-maturity lacustrine shale sample was pyrolyzed in a hydrous semi-open pyrolysis system. The hopane compounds from the artificially matured samples [...] Read more.
The carbon isotopic behavior of hopane compounds during thermal maturation remains ambiguous due to limitations in current detection techniques. In this study, a low-maturity lacustrine shale sample was pyrolyzed in a hydrous semi-open pyrolysis system. The hopane compounds from the artificially matured samples (Ro = 0.72–1.28%) have been separated and enriched for the test of their carbon isotopes (δ13C). The results show that thermal maturity can somewhat affect the carbon isotopes of monomeric hopane compounds, with a maximum difference value over 21‰. However, thermal maturity has different effects on the δ13C values for different monomeric hopane compounds. For example, the carbon isotopic values of 22S-homohopane at different thermal stages can vary up to 21‰, while only 3‰ for C29βα. In addition, the carbon isotopes of different monomeric hopane compounds show distinct evolution trends. For C29αβ and C29 Ts, their carbon isotopes first become slightly heavier and then become lighter, reaching the lightest value at 350 °C. When the pyrolysis temperature continues to increase, the δ13C values become heavier and finally become lighter. However, the δ13C values of Ts, Tm, 22S-homohopane, and 22R-homohopane show a completely reversed trend. They initially become slightly lighter and then become heavier, reaching the maximum value at 350 °C. When the pyrolysis temperature continues to increase, the δ13C values become lighter and finally become heavier. Meanwhile, the carbon isotopes of C29βα, C30αβ, C30βα, and non-hopane gammacerane almost remain constant at different thermal stages. When the carbon isotopes of hopane compounds are used in the studies of oil–source correlation, it is prudent to consider the effects of thermal maturity on these values. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

13 pages, 3003 KiB  
Article
Extraction-Based Pretreatment of End-of-Life Plastics from Waste Electrical and Electronic Equipment for Brominated Flame Retardant Removal and Subsequent Valorization via Pyrolysis
by Maria-Anna Charitopoulou, Maria Papadimitriou, Lambrini Papadopoulou and Dimitriοs S. Achilias
Processes 2025, 13(5), 1458; https://doi.org/10.3390/pr13051458 - 9 May 2025
Viewed by 552
Abstract
Due to the increasing volumes of plastic waste generated from electric and electronic devices, research has focused on the investigation of recycling methods for their safe handling. Pyrolysis converts plastics from waste electric and electronic equipment (WEEE) into valuable products (pyrolysis oil). Nevertheless, [...] Read more.
Due to the increasing volumes of plastic waste generated from electric and electronic devices, research has focused on the investigation of recycling methods for their safe handling. Pyrolysis converts plastics from waste electric and electronic equipment (WEEE) into valuable products (pyrolysis oil). Nevertheless, the frequent presence of flame retardants, mainly brominated flame retardants (BFR), hinders pyrolysis’s wide application, since hazardous compounds may be produced, limiting the use of pyrolysis oils. Taking the aforementioned into account, this work focuses on the recycling, via pyrolysis, of various plastic samples gathered from WEEE, to explore the valuable products that are formed. Specifically, 14 plastic samples were collected, including parts of computer peripheral equipment, remote controls, telephones and other household appliances. Considering the difficulties when BFRs are present, the study went one step further, applying XRF analysis to identify their possible presence, and then Soxhlet extraction as an environmentally friendly method for the debromination of the samples. Based on the XRF results, it was found that 23% of the samples contained bromine. After each Soxhlet extraction, bromine was reduced, achieving a complete removal in the case of a remote control sample and when butanol was the solvent. Thermal pyrolysis led to the formation of valuable products, including the monomer styrene and other secondary useful compounds, such as alpha-methylstyrene. The FTIR results, in combination with the pyrolysis products, enabled the identification of the polymers present in the samples. Most of them were ABS or HIPS, while only three samples were PC. Full article
(This article belongs to the Special Issue Municipal Solid Waste for Energy Production and Resource Recovery)
Show Figures

Graphical abstract

23 pages, 9536 KiB  
Review
Prospects for the Valorization of Wind Turbine Blade Waste: Fiber Recovery and Recycling
by Regina Kalpokaitė-Dičkuvienė and Vilma Snapkauskienė
Sustainability 2025, 17(9), 4202; https://doi.org/10.3390/su17094202 - 6 May 2025
Cited by 1 | Viewed by 852
Abstract
The article reviews the literature on the potential utilization of decommissioned wind turbine blade waste (WTBW) in construction materials, including geopolymers, which are rarely discussed. The review indicates that only the mechanical processing of WTBW creates prerequisites for its possible use as fillers [...] Read more.
The article reviews the literature on the potential utilization of decommissioned wind turbine blade waste (WTBW) in construction materials, including geopolymers, which are rarely discussed. The review indicates that only the mechanical processing of WTBW creates prerequisites for its possible use as fillers in construction materials; however, adjustments to the composition of binding materials are necessary. Wind turbine blades (WTBs) are usually made from strong and durable composite materials, thus posing serious recycling and environmental challenges. Thermal process methods are promising approaches for recovering glass fibers from thermosets of WTBW through pyrolysis or converting WTBW into fibers via plasma processing. Preliminary durability studies of such recovered and recycled glass fibers have demonstrated their potential application in geopolymers or cement-based materials. Implementing these technologies would expand the waste management system, completing recycling and reuse solutions. To successfully adopt more environmentally friendly solutions, further development of geopolymer production processes and sustainable fiber recovery is recommended. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

20 pages, 4196 KiB  
Article
Machine Learning Optimization of Waste Salt Pyrolysis: Predicting Organic Pollutant Removal and Mass Loss
by Run Zhou, Qing Gao, Qiuju Wang and Guoren Xu
Sustainability 2025, 17(7), 3216; https://doi.org/10.3390/su17073216 - 4 Apr 2025
Cited by 1 | Viewed by 599
Abstract
Pyrolysis presents a promising solution for the complete purification and recycling of waste salt. However, the presence of organic pollutants in waste salts significantly hinders their practical application, owing to their diverse sources and strong resistance to degradation. This study developed predictive models [...] Read more.
Pyrolysis presents a promising solution for the complete purification and recycling of waste salt. However, the presence of organic pollutants in waste salts significantly hinders their practical application, owing to their diverse sources and strong resistance to degradation. This study developed predictive models for the removal of organic pollutants from waste salt using three machine learning techniques: Random Forest (RF), Support Vector Machine, and Artificial Neural Network. The models were evaluated based on the total organic carbon (TOC) removal rate and the mass loss rate, with the RF model demonstrating high accuracy, achieving R2 values of 0.97 and 0.99, respectively. Feature engineering revealed that the contribution of salt components was minimal, rendering them redundant. Feature importance analysis identified temperature as the most critical factor for TOC removal, while moisture content and carbon and nitrogen content were key determinants of mass loss. Partial dependence plots further elucidated the individual and interactive effects of these variables. The model was validated using both the literature data and laboratory experiments, and a user interface was developed using the Python GUI library. This study provides novel insights into the pyrolysis process of waste salt and establishes a foundation for optimizing its application. Full article
Show Figures

Figure 1

16 pages, 2716 KiB  
Article
The Modulatory Effect of Inhibitors on the Thermal Decomposition Performance of Graded Al@AP Composites
by Kan Xie, Jing Wang, Zhi-Yu Zhang, Bin Tian, Su-Lan Yang, Jingyu Lei and Ming-Hui Yu
Aerospace 2025, 12(4), 298; https://doi.org/10.3390/aerospace12040298 - 31 Mar 2025
Viewed by 500
Abstract
In this paper, a series of graded Al-based composites, including Al@AP, Al@AP/BM−52, and Al@AP/BPE−1735, have been prepared by spray drying technology. The thermal decomposition characteristics, kinetic parameters of the decomposition reaction, and Pyro-GC/MS products were comprehensively investigated. The results showed that two inhibitors, [...] Read more.
In this paper, a series of graded Al-based composites, including Al@AP, Al@AP/BM−52, and Al@AP/BPE−1735, have been prepared by spray drying technology. The thermal decomposition characteristics, kinetic parameters of the decomposition reaction, and Pyro-GC/MS products were comprehensively investigated. The results showed that two inhibitors, BM−52 and BPE−1735, had a significant effect on the thermal decomposition of AP. The addition of BM−52 conspicuously enhanced the thermal interaction, resulting in a more complete decomposition reaction of AP. Meanwhile, the incorporation of BPE−1735 significantly enhanced the heat releases of AP, leading to a significant enhancement in the energetic performance during the decomposition process of AP. BM−52 and BPE1735 inhibit AP decomposition as evidenced by higher activation energies for thermal decomposition and altered physical models of decomposition. Pyro-GC/MS results reveal that the fundamental pathway of Al@AP thermal decomposition remains unaltered by BM−52. However, the proportion of oxygen-containing compound products is moderately reduced. In contrast, for Al@AP/BPE−1735, in addition to the same products as those from Al@AP pyrolysis, new pyrolysis peaks emerge. It is implied that specific chemical reactions or interactions are triggered during the thermal decomposition process, thereby resulting in the formation of distinct chemical species. Full article
(This article belongs to the Special Issue Artificial Intelligence in Aerospace Propulsion)
Show Figures

Figure 1

17 pages, 1992 KiB  
Article
Molecular Dynamics Simulation of the Impact of Functional Head Groups and Chain Lengths of PFAS Degradation Using Ultrasound Technology
by Bruno Bezerra de Souza, Jitendra A. Kewalramani, Richard W. Marsh and Jay Meegoda
Water 2025, 17(7), 1025; https://doi.org/10.3390/w17071025 - 31 Mar 2025
Cited by 2 | Viewed by 1274
Abstract
PFASs, or per- and polyfluoroalkyl substances, comprise a diverse group of synthetic chemicals known for their widespread use, persistence, and potential environmental and health risks. The sonolytic treatment of PFASs is one of the technologies with the ability to complete destruction without harmful [...] Read more.
PFASs, or per- and polyfluoroalkyl substances, comprise a diverse group of synthetic chemicals known for their widespread use, persistence, and potential environmental and health risks. The sonolytic treatment of PFASs is one of the technologies with the ability to complete destruction without harmful byproducts. This study aims to provide a theoretical explanation for the sonolytic treatment of PFAS. Combining insights from molecular dynamics simulations with experimental data, the influence of chain length and functional headgroups on the PFAS destruction mechanism was investigated. The findings revealed that the impact on functional head groups and chain length on PFAS degradation via sonolysis treatment is complex and multifaceted. The preliminary degradation step is attributed to be headgroup cleavage, while differences in degradation rates between perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs) are primarily influenced by adsorption at the air–water interface of micro/nanobubbles created by ultrasound and dictated by compound hydrophobicity characteristics. Moreover, longer-chain PFAS compounds tend to degrade faster than shorter-chain counterparts due to their enhanced hydrophobic characteristics, facilitating adsorption and subsequent mineralization. The sonolytic environment significantly influences PFAS degradation, with aqueous sonolysis proving the most effective compared to dry pyrolysis or thermal combustion, highlighting the importance of considering environmental factors in remediation strategies. These insights provide valuable guidance for designing effective PFAS remediation strategies, emphasizing the need to consider molecular structure and environmental conditions. Further research and technological innovation are essential for developing sustainable approaches to mitigate PFAS pollution’s adverse impacts on human health and the environment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 3159 KiB  
Article
Pyrolysis Characteristics of Empty Fruit Bunches at Different Temperatures and Heating Rates
by Hyeongtak Ko, Myeongjong Lee, Rumduol Sen, Jeongwoo Choi and Seacheon Oh
Energies 2025, 18(6), 1404; https://doi.org/10.3390/en18061404 - 12 Mar 2025
Viewed by 750
Abstract
EFB is a biomass waste primarily generated in Southeast Asia, and its pyrolysis enables both waste management and conversion into valuable products. In pyrolysis, the heating rate is a crucial factor; however, studies on its influence on EFB are extremely limited. This study [...] Read more.
EFB is a biomass waste primarily generated in Southeast Asia, and its pyrolysis enables both waste management and conversion into valuable products. In pyrolysis, the heating rate is a crucial factor; however, studies on its influence on EFB are extremely limited. This study investigates the pyrolysis characteristics of EFB by analyzing product properties based on reaction temperature and heating rate. TGA showed that the thermal decomposition of EFB begins at approximately 210 °C and is largely complete by 400 °C. Furthermore, kinetic analysis using TGA data, applying both differential and integral methods, revealed distinct trends. Through pyrolysis experiments using a fixed-bed reactor, the yield analysis of products under varying reaction temperatures and heating rates demonstrated that higher temperatures promote pyrolysis, leading to a decrease in biochar yield and an increase in gas product yield. For liquid products, a higher heating rate suppressed secondary reactions and led to an increase in the yield of the aqueous phase. Gas product characterization revealed that CO and CO2 formation began simultaneously at approximately 270 °C. GC-MS analysis of the liquid products recovered under different pyrolysis conditions showed that most compounds contained oxygen, originating from hemicellulose, cellulose, and lignin. Additionally, FT-IR analysis of the biochar confirmed that oxygen-containing functional groups decomposed as pyrolysis progressed, and the presence of turbostratic carbon and crystallinity influenced by trace inorganic elements was identified. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 7939 KiB  
Article
Plastic Devolatilisation Kinetics During Isothermal High-Temperature Pyrolysis: Focus on Solid Products (Part I)
by Ieva Kiminaitė, Sebastian Wilhelm, Lukas Martetschläger, Clara Leonie Brigitte Eckert, Marcos Berenguer Casco, Nerijus Striūgas and Sebastian Fendt
Polymers 2025, 17(4), 525; https://doi.org/10.3390/polym17040525 - 18 Feb 2025
Cited by 1 | Viewed by 1806
Abstract
Incineration remains Europe’s main practice for plastic packaging waste treatment, primarily due to the limitations of mechanical recycling technology. Consequently, research and development of more sustainable and flexible approaches are of high importance. Thermochemical conversion of polypropylene, polystyrene, and municipal plastic packaging mix [...] Read more.
Incineration remains Europe’s main practice for plastic packaging waste treatment, primarily due to the limitations of mechanical recycling technology. Consequently, research and development of more sustainable and flexible approaches are of high importance. Thermochemical conversion of polypropylene, polystyrene, and municipal plastic packaging mix via high-temperature flash pyrolysis (1000 °C/s) is studied in this research, focusing on the kinetics and yields of the devolatilisation stage. The primary stage results in the formation of volatile organic compounds considered intermediate products for carbon black production. The experiments were conducted in a pressurised wire mesh reactor, investigating the influence of temperature (600–1200 °C), residence time (0.5–10 s), and pressure (1–25 bar). The positive effect of temperature on the volatile yield was observed up to 2–5 s. The devolatilisation stage was completed within a maximum of 5 s at temperatures ranging from 800 to 1200 °C. The pressure was determined to be a kinetically limiting factor of the process to up to 800 °C, and the effect was not present at ≥1000 °C. Raman spectroscopy measurements revealed that pyrolytic carbon deposited on the post-experimental meshes is structurally similar to the industrially produced carbon black. The kinetic data and developed model can be further applied in the upscale reactor design. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

Back to TopTop