Ameliorating Saline Clay Soils with Corncob Biochar for Improving Chickpea (Cicer arietinum L.) Growth and Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Characterization of Biochar
2.3. Seed Material
2.4. Initial Physicochemical Analysis of the Soil
2.5. Treatments
2.6. Greenhouse Experiment
2.7. Chemical Analysis of Water
2.8. Chemical Analysis of the Soil
2.9. Chemical Analysis of Plants
2.10. Morphometric Variables
2.11. Data Analysis
3. Results
3.1. Cation Concentrations in Shoot and Root Tissues
3.2. Chemical Properties of Soil After Exposure to Different Salinity and Biochar Concentrations
3.3. Morphometric Variables of C. arietinum Under Varying Salinity and Biochar Doses
4. Discussion
4.1. Impact of Soil Salinity and Biochar’s Remediation Potential
4.2. Mechanisms of Biochar in Mitigating Salinity Stress
4.3. Influence of Biochar on the Growth and Yield of Cicer arietinum
4.4. Field Application Potential and Comparison with Other Amendments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EC | Electrical conductivity |
SAR | Sodium absorption ratio |
ESP | Exchangeable sodium percentage |
CEC | Cation exchange capacity |
References
- Mishra, A.K.; Das, R.; Kerry, R.G.; Biswal, B.; Sinha, T.; Sharma, S.; Arora, P.; Kumar, M. Promising management strategies to improve crop sustainability and to amend soil salinity. Front. Environ. Sci. 2023, 10, 962581. [Google Scholar] [CrossRef]
- Hossain, S.; Rahman, G.M.; Alam, S.; Mashuk, H.; Rahman, M. Empirical model and variability of soil salinity in the coastal zone of Bangladesh. Eurasian J. Soil Sci. 2019, 8, 144–151. [Google Scholar] [CrossRef]
- El-Ramady, H.; Prokisch, J.; Mansour, H.; Bayoumi, Y.A.; Shalaby, T.A.; Veres, S.; Brevik, E.C. Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Syst. 2024, 8, 11. [Google Scholar] [CrossRef]
- Munns, R.; Passioura, J.B.; Colmer, T.D.; Byrt, C.S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol. 2020, 225, 1091–1096. [Google Scholar] [CrossRef]
- Mekawy, A.M.M.; Assaha, D.V.M.; Li, J.; Ueda, A. Astaxanthin application enhances salinity tolerance in rice seedlings by abating oxidative stress effects and enhancing Na+/K+ homeostatic balance. Plant Growth Regul. 2024, 103, 609–623. [Google Scholar] [CrossRef]
- Sharma, M.; Tisarum, R.; Kohli, R.K.; Batish, D.R.; Cha-um, S.; Singh, H.P. Inroads into saline-alkaline stress response in plants: Unravelling morphological, physiological, biochemical, and molecular mechanisms. Planta 2024, 259, 130. [Google Scholar] [CrossRef]
- Khan, S.; Irshad, S.; Mehmood, K.; Hasnain, Z.; Nawaz, M.; Rais, A.; Gul, S.; Wahid, M.A.; Hashem, A.; Abd_Allah, E.F.; et al. Biochar Production and Characteristics, Its Impacts on Soil Health, Crop Production, and Yield Enhancement: A Review. Plants 2024, 13, 166. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, S.; Song, Y.; Wang, X.; Jin, F. Biochar Application Reduces Saline–Alkali Stress by Improving Soil Functions and Regulating the Diversity and Abundance of Soil Bacterial Community in Highly Saline–Alkali Paddy Field. Sustainability 2024, 16, 1001. [Google Scholar] [CrossRef]
- Sultan, H.; Li, Y.; Ahmed, W.; Yixue, M.; Shah, A.; Faizan, M.; Ahmad, A.; Abbas, H.M.M.; Nie, L.; Khan, M.N. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. J. Environ. Manag. 2024, 355, 120448. [Google Scholar] [CrossRef]
- Saifullah; Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef]
- Qian, S.; Zhou, X.; Fu, Y.; Song, B.; Yan, H.; Chen, Z.; Sun, Q.; Ye, H.; Qin, L.; Lai, C. Biochar-compost as a new option for soil improvement: Application in various problem soils. Sci. Total Environ. 2023, 870, 162024. [Google Scholar] [CrossRef]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef]
- Coppa, E.; Quagliata, G.; Venanzi, R.; Bruschini, A.; Bianchini, L.; Picchio, R.; Astolfi, S. Potential Use of Biochar as a Mitigation Strategy for Salinity-Related Issues in Tomato Plants (Solanum lycopersicum L.). Environments 2024, 11, 17. [Google Scholar] [CrossRef]
- Bagues, M.; Neji, M.; Karbout, N.; Boussora, F.; Triki, T.; Guasmi, F.; Nagaz, K. Mitigating Salinity Stress in Barley (Hordeum vulgare L.) through Biochar and NPK Fertilizers: Impacts on Physio-Biochemical Behavior and Grain Yield. Agronomy 2024, 14, 317. [Google Scholar] [CrossRef]
- Murtaza, G.; Rizwan, M.; Usman, M.; Hyder, S.; Akram, M.I.; Deeb, M.; Alkahtani, J.; AlMunqedhi, B.M.; Hendy, A.S.; Ali, M.R.; et al. Biochar enhances the growth and physiological characteristics of Medicago sativa, Amaranthus caudatus and Zea mays in saline soils. BMC Plant Biol. 2024, 24, 304. [Google Scholar] [CrossRef]
- Asati, R.; Tripathi, M.K.; Yadav, R.K.; Tiwari, S.; Chauhan, S.; Tripathi, N.; Solanki, R.S.; Yasin, M. Morphological Description of Chickpea (Cicer arietanum L.) Genotypes Using DUS Characterization. Int. J. Environ. Clim. Chang. 2023, 13, 1321–1341. [Google Scholar] [CrossRef]
- Yadav, R.K.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Asati, R.; Patel, V.; Sikarwar, R.S.; Payasi, D.K. Breeding and Genomic Approaches towards Development of Fusarium Wilt Resistance in Chickpea. Life 2023, 13, 988. [Google Scholar] [CrossRef]
- Kaur, K.; Grewal, S.K.; Gill, P.S.; Singh, S. Comparison of cultivated and wild chickpea genotypes for nutritional quality and antioxidant potential. J. Food Sci. Technol. 2019, 56, 1864–1876. [Google Scholar] [CrossRef]
- Tiwari, S.; Sahu, V.K.; Gupta, N.; Tripathi, M.K.; Yasin, M. Evaluation of physiological and biochemical contents in desi and Kabuli chickpea. Legum. Res. Int. J. 2022, 45, 1197–1208. [Google Scholar] [CrossRef]
- Erokhin, V.; Diao, L.; Gao, T.; Andrei, J.-V.; Ivolga, A.; Zong, Y. The supply of calories, proteins, and fats in low-income countries: A four-decade retrospective study. Int. J. Environ. Res. Public Health 2021, 18, 7356. [Google Scholar] [CrossRef]
- Kaur, G.; Sanwal, S.K.; Sehrawat, N.; Kumar, A.; Kumar, N.; Mann, A. Getting to the roots of Cicer arietinum L. (chickpea) to study the effect of salinity on morpho-physiological, biochemical and molecular traits. Saudi J. Biol. Sci. 2022, 29, 103464. [Google Scholar] [CrossRef]
- Orozco, L.E.M.; Orozco, I.N.M. Mobile autothermic prototype for biochar production using biomass of avocado crop byproducts. Terra Latinoam. 2018, 36, 121–129. [Google Scholar]
- International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative: Philadelphia, PA, USA, 2015; p. 23. [Google Scholar]
- SEMARNAT. Norma Oficial Mexicana NOM-021-SEMARNAT-2000 que Establece las Especific Aciones de Fertilidad, Salinidad y Clasificación de Suelos, Estudio, Muestreo y Análisis; SEMARNAT: Mexico City, Mexico, 2002. [Google Scholar]
- Alef, K.; Nannipieri, P. (Eds.) Methods in Applied Soil Microbiology and Biochemistry; Academic Press: Cambridge, MA, USA, 1995; pp. xix+–576. [Google Scholar]
- Hussain, A.; Kandari, A.; Kotiyal, S.; Kumar, V.; Upadhyay, S.; Ahmad, W.; Singh, A.; Kumar, S. Hydrothermal liquefaction for biochar production from finger millet waste: Its valorisation, process optimization, and characterization. RSC Adv. 2024, 14, 24492–24502. [Google Scholar] [CrossRef]
- Awan, S.; Ippolito, J.A.; Ullman, J.L.; Ansari, K.; Cui, L.; Siyal, A.A. Biochars reduce irrigation water sodium adsorption ratio. Biochar 2021, 3, 77–87. [Google Scholar] [CrossRef]
- Robbins, C.W. Sodium adsorption ratio-exchangeable sodium percentage relationships in a high potassium saline-sodic soil. Irrig. Sci. 1984, 5, 173–179. [Google Scholar] [CrossRef]
- Carter, M.R. Analysis of Soil Organic Matter Storage in Agroecosystems. In Structure and Organic Matter Storage in Agricultural Soils, 1st ed.; Carter, M.R., Stewart, B.A., Eds.; Routledge: London, UK, 1995; p. 9. [Google Scholar]
- EPA Method. EPA Method. EPA Method 3052: Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. In Test Methods for Evaluating Solid Waste; EAP: Washington, DC, USA, 1996. [Google Scholar]
- Kalra, Y.P. Handbook of Reference Methods for Plant Analysis; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Rahimikhoob, H.; Delshad, M.; Habibi, R. Leaf area estimation in lettuce: Comparison of artificial intelligence-based methods with image analysis technique. Measurement 2023, 222, 113636. [Google Scholar] [CrossRef]
- McCullum, R.; Saifullah; Bowyer, M.; Vuong, Q.V. The impact of drying method and temperature on the colour and functional quality of Illawarra plum (Podocarpus elatus). Appl. Food Res. 2024, 4, 100407. [Google Scholar] [CrossRef]
- Jiang, J. Large Sample Techniques for Statistics, 2nd ed.; Springer: Davis, CA, USA, 2010; Volume 102. [Google Scholar]
- SAS. Statistical Analysis System; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Singh, A. Soil salinity: A global threat to sustainable development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt stress in plants and mitigation approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Si, B.; Wang, Y.; Chen, X.; Wang, X.; Chen, H.; Wang, H.; Zhang, F.; Bai, Y.; et al. Optimizing biochar application to improve soil physical and hydraulic properties in saline-alkali soils. Sci. Total Environ. 2021, 771, 144802. [Google Scholar] [CrossRef]
- Huang, K.; Li, M.; Li, R.; Rasul, F.; Shahzad, S.; Wu, C.; Shao, J.; Huang, G.; Li, R.; Almari, S.; et al. Soil acidification and salinity: The importance of biochar application to agricultural soils. Front. Plant Sci. 2023, 14, 1206820. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Agarwal, R. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol. Biochem. 2017, 115, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Yuan, G.; Feng, L.; Bi, D.; Wei, J. Soil properties and the growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in response to reed (Phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agric. Ecosyst. Environ. 2020, 303, 107124. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Q.; Zheng, H.; Li, M.; Liu, Y.; Wang, X.; Peng, Y.; Luo, X.; Li, F.; Li, X.; et al. Biochar as a sustainable tool for improving the health of salt-affected soils. Soil Environ. Health 2023, 1, 100033. [Google Scholar] [CrossRef]
- Shaygan, M.; Reading, L.P.; Baumgartl, T. Effect of physical amendments on salt leaching characteristics for reclamation. Geoderma 2017, 292, 96–110. [Google Scholar] [CrossRef]
- Chi, W.; Nan, Q.; Liu, Y.; Dong, D.; Qin, Y.; Li, S.; Wu, W. Stress resistance enhancing with biochar application and promotion on crop growth. Biochar 2024, 6, 43. [Google Scholar] [CrossRef]
- Bornø, M.L.; Müller-Stöver, D.S.; Liu, F. Biochar modifies the content of primary metabolites in the rhizosphere of well-watered and drought-stressed Zea mays L. (maize). Biol. Fertil. Soils 2022, 58, 633–647. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, X.C. Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. Int. J. Agric. Biol. 2012, 5, 745–750. [Google Scholar]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.; Xia, Y.; Zhang, Y.; Wang, H.; Luo, X.; Xing, B. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 2018, 41, 517–532. [Google Scholar] [CrossRef]
- Wang, X.; Ding, J.; Han, L.; Tan, J.; Ge, X.; Nan, Q. Biochar addition reduces salinity in salt-affected soils with no impact on soil pH: A meta-analysis. Geoderma 2024, 443, 116845. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Z.; Zhang, Z.; You, L.; Xu, L.; Huang, H.; Wang, X.; Gao, Y.; Cui, X. Treatment of the saline-alkali soil with acidic corn stalk biochar and its effect on the sorghum yield in western Songnen Plain. Sci. Total Environ. 2021, 797, 149190. [Google Scholar] [CrossRef]
- Moradi, S.; Rasouli-Sadaghiani, M.H.; Sepehr, E.; Khodaverdiloo, H.; Barin, M. Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environ. Monit. Assess. 2019, 191, 257. [Google Scholar] [CrossRef]
- Bacha, S.A.S.; Iqbal, B. Advancing agro-ecological sustainability through emerging genetic approaches in crop improvement for plants. Funct. Integr. Genom. 2023, 23, 145. [Google Scholar] [CrossRef]
- Wang, L.; Ok, Y.S.; Tsang, D.C.W.; Alessi, D.S.; Rinklebe, J.; Wang, H.; Mašek, O.; Hou, R.; O’Connor, D.; Hou, D. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag. 2020, 36, 358–386. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.; Feng, L.; Shah, G.M.; Wei, J. Biochar to reduce fertilizer use and soil salinity for crop production in the Yellow River Delta. J. Soil Sci. Plant Nutr. 2022, 22, 1478–1489. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al–Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Ali, E.F.; Al-Yasi, H.M.; Kheir, A.M.S.; Eissa, M.A. Effect of biochar on CO2 sequestration and productivity of pearl millet plants grown in saline sodic soils. J. Soil Sci. Plant Nutr. 2021, 21, 897–907. [Google Scholar] [CrossRef]
- Almaroai, Y.A.; Eissa, M.A. Effect of biochar on yield and quality of tomato grown on a met-al-contaminated soil. Sci. Hortic. 2020, 265, 109210. [Google Scholar] [CrossRef]
- Eissa, M.A.; Abeed, A.H. Growth and biochemical changes in quail bush (Atriplex lentiformis (Torr.) S. Wats) under Cd stress. Environ. Sci. Pollut. Res. 2019, 26, 628–635. [Google Scholar]
- Al-Sayed, H.M.; Hegab, S.A.; Youssef, M.A.; Khalafalla, M.Y.; Almaroai, Y.A.; Ding, Z.; Eissa, M.A. Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. J. Plant Nutr. 2020, 43, 1025–1035. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S. Effect of biochar on growth and ion contents of bean plant under saline condition. Environ. Sci. Pollut. Res. 2018, 25, 11556–11564. [Google Scholar] [CrossRef]
- Ibrahim, M.E.H.; Ali, A.Y.A.; Elsiddig, A.M.I.; Zhou, G.; Nimir, N.E.A.; Agbna, G.H.; Zhu, G. Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pak. J. Bot. 2021, 53, 387–392. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Alaylar, B.; Kistaubayeva, A.; Wirth, S.; Bellingrath-Kimura, S.D. Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-affected Soils. Commun. Soil Sci. Plant Anal. 2022, 53, 140–152. [Google Scholar] [CrossRef]
- Anwar, T.; Munwwar, F.; Qureshi, H.; Siddiqi, E.H.; Hanif, A.; Anwaar, S.; Gul, S.; Waheed, A.; Alwahibi, M.S.; Kamal, A. Synergistic effect of biochar-based compounds from vegetable wastes and gibberellic acid on wheat growth under salinity stress. Sci. Rep. 2023, 13, 19024. [Google Scholar] [CrossRef]
- Schmierer, M.; Knopf, O.; Asch, F. Growth and Photosynthesis Responses of a Super Dwarf Rice Genotype to Shade and Nitrogen Supply. Rice Sci. 2021, 28, 178–190. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef]
- Hou, W.; Tränkner, M.; Lu, J.; Yan, J.; Huang, S.; Ren, T.; Cong, R.; Li, X. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biol. 2019, 19, 302. [Google Scholar] [CrossRef]
- Chakraborty, K.; Bhaduri, D.; Meena, H.N.; Kalariya, K. External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 2016, 103, 143–153. [Google Scholar] [CrossRef]
- Jiaying, M.; Tingting, C.; Jie, L.; Weimeng, F.; Baohua, F.; Guangyan, L.; Hubo, L.; Juncai, L.; Zhihai, W.; Longxing, T.; et al. Functions of Nitrogen, Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development. Rice Sci. 2022, 29, 166–178. [Google Scholar] [CrossRef]
- Feng, D.; Wang, X.; Gao, J.; Zhang, C.; Liu, H.; Liu, P.; Sun, X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. Front. Plant Sci. 2023, 14, 1143963. [Google Scholar] [CrossRef]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop. J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Tian, X.-Y.; He, D.-D.; Bai, S.; Zeng, W.-Z.; Wang, Z.; Wang, M.; Wu, L.-Q.; Chen, Z.-C. Physiological and molecular advances in magnesium nutrition of plants. Plant Soil 2021, 468, 1–17. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Zhang, L.; Zheng, Y.; Liu, X.; Zhang, Y. The critical role of biochar to mitigate the adverse impacts of drought and salinity stress in plants. Front. Plant Sci. 2023, 14, 1163451. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.-J.; Novak, A.; Yang, Y.; Wang, J. Role of biochar in improving sandy soil water retention and resilience to drought. Water 2021, 13, 407. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Juriga, M.; Aydın, E.; Horák, J.; Chlpík, J.; Rizhiya, E.Y.; Buchkina, N.P.; Balashov, E.V.; Šimanský, V. The importance of initial ap-plication and reapplication of biochar in the context of soil structure improvement. J. Hydrol. Hydromech. 2021, 69, 87–97. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Yang, J.; Luo, Y.; Yao, R.; Wang, X.; Xie, W.; Zhang, X. Biochar Effects Coastal Saline Soil and Improves Crop Yields in a Maize-Barley Rotation System in the Tidal Flat Reclamation Zone, China. Water 2022, 14, 3204. [Google Scholar] [CrossRef]
- Aljughaiman, A.S. Impact of salinity of irrigation water and gypsum application on soil properties and yield of wheat plant. Plant Arch. 2020, 20, 3535–3542. [Google Scholar]
- Xiao, L.; Yuan, G.; Feng, L.; Bi, D.; Wei, J.; Shen, G.; Liu, Z. Coupled effects of biochar use and farming practice on physical properties of a salt-affected soil with wheat–maize rotation. J. Soils Sediments 2020, 20, 3053–3061. [Google Scholar] [CrossRef]
- Campion, L.; Bekchanova, M.; Malina, R.; Kuppens, T. The costs and benefits of biochar production and use: A systematic review. J. Clean. Prod. 2023, 408, 137138. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Q.; Liu, Z.; Liu, K.; Wang, X.; Shang, J. Salt-affected marginal lands: A solution for biochar production. Biochar 2023, 5, 21. [Google Scholar] [CrossRef]
mg g−1 DW | |||||||
---|---|---|---|---|---|---|---|
Treatments | Part of the Plant | Na+ | K+ | Ca2+ | Mg2+ | Cl− | |
S1 (1.2 dS·m−1) | (T1) NBCO | R | 0.80 nm ± 0.01 | 1.65 n ± 0.02 | 1.02 k ± 0.01 | 0.28 l ± 0.01 | 0.60 nm ± 0.01 |
SL | 1.71 l ± 0.02 | 4.36 g ± 0.07 | 2.81 gf ± 0.04 | 1.20 g ± 0.02 | 1.24 l ± 0.02 | ||
(T2) SBCO | R | 0.50 no ± 0.01 | 3.06 k ± 0.05 | 2.25 h ± 0.03 | 0.76 i ± 0.01 | 0.42 no ± 0.01 | |
SL | 1.06 m ± 0.01 | 6.64 d ± 0.11 | 5.29 c ± 0.09 | 2.13 d ± 0.03 | 0.79 m ± 0.01 | ||
(T3) MBCO | R | 0.39 o ± 0.01 | 3.32 j ± 0.05 | 2.96 f ± 0.05 | 0.98 h ± 0.01 | 0.29 o ± 0.01 | |
SL | 0.66 no ± 0.01 | 7.63 b ± 0.13 | 6.55 b ± 0.11 | 2.57 c ± 0.04 | 0.50 nmo ± 0.01 | ||
S2 (4.2 dS·m−1) | (T4) NBCO | R | 4.84 h ± 0.08 | 2.10 ml ± 0.03 | 1.52 i ± 0.02 | 0.62 j ± 0.01 | 3.6 h ± 0.06 |
SL | 10.29 d ± 0.17 | 5.42 e ± 0.09 | 4.56 d ± 0.07 | 2.08 d ± 0.03 | 7.71 d ± 0.13 | ||
(T5) SBCO | R | 3.28 j ± 0.05 | 4.08 h ± 0.07 | 2.72 g ± 0.04 | 1.18 g ± 0.02 | 2.45 j ± 0.04 | |
SL | 8.35 e ± 0.14 | 7.23 c ± 0.12 | 6.73 b ± 0.11 | 2.96 b ± 0.05 | 6.26 e ± 0.11 | ||
(T6) MBCO | R | 2.77 k ± 0.04 | 4.57 fg ± 0.07 | 3.70 e ± 0.06 | 1.48 f ± 0.02 | 2.08 k ± 0.03 | |
SL | 7.22 f ± 0.12 | 8.53 a ± 0.14 | 7.57 a ± 0.12 | 3.53 a ± 0.06 | 5.42 f ± 0.09 | ||
S3 (5.6 dS·m−1) | (T7) NBCO | R | 8.57 e ± 0.14 | 1.09 o ± 0.01 | 0.45 l ± 0.01 | 0.34 l ± 0.01 | 6.43 e ± 0.11 |
SL | 18.82 a ± 0.32 | 2.04 m ± 0.03 | 1.28 j ± 0.02 | 0.79 i ± 0.01 | 14.12 a ± 0.24 | ||
(T8) SBCO | R | 5.50 g ± 0.09 | 2.27 l ± 0.03 | 1.18 kj ± 0.02 | 0.44 k ± 0.01 | 4.12 g ± 0.07 | |
SL | 13.38 b ± 0.22 | 3.70 i ± 0.06 | 2.83 gf ± 0.04 | 1.73 e ± 0.03 | 10.87 b ± 0.18 | ||
(T9) MBCO | R | 4.35 i ± 0.07 | 2.90 k ± 0.04 | 1.61 i ± 0.02 | 0.66 j ± 0.01 | 3.26 i ± 0.05 | |
SL | 11.96 c ± 0.20 | 4.72 f ± 0.08 | 3.87 e ± 0.06 | 2.12 d ± 0.03 | 9.24 c ± 0.15 |
Parameters | Treatments | ||||||||
---|---|---|---|---|---|---|---|---|---|
S1 (1.2 dS·m−1) | S2 (4.2 dS·m−1) | S3 (5.6 dS·m−1) | |||||||
(T1) NBCO | (T2) SBCO | (T3) MBCO | (T4) NBCO | (T5) SBCO | (T6) MBCO | (T7) NBCO | (T8) SBCO | (T9) MBCO | |
pH | 7.49 f ± 0.03 | 7.39 g ± 0.03 | 7.31 h ± 0.03 | 7.87 c ± 0.03 | 7.75 d ± 0.03 | 7.63 e ± 0.03 | 8.02 a ± 0.03 | 7.94 b ± 0.03 | 7.86 c ± 0.03 |
EC (dS·m−1) | 1.02 g ± 0.04 | 0.76 h ± 0.04 | 0.64 h ± 0.05 | 3.82 c ± 0.05 | 2.27 e ± 0.04 | 1.79 f ± 0.04 | 5.34 a ± 0.04 | 4.03 b ± 0.05 | 3.55 d ± 0.04 |
Na+ (mmolc·L−1) | 15.17 d ± 0.27 | 7.64 g ± 0.13 | 5.76 h ± 0.10 | 28.02 b ± 0.50 | 10.24 f ± 0.18 | 5.61 h ± 0.10 | 39.72 a ± 0.71 | 23.69 c ± 0.42 | 12.73 e ± 0.22 |
Ca2+ (mmolc·L−1) | 5.65 d ± 0.10 | 3.27 e ± 0.06 | 2.86 f ± 0.05 | 12.41 b ± 0.22 | 5.37 d ± 0.10 | 2.13 g ± 0.04 | 19.24 a ± 0.34 | 12.64 b ± 0.22 | 6.53 c ± 0.11 |
Mg2+ (mmolc·L−1) | 3.47 d ± 0.06 | 2.09 f ± 0.03 | 1.31 g ± 0.02 | 8.79 c ± 0.15 | 2.62 e ± 0.04 | 1.04 g ± 0.02 | 16.21 a ± 0.29 | 10.41 b ± 0.18 | 2.70 e ± 0.04 |
Na+ (cmolc·kg−1) | 3.11 c ± 0.05 | 2.22 f ± 0.04 | 1.99 g ± 0.03 | 3.68 b ± 0.06 | 2.39 e ± 0.04 | 2.09 gf ± 0.03 | 4.02 a ± 0.07 | 3.03 c ± 0.05 | 2.82 d ± 0.05 |
K+ (cmolc·kg−1) | 1.93 c ± 0.03 | 1.31 d ± 0.02 | 0.75 f ± 0.01 | 2.13 b ± 0.03 | 1.08 e ± 0.01 | 0.57 g ± 0.01 | 2.44 a ± 0.04 | 1.87 c ± 0.03 | 0.78 f ± 0.01 |
Ca2+ (cmolc·kg−1) | 37.92 c ± 0.68 | 30.44 e ± 0.54 | 23.17 g ± 0.41 | 40.37 b ± 0.72 | 27.54 f ± 0.49 | 18.63 h ± 0.03 | 43.52 a ± 0.78 | 32.20 d ± 0.57 | 22.76 g ± 0.40 |
Mg2+ (cmolc·kg−1) | 13.01 a ± 0.23 | 9.88 d ± 0.17 | 7.84 e ± 0.14 | 10.82 c ± 0.19 | 4.26 h ± 0.07 | 2.88 i ± 0.05 | 11.75 b ± 0.21 | 6.75 f ± 0.12 | 4.81 g ± 0.08 |
SAR (mmolc·L−1)0.5 | 6.91 c ± 0.12 | 4.67 f ± 0.08 | 3.98 gf ± 0.07 | 8.63 b ± 0.15 | 5.12 e ± 0.09 | 4.45 f ± 0.08 | 9.43 a ± 0.17 | 6.97 c ± 0.12 | 5.86 d ± 0.10 |
ESP (%) | 9.42 c ± 0.17 | 6.71 f ± 0.12 | 6.04 g ± 0.11 | 11.15 b ± 0.20 | 7.25 e ± 0.13 | 6.32 gf ± 0.11 | 12.18 a ± 0.22 | 9.18 c ± 0.16 | 8.54 d ± 0.15 |
Parameters | Treatments | ||||||||
---|---|---|---|---|---|---|---|---|---|
S1 (1.2 dS·m−1) | S2 (4.2 dS·m−1) | S3 (5.6 dS·m−1) | |||||||
(T1) NBCO | (T2) SBCO | (T3) MBCO | (T4) NBCO | (T5) SBCO | (T6) MBCO | (T7) NBCO | (T8) SBCO | (T9) MBCO | |
Plant height (cm) | 53.04 c ± 0.95 | 57.25 b ± 1.03 | 62.01 a ± 1.11 | 44.86 fe ± 0.80 | 49.57 d ± 0.89 | 55.75 b ± 1.01 | 36.32 g ± 0.65 | 43.82 f ± 0.78 | 46.49 e ± 0.83 |
Root length (cm) | 33.76 dc ± 0.60 | 41.26 b ± 0.74 | 46.77 a ± 0.84 | 28.36 e ± 0.51 | 35.09 c ± 0.63 | 40.24 b ± 0.72 | 22.98 f ± 0.41 | 29.91 e ± 0.53 | 33.13 d ± 0.59 |
Plant fresh weight (g) | 229.81 c ± 4.13 | 263.54 b ± 4.74 | 295.31 a ± 5.31 | 191.59 e ± 3.44 | 222.91 dc ± 4.01 | 254.07 b ± 4.57 | 159.33 f ± 2.86 | 193.90 e ± 3.49 | 211.37 d ± 3.80 |
Plant dry weight (g) | 74.68 c ± 1.34 | 85.64 b ± 1.54 | 95.96 a ± 1.72 | 62.26 e ± 1.12 | 72.44 dc ± 1.30 | 82.56 b ± 1.48 | 51.78 f ± 0.93 | 63.01 e ± 1.13 | 68.69 d ± 1.23 |
Plant stem diameter (cm) | 0.65 e ± 0.01 | 0.74 c± 0.01 | 0.87 a ± 0.01 | 0.58 f ± 0.01 | 0.66 e ± 0.01 | 0.78 b ± 0.01 | 0.48 g ± 0.01 | 0.57 f ± 0.01 | 0.71 d ± 0.01 |
Leaf area (cm2) | 2370 c ± 42.6 | 2719 b ± 48.9 | 3047 a ± 54.8 | 1979 e ± 35.6 | 2302 dc ± 41.43 | 2624 b ± 47.2 | 1651 f ± 29.7 | 2012 e ± 36.21 | 2185 d ± 39.3 |
Fruit fresh weight (g) | 0.22 cd ± 0.008 | 0.26 b ± 0.011 | 0.29 a ± 0.012 | 0.17 e ± 0.002 | 0.21 d ± 0.008 | 0.24 cb ± 0.012 | 0.14 f ± 0.01 | 0.17 e ± 0.002 | 0.20 d ± 0.007 |
Fruit dry weight (g) | 0.09 cb ± 0.005 | 0.10 b ± 0.005 | 0.12 a ± 0.005 | 0.07 d ± 0.003 | 0.09 cb ± 0.004 | 0.10 b ± 0.005 | 0.05 e ± 0.002 | 0.07 d ± 0.003 | 0.08 cd ± 0.004 |
Number of pods (plant−1) | 32.10 f ± 0.57 | 38.72 b ± 0.69 | 44.46 a ± 0.80 | 25.60 f ± 0.46 | 32.67 d ± 0.58 | 36.56 c ± 0.65 | 21.28 g ± 0.38 | 25.92 f ± 0.46 | 29.24 e ± 0.52 |
Number of fruits (plant−1) | 87.96 b ± 1.58 | 95.52 a ± 1.90 | 99.82 a ± 2.19 | 70.15 fe ± 1.26 | 80.54 cd ± 1.61 | 84.19 b ± 1.80 | 66.31 f ± 1.05 | 72.03 e ± 1.27 | 77.12 d ± 1.44 |
Yield FW (g·plant−1) | 19.35 c ± 0.34 | 24.83 b ± 0.42 | 28.94 a ± 0.70 | 11.92 f ± 0.21 | 16.91 d ± 0.35 | 20.20 c ± 0.55 | 8.16 g ± 0.11 | 12.24 f ± 0.21 | 15.42 e ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lastiri-Hernández, M.A.; Pérez-Inocencio, J.; Conde-Barajas, E.; de la Luz Xochilt Negrete-Rodríguez, M.; Álvarez-Bernal, D. Ameliorating Saline Clay Soils with Corncob Biochar for Improving Chickpea (Cicer arietinum L.) Growth and Yield. Soil Syst. 2025, 9, 71. https://doi.org/10.3390/soilsystems9030071
Lastiri-Hernández MA, Pérez-Inocencio J, Conde-Barajas E, de la Luz Xochilt Negrete-Rodríguez M, Álvarez-Bernal D. Ameliorating Saline Clay Soils with Corncob Biochar for Improving Chickpea (Cicer arietinum L.) Growth and Yield. Soil Systems. 2025; 9(3):71. https://doi.org/10.3390/soilsystems9030071
Chicago/Turabian StyleLastiri-Hernández, Marcos Alfonso, Javier Pérez-Inocencio, Eloy Conde-Barajas, María de la Luz Xochilt Negrete-Rodríguez, and Dioselina Álvarez-Bernal. 2025. "Ameliorating Saline Clay Soils with Corncob Biochar for Improving Chickpea (Cicer arietinum L.) Growth and Yield" Soil Systems 9, no. 3: 71. https://doi.org/10.3390/soilsystems9030071
APA StyleLastiri-Hernández, M. A., Pérez-Inocencio, J., Conde-Barajas, E., de la Luz Xochilt Negrete-Rodríguez, M., & Álvarez-Bernal, D. (2025). Ameliorating Saline Clay Soils with Corncob Biochar for Improving Chickpea (Cicer arietinum L.) Growth and Yield. Soil Systems, 9(3), 71. https://doi.org/10.3390/soilsystems9030071