Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = pyrimidine amides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 799 KB  
Article
Impact of Hydrophobic, Hydrophilic, and Mucus-Binding Motifs on the Therapeutic Potential of Ceftazidime Analogs for Pulmonary Administration
by Kyle D. Apley, Stephanie N. Johnson, Jian Qian, Indeewara Munasinghe, Jennifer R. Klaus, Srilaxmi M. Patel, Kathryn E. Woods, Samalee Banerjee, Josephine R. Chandler, Chamani Perera, Nathalie Baumlin, Matthias Salathe and Cory J. Berkland
Antibiotics 2025, 14(2), 177; https://doi.org/10.3390/antibiotics14020177 - 11 Feb 2025
Viewed by 2250
Abstract
Background/Objectives: The pulmonary administration of antibiotics can be advantageous in treating pulmonary infections by promoting high intrapulmonary drug concentrations with reduced systemic exposure. However, limited benefits have been observed for pulmonary administration versus other administration routes due to its rapid clearance from [...] Read more.
Background/Objectives: The pulmonary administration of antibiotics can be advantageous in treating pulmonary infections by promoting high intrapulmonary drug concentrations with reduced systemic exposure. However, limited benefits have been observed for pulmonary administration versus other administration routes due to its rapid clearance from the lung. Here, the effects of structural modifications on the epithelial permeability and antibacterial potency of a third-generation cephalosporin were investigated to improve the understanding of drug properties that promote intrapulmonary retention and how they may impact efficacy. Methods: Ceftazidime was modified by attaching 18 hydrophobic, hydrophilic, and mucus-binding motifs to the carboxylic acid distant from the beta-lactam by amidation. Epithelial permeability was investigated by drug transport assays using human bronchial epithelial air–liquid interface cultures. Antibacterial potency was determined by microtiter MIC assays with B. pseudomallei, P. aeruginosa, E. coli, and S. aureus. Results: A 40–50% reduction in the transepithelial transport rate was exhibited by two PEGylated ceftazidime analogs (mPEG8- and PEG5-pyrimidin-2-amine-ceftazidime) and n-butyl-ceftazidime. An increase in the transport rate was exhibited by four analogs bearing small and hydrophobic or negatively charged motifs (n-heptane-, phenyl ethyl-, glutamic acid-, and 4-propylthiophenyl boronic acid-ceftazidime). The antibacterial potency was reduced by ≥10-fold for most ceftazidime analogs against B. pseudomallei, P. aeruginosa, and E. coli but was retained by seven ceftazidime analogs primarily bearing hydrophobic motifs against S. aureus. Conclusions: The covalent conjugation of PEGs with MW > 300 Da reduced the epithelial permeability of ceftazidime, but these modifications severely reduced antibacterial activity. To improve the pulmonary retention of antibiotics with low membrane permeability, this work suggests future molecular engineering studies to explore high-molecular-weight prodrug strategies. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Graphical abstract

17 pages, 3082 KB  
Article
Synthesis and Antioxidant Activities of Novel Pyrimidine Acrylamides as Inhibitors of Lipoxygenase: Molecular Modeling and In Silico Physicochemical Studies
by Michail Saragatsis and Eleni Pontiki
Molecules 2024, 29(6), 1189; https://doi.org/10.3390/molecules29061189 - 7 Mar 2024
Cited by 12 | Viewed by 3215
Abstract
The pyrimidine ring is present in various biomolecules such as DNA and RNA bases, aminoacids, vitamins, etc. Additionally, many clinically used drugs including methotrexate and risperidone contain the pyrimidine heterocyclic scaffold as well. Pyrimidine derivatives present diverse biological activities including antioxidant and anticancer [...] Read more.
The pyrimidine ring is present in various biomolecules such as DNA and RNA bases, aminoacids, vitamins, etc. Additionally, many clinically used drugs including methotrexate and risperidone contain the pyrimidine heterocyclic scaffold as well. Pyrimidine derivatives present diverse biological activities including antioxidant and anticancer activities and can be considered as privileged scaffolds in drug discovery for the treatment of various diseases. Piperidine pyrimidine amides have gained significant attention due to their enzymatic inhibitory activity. Based on our experience and ongoing investigation on cinnamic acid derivatives, their hybrids and substituted pteridines acting as lipoxygenase inhibitors, antioxidants, anti-cancer, and anti-inflammatory agents a series of novel piperidine pyrimidine cinnamic acids amides have been designed and synthesized. The novel hybrids were studied for their antioxidant and anti-inflammatory potential. They exhibit moderate antioxidant activity in the DPPH assay which may be related to their bulkiness. Moreover, moderate to good lipid peroxidation inhibition potential was measured. With regards to their lipoxygenase inhibitory activity, however, two highly potent inhibitors out of the nine tested derivatives were identified, demonstrating IC50 values of 10.7 μM and 1.1 μM, respectively. Molecular docking studies to the target enzyme lipoxygenase support the experimental results. Full article
(This article belongs to the Special Issue New Strategies and Approaches in Polypharmacology)
Show Figures

Figure 1

16 pages, 4744 KB  
Article
Design, Synthesis, Molecular Modeling, and Biological Evaluation of Novel Pyrimidine Derivatives as Potential Calcium Channel Blockers
by Yasser M. Zohny, Samir M. Awad, Maha A. Rabie and Omar Awad Alsaidan
Molecules 2023, 28(12), 4869; https://doi.org/10.3390/molecules28124869 - 20 Jun 2023
Cited by 15 | Viewed by 3789
Abstract
Pyrimidines play an important role in modern medical fields. They have a wide spectrum of biological activities such as antimicrobial, anticancer, anti-allergic, anti-leishmanial, antioxidant agents and others. Moreover, in recent years, 3,4-dihydropyrimidin-2(1H)ones have attracted researchers to synthesize them via Biginelli reaction and evaluate [...] Read more.
Pyrimidines play an important role in modern medical fields. They have a wide spectrum of biological activities such as antimicrobial, anticancer, anti-allergic, anti-leishmanial, antioxidant agents and others. Moreover, in recent years, 3,4-dihydropyrimidin-2(1H)ones have attracted researchers to synthesize them via Biginelli reaction and evaluate their antihypertensive activities as bioisosters of Nifedipine, which is a famous calcium channel blocker. Our new target compounds were prepared through one-pot reaction of thiourea 1, ethyl acetoacetate 2 and/or 1H-indole-2-carbaldehyde, 2-chloroquinoline-3-carbaldehyde, 1,3-diphenyl-1H-pyrazole-4-carbaldehyde, 3ac in acid medium (HCl) yielding pyrimidines 4ac, which in turn were hydrolyzed to carboxylic acid derivatives 5ac which were chlorinated by SOCl2 to give acyl chlorides 6ac. Finally, the latter were reacted with some selected aromatic amines, namely, aniline, p-toluidine and p-nitroaniline, producing amides 7ac, 8ac, and 9ac. The purity of the prepared compounds was examined via TLC monitoring, and structures were confirmed by different spectroscopic techniques such as IR, 1HNMR, 13CNMR, and mass spectroscopy. The in vivo evaluation of the antihypertensive activity revealed that compounds 4c, 7a, 7c, 8c, 9b and 9c had comparable antihypertensive properties with Nifedipine. On the other hand, the in vitro calcium channel blocking activity was evaluated by IC50 measurement and results revealed that compounds 4c, 7a, 7b, 7c, 8c, 9a, 9b, and 9c had comparable calcium channel blocking activity with the reference Nifedipine. Based on the aforementioned biological results, we selected compounds 8c and 9c to be docked onto Ryanodine and dihydropyridine receptors. Furthermore, we developed a structure–activity relationship. The designed compounds in this study show promising activity profiles in reducing blood pressure and as calcium channel blockers, and could be considered as new potential antihypertensive and/or antianginal agents. Full article
(This article belongs to the Special Issue Biologically Active Heterocyclic Compounds)
Show Figures

Graphical abstract

21 pages, 7719 KB  
Article
Metabolic Adjustments following Glutaminase Inhibition by CB-839 in Glioblastoma Cell Lines
by Juan De los Santos-Jiménez, Tracy Rosales, Bookyung Ko, José A. Campos-Sandoval, Francisco J. Alonso, Javier Márquez, Ralph J. DeBerardinis and José M. Matés
Cancers 2023, 15(2), 531; https://doi.org/10.3390/cancers15020531 - 15 Jan 2023
Cited by 30 | Viewed by 5553
Abstract
Most tumor cells can use glutamine (Gln) for energy generation and biosynthetic purposes. Glutaminases (GAs) convert Gln into glutamate and ammonium. In humans, GAs are encoded by two genes: GLS and GLS2. In glioblastoma, GLS is commonly overexpressed and considered pro-oncogenic. We [...] Read more.
Most tumor cells can use glutamine (Gln) for energy generation and biosynthetic purposes. Glutaminases (GAs) convert Gln into glutamate and ammonium. In humans, GAs are encoded by two genes: GLS and GLS2. In glioblastoma, GLS is commonly overexpressed and considered pro-oncogenic. We studied the metabolic effects of inhibiting GLS activity in T98G, LN229, and U87MG human glioblastoma cell lines by using the inhibitor CB-839. We performed metabolomics and isotope tracing experiments using U-13C-labeled Gln, as well as 15N-labeled Gln in the amide group, to determine the metabolic fates of Gln carbon and nitrogen atoms. In the presence of the inhibitor, the results showed an accumulation of Gln and lower levels of tricarboxylic acid cycle intermediates, and aspartate, along with a decreased oxidative labeling and diminished reductive carboxylation-related labeling of these metabolites. Additionally, CB-839 treatment caused decreased levels of metabolites from pyrimidine biosynthesis and an accumulation of intermediate metabolites in the de novo purine nucleotide biosynthesis pathway. The levels of some acetylated and methylated metabolites were significantly increased, including acetyl-carnitine, trimethyl-lysine, and 5-methylcytosine. In conclusion, we analyzed the metabolic landscape caused by the GLS inhibition of CB-839 in human glioma cells, which might lead to the future development of new combination therapies with CB-839. Full article
(This article belongs to the Special Issue Glutamine Metabolism in the Onset and Progression of Tumorigenesis)
Show Figures

Figure 1

6 pages, 1520 KB  
Short Note
N-(4-Methyl-3-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)-4-((4-methylpiperazin-1-yl)methyl)benzamide
by Alexander A. Korlyukov, Pavel V. Dorovatovskii and Anna V. Vologzhanina
Molbank 2022, 2022(4), M1461; https://doi.org/10.3390/M1461 - 9 Oct 2022
Cited by 6 | Viewed by 4185
Abstract
Imatinib is one of the most used therapeutic agents to treat leukemia, which specifically inhibits the activity of tyrosine kinases. This polytopic molecule has been structurally characterized only in the form of its piperazin-1-ium salt (mesylate, picrate, citrate, fumarate or malonate). Herein we [...] Read more.
Imatinib is one of the most used therapeutic agents to treat leukemia, which specifically inhibits the activity of tyrosine kinases. This polytopic molecule has been structurally characterized only in the form of its piperazin-1-ium salt (mesylate, picrate, citrate, fumarate or malonate). Herein we present the crystal structure of the freebase Imatinib which precipitated from a 1:10 mixture with arginine. The molecule realizes an extended conformation and forms infinite H-bonded chains through its amide, amine and pyrimidine groups. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

31 pages, 10654 KB  
Article
Design, Synthesis, and In Vitro, In Silico and In Cellulo Evaluation of New Pyrimidine and Pyridine Amide and Carbamate Derivatives as Multi-Functional Cholinesterase Inhibitors
by Martina Bortolami, Fabiana Pandolfi, Valeria Tudino, Antonella Messore, Valentina Noemi Madia, Daniela De Vita, Roberto Di Santo, Roberta Costi, Isabella Romeo, Stefano Alcaro, Marisa Colone, Annarita Stringaro, Alba Espargaró, Raimon Sabatè and Luigi Scipione
Pharmaceuticals 2022, 15(6), 673; https://doi.org/10.3390/ph15060673 - 27 May 2022
Cited by 5 | Viewed by 4461
Abstract
Alzheimer disease is an age-linked neurodegenerative disorder representing one of the greatest medical care challenges of our century. Several drugs are useful in ameliorating the symptoms, even if none could stop or reverse disease progression. The standard approach is represented by the cholinesterase [...] Read more.
Alzheimer disease is an age-linked neurodegenerative disorder representing one of the greatest medical care challenges of our century. Several drugs are useful in ameliorating the symptoms, even if none could stop or reverse disease progression. The standard approach is represented by the cholinesterase inhibitors (ChEIs) that restore the levels of acetylcholine (ACh) by inhibiting the acetylcholinesterase (AChE). Still, their limited efficacy has prompted researchers to develop new ChEIs that could also reduce the oxidative stress by exhibiting antioxidant properties and by chelating the main metals involved in the disease. Recently, we developed some derivatives constituted by a 2-amino-pyrimidine or a 2-amino-pyridine moiety connected to various aromatic groups by a flexible amino-alkyl linker as new dual inhibitors of AChE and butyrylcholinesterase (BChE). Following our previous studies, in this work we explored the role of the flexible linker by replacing the amino group with an amide or a carbamic group. The most potent compounds showed higher selectivity against BChE in respect to AChE, proving also to possess a weak anti-aggregating activity toward Aβ42 and tau and to be able to chelate Cu2+ and Fe3+ ions. Molecular docking and molecular dynamic studies proposed possible binding modes with the enzymes. It is noteworthy that these compounds were predicted as BBB-permeable and showed low cytotoxicity on the human brain cell line. Full article
(This article belongs to the Special Issue Multitarget Drug Discovery and Pharmacology)
Show Figures

Graphical abstract

12 pages, 3516 KB  
Article
Pyrimidine-Based Push–Pull Systems with a New Anchoring Amide Group for Dye-Sensitized Solar Cells
by Egor V. Verbitskiy, Alexander S. Steparuk, Ekaterina F. Zhilina, Viktor V. Emets, Vitaly A. Grinberg, Ekaterina V. Krivogina, Sergey A. Kozyukhin, Ekaterina V. Belova, Petr I. Lazarenko, Gennady L. Rusinov, Alexey R. Tameev, Jean Michel Nunzi and Valery N. Charushin
Electron. Mater. 2021, 2(2), 142-153; https://doi.org/10.3390/electronicmat2020012 - 26 May 2021
Cited by 15 | Viewed by 4268
Abstract
New donor–π–acceptor pyrimidine-based dyes comprising an amide moiety as an anchoring group have been designed. The dyes were synthesized by sequential procedures based on the microwave-assisted Suzuki cross-coupling and bromination reactions. The influence of the dye structure and length of π-linker on the [...] Read more.
New donor–π–acceptor pyrimidine-based dyes comprising an amide moiety as an anchoring group have been designed. The dyes were synthesized by sequential procedures based on the microwave-assisted Suzuki cross-coupling and bromination reactions. The influence of the dye structure and length of π-linker on the photophysical and electrochemical properties and on the photovoltaic effectiveness of dye-sensitized solar cells was investigated. An increase in efficiency with a decrease in the length of π-linker was revealed. The D1 dye with only one 2,5-thienylene-linker provided the highest power conversion efficiency among the fabricated dye sensitized solar cells. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials)
Show Figures

Graphical abstract

12 pages, 1556 KB  
Article
Synthesis, Redox Properties and Antibacterial Activity of Hindered Phenols Linked to Heterocycles
by Vladimir N. Koshelev, Olga V. Primerova, Stepan V. Vorobyev and Ludmila V. Ivanova
Molecules 2020, 25(10), 2370; https://doi.org/10.3390/molecules25102370 - 20 May 2020
Cited by 16 | Viewed by 5174
Abstract
A series of benzotriazole, cyclic amides and pyrimidine derivatives, containing 2,6-di-tert-butyl-phenol fragments, were synthesized. The redox properties of obtained compounds were studied using the cyclic voltammetry on a platinum electrode in acetonitrile. The oxidation potentials of all substances were comparable to [...] Read more.
A series of benzotriazole, cyclic amides and pyrimidine derivatives, containing 2,6-di-tert-butyl-phenol fragments, were synthesized. The redox properties of obtained compounds were studied using the cyclic voltammetry on a platinum electrode in acetonitrile. The oxidation potentials of all substances were comparable to those of BHT. The obtained compounds were tested for their antibacterial activity, and N-(2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-oxoethyl)isatin (32 μg/mL) exerted good activity against Staphylococcus aureus. Full article
Show Figures

Figure 1

15 pages, 4884 KB  
Article
Regioselective Synthesis of New 2,4-(Het)aryl-3H-pyrido[1′,2′:1,5]pyrazolo[4,3-d]pyrimidines Involving Palladium-Catalyzed Cross-Coupling Reactions
by Abdelaziz Ejjoummany, Rabia Belaroussi, Ahmed El Hakmaoui, Mohamed Akssira, Gérald Guillaumet, Frédéric Buron and Sylvain Routier
Molecules 2018, 23(11), 2740; https://doi.org/10.3390/molecules23112740 - 23 Oct 2018
Cited by 8 | Viewed by 4235
Abstract
The design of some novel di-(het)arylated-3H-pyrido[1′,2′:1,5]pyrazolo[4,3-d]pyrimidine derivatives is reported. The series was developed from 1-aminopyridinium iodide, which afforded the key intermediate bearing two thiomethyl and amide functions, each of them useful for palladium catalyzed cross coupling reactions by alkyl [...] Read more.
The design of some novel di-(het)arylated-3H-pyrido[1′,2′:1,5]pyrazolo[4,3-d]pyrimidine derivatives is reported. The series was developed from 1-aminopyridinium iodide, which afforded the key intermediate bearing two thiomethyl and amide functions, each of them useful for palladium catalyzed cross coupling reactions by alkyl sulfur release and C-O activation, respectively. The two regioselective and successive cross-coupling reactions were first carried out in C-4 by in situ C-O activation and next in C-2 by a methylsulfur release. Process optimization furnished conditions leading to products in high yields. The scope and limitations of the methodologies were evaluated and the final compounds characterized. Full article
(This article belongs to the Collection Heterocyclic Compounds)
Show Figures

Graphical abstract

12 pages, 1221 KB  
Article
One-Flask Synthesis of Pyrazolo[3,4-d]pyrimidines from 5-Aminopyrazoles and Mechanistic Study
by Wan-Ping Yen, Shuo-En Tsai, Naoto Uramaru, Hiroyuki Takayama and Fung Fuh Wong
Molecules 2017, 22(5), 820; https://doi.org/10.3390/molecules22050820 - 16 May 2017
Cited by 8 | Viewed by 6207
Abstract
A novel one-flask synthetic method was developed in which 5-aminopyrazoles were reacted with N,N-substituted amides in the presence of PBr3. Hexamethyldisilazane was then added to perform heterocyclization to produce the corresponding pyrazolo[3,4-d]pyrimidines in suitable yields. These one-flask reactions [...] Read more.
A novel one-flask synthetic method was developed in which 5-aminopyrazoles were reacted with N,N-substituted amides in the presence of PBr3. Hexamethyldisilazane was then added to perform heterocyclization to produce the corresponding pyrazolo[3,4-d]pyrimidines in suitable yields. These one-flask reactions thus involved Vilsmeier amidination, imination reactions, and the sequential intermolecular heterocyclization. To study the reaction mechanism, a series of 4-formyl-1,3-diphenyl-1H-pyrazol-5-yl-N,N-disubstituted formamidines, which were conceived as the chemical equivalent of 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl-formamidine, were prepared and successfully converted into pyrazolo[3,4-d]pyrimidines. The experiments demonstrated that the reaction intermediates were the chemical equivalents of 4-(iminomethyl)-1,3-diphenyl-1H-pyrazol-5-yl)formamidines. The rate of the reaction could be described as being proportional to the reactivity of amine reactants during intermolecular heterocyclization, especially when hexamethyldisilazane was used. Full article
(This article belongs to the Collection Heterocyclic Compounds)
Show Figures

Graphical abstract

11 pages, 942 KB  
Communication
Discovery of Uracil Derivatives as Potent Inhibitors of Fatty Acid Amide Hydrolase
by Yan Qiu, Yang Zhang, Yuhang Li and Jie Ren
Molecules 2016, 21(2), 229; https://doi.org/10.3390/molecules21020229 - 18 Feb 2016
Cited by 7 | Viewed by 6509
Abstract
Fatty Acid Amide Hydrolase (FAAH) is an intracellular serine enzyme involved in the biological degradation of the fatty acid ethanolamide family of signaling lipids, which exerts neuroprotective, anti-inflammatory, and analgesic properties. In the present study, a conjugated 2,4-dioxo-pyrimidine-1-carboxamide scaffold was confirmed as a [...] Read more.
Fatty Acid Amide Hydrolase (FAAH) is an intracellular serine enzyme involved in the biological degradation of the fatty acid ethanolamide family of signaling lipids, which exerts neuroprotective, anti-inflammatory, and analgesic properties. In the present study, a conjugated 2,4-dioxo-pyrimidine-1-carboxamide scaffold was confirmed as a novel template for FAAH inhibitors, based on which, a series of analogues had been prepared for an initial structure-activity relationship (SAR) study. Most of the synthesized compounds displayed moderate to significant FAAH inhibitory potency. Among them, compounds 11 and 14 showed better activity than others, with IC50 values of 21 and 53 nM. SAR analysis indicated that 2,4-dioxopyrimidine-1-carboxamides represented a novel class of potent inhibitors of FAAH, and substitution at the uracil ring or replacement of the N-terminal group might favor the inhibitory potency. Selected compounds of this class may be used as useful parent molecules for further investigation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 274 KB  
Article
Design, Synthesis and SAR Study of Novel Trisubstituted Pyrimidine Amide Derivatives as CCR4 Antagonists
by Libao Xu, Yang Zhang, Wenjie Dai, Ying Wang, Dan Jiang, Lili Wang, Junhai Xiao, Xiaohong Yang and Song Li
Molecules 2014, 19(3), 3539-3551; https://doi.org/10.3390/molecules19033539 - 21 Mar 2014
Cited by 7 | Viewed by 8586
Abstract
The design, synthesis and structure-activity relationship studies of some novel trisubstituted pyrimidine amide derivatives prepared as CCR4 antagonists are described. The activities of these compounds were evaluated by the CCR4-MDC chemotaxis inhibition assay. Compound 1, which we have previously reported as a [...] Read more.
The design, synthesis and structure-activity relationship studies of some novel trisubstituted pyrimidine amide derivatives prepared as CCR4 antagonists are described. The activities of these compounds were evaluated by the CCR4-MDC chemotaxis inhibition assay. Compound 1, which we have previously reported as a potent antagonist of CCR4, was employed as the positive control. The results indicated that most of the synthesized compounds exhibited some chemotaxis inhibition activity against CCR4. Of these new compounds, compounds 6c, 12a and 12b, with IC50 values of 0.064, 0.077 and 0.069 μM, respectively, showed higher or similar activity compared with compound 1 (IC50 of 0.078 μM). These compounds provide a basis for further structural modifications. The systematic structure-activity relationship of these trisubstituted pyrimidine amide derivatives was discussed based on the obtained experimental data. The results from the SAR study may be useful for identifying more potent CCR4 antagonists. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 970 KB  
Article
Characterization of Amide Bond Conformers for a Novel Heterocyclic Template of N-acylhydrazone Derivatives
by Alexandra Basilio Lopes, Eduardo Miguez, Arthur Eugen Kümmerle, Victor Marcos Rumjanek, Carlos Alberto Manssour Fraga and Eliezer J. Barreiro
Molecules 2013, 18(10), 11683-11704; https://doi.org/10.3390/molecules181011683 - 25 Sep 2013
Cited by 101 | Viewed by 12202
Abstract
Herein we describe NMR experiments and structural modifications of 4-methyl-2-phenylpyrimidine-N-acylhydrazone compounds (aryl-NAH) in order to discover if duplication of some signals in their 1H- and 13C-NMR spectra was related to a mixture of imine double bond stereoisomers (E/Z [...] Read more.
Herein we describe NMR experiments and structural modifications of 4-methyl-2-phenylpyrimidine-N-acylhydrazone compounds (aryl-NAH) in order to discover if duplication of some signals in their 1H- and 13C-NMR spectra was related to a mixture of imine double bond stereoisomers (E/Z) or CO-NH bond conformers (syn and anti-periplanar). NMR data from NOEdiff, 2D-NOESY and 1H-NMR spectra at different temperatures, and also the synthesis of isopropylidene hydrazone revealed the nature of duplicated signals of a 4-methyl-2-phenylpyrimidine-N-acylhydrazone derivative as a mixture of two conformers in solution. Further we investigated the stereoelectronic influence of substituents at the ortho position on the pyrimidine ring with respect to the carbonyl group, as well as the electronic effects of pyrimidine by changing it to phenyl. The conformer equilibrium was attributed to the decoplanarization of the aromatic ring and carbonyl group (generated by an ortho-alkyl group) and/or the electron withdrawing character of the pyrimidine ring. Both effects increased the rotational barrier of the C-N amide bond, as verified by the DG values calculated from dynamic NMR. As far as we know, it is the first description of aryl-NAH compounds presenting two CO-NH bond- related conformations. Full article
(This article belongs to the Special Issue Dynamic Stereochemistry)
Show Figures

Figure 1

22 pages, 343 KB  
Article
Parallel Synthesis of 2-Substituted 6-(5-Oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides
by Bojana Črček, Jernej Baškovč, Uroš Grošelj, Drago Kočar, Georg Dahmann, Branko Stanovnik and Jurij Svete
Molecules 2012, 17(5), 5363-5384; https://doi.org/10.3390/molecules17055363 - 8 May 2012
Cited by 5 | Viewed by 6590
Abstract
A library of 24 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides 10{1,2; 1–12} was prepared by a parallel solution-phase approach. The synthesis comprises a five-step transformation of itaconic acid (11) into 1-methyl and 1-phenyl substituted 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxylic acids 17{1, [...] Read more.
A library of 24 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxamides 10{1,2; 1–12} was prepared by a parallel solution-phase approach. The synthesis comprises a five-step transformation of itaconic acid (11) into 1-methyl and 1-phenyl substituted 6-(5-oxo-1-phenylpyrrolidin-3-yl)pyrimidine-5-carboxylic acids 17{1,2} followed by parallel amidation of 17{1,2} with a series of 12 aliphatic amines 18{1–12} to afford the corresponding carboxamides 10 in good overall yields and in 80–100% purity. Full article
(This article belongs to the Special Issue Parallel Synthesis)
Show Figures

Graphical abstract

12 pages, 232 KB  
Article
Large-Scale Solvent-Free Chlorination of Hydroxy-Pyrimidines, -Pyridines, -Pyrazines and -Amides Using Equimolar POCl3
by Han Wang, Kun Wen, Le Wang, Ye Xiang, Xiaocheng Xu, Yongjia Shen and Zhihua Sun
Molecules 2012, 17(4), 4533-4544; https://doi.org/10.3390/molecules17044533 - 16 Apr 2012
Cited by 25 | Viewed by 24723
Abstract
Chlorination with equimolar POCl3 can be efficiently achieved not only for hydroxypyrimidines, but also for many other substrates such as 2-hydroxy-pyridines, -quinoxalines, or even -amides. The procedure is solvent-free and involves heating in a sealed reactor at high temperatures using one equivalent [...] Read more.
Chlorination with equimolar POCl3 can be efficiently achieved not only for hydroxypyrimidines, but also for many other substrates such as 2-hydroxy-pyridines, -quinoxalines, or even -amides. The procedure is solvent-free and involves heating in a sealed reactor at high temperatures using one equivalent of pyridine as base. It is suitable for large scale (multigram) batch preparations. Full article
(This article belongs to the Special Issue Solvent-Free Synthesis)
Show Figures

Graphical abstract

Back to TopTop