Synthesis and Antioxidant Activities of Novel Pyrimidine Acrylamides as Inhibitors of Lipoxygenase: Molecular Modeling and In Silico Physicochemical Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Silico Physicochemical Studies—Computational Analysis
2.3. Biological Evaluation
2.4. Computational Analysis—Molecular Docking on Soybean Lipoxygenase
3. Experimental Section
3.1. Materials and Instruments
3.2. Chemistry General Procedure
3.2.1. Synthesis of 6-amino-2-(methylthio)-pyrimidin-4-ol (1)
3.2.2. Synthesis of 6-amino-2-(methylthio)-5-nitrosopyrimidin-4(3H)-one (2)
3.2.3. Synthesis of 6-amino-5-nitroso-2-(piperidin-1-yl)-pyrimidin-4(1H)-one (3)
3.2.4. Synthesis of Substituted Acrylamides
(E)-N-(5-nitroso-6-oxo-2-(piperidin-1-yl)-3,6-dihydropyrimidin-4-yl)-3-(3-phenoxyphenyl)acrylamide (4)
(E)-N-(5-nitroso-6-oxo-2-(piperidin-1-yl)-3,6-dihydropyrimidin-4-yl)-3-(thiophen-2-yl)acrylamide (5)
(E)-3-(4-((4-bromobenzyl)oxy)phenyl)-N-(5-nitroso-6-oxo-2-(piperidin-1-yl)-3,6-dihydropyrimidin-4-yl)acrylamide (6)
(2E,4E)-5-(4-(dimethylamino)phenyl)-N-(5-nitroso-6-oxo-2-(piperidin-1-yl)-3,6-dihydropyrimidin-4-yl)penta-2,4-dienamide (7)
N-(5-nitroso-6-oxo-2-(piperidin-1-yl)-3,6-dihydropyrimidin-4-yl)-3-phenylacrylamide (8)
(E)-3-(naphthalen-1-yl)-N-(5-nitroso-6-oxo-2-(piperidin-1-yl)-3,6-dihydropyrimidin-4-yl)acrylamide (9)
3.3. Biological Assays
3.3.1. Interaction of the Novel Compounds with the Stable Radical 1,1-diphenyl-picrylhydrazyl (DPPH)
3.3.2. Inhibition of Linoleic Acid Lipid Peroxidation
3.3.3. Soybean Lipoxygenase Inhibition Assay
3.4. Computational Analysis—Molecular Docking on Soybean Lipoxygenase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uttara, B.; Singh, V.A.; Zamboni, P.; Mahajan, T.R. Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef]
- Waris, G.; Ahsan, H. Reactive Oxygen Species: Role in the Development of Cancer and Various Chronic Conditions. J. Carcinog. 2006, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Granados-Principal, S.; Lorente, J.A.; Quiles, J.L. Free Radicals in Breast Carcinogenesis, Breast Cancer Progression and Cancer Stem Cells. Biological Bases to Develop Oxidative-Based Therapies. Crit. Rev. Oncol. Hematol. 2011, 80, 347–368. [Google Scholar] [CrossRef] [PubMed]
- Pontiki, E.; Hadjipavlou-Litina, D.; Patsilinakos, A.; Tran, T.M.; Marson, C.M. Pteridine-2,4-Diamine Derivatives as Radical Scavengers and Inhibitors of Lipoxygenase That Can Possess Anti-Inflammatory Properties. Future Med. Chem. 2015, 7, 1937–1951. [Google Scholar] [CrossRef]
- Pontiki, E.; Hadjipavlou-Litina, D. Lipoxygenases (LOs): An Heterogenous Family of Lipid Peroxidizing Enzymes Implicated in Cell Differentiation, Inflammation, Asthma, Carcinogenesis, Atherogenesis-An Interesting Target for the Development of Promising Drugs. Curr. Enzym. Inhib. 2005, 1, 309–327. [Google Scholar] [CrossRef]
- Pontiki, E.; Hadjipavlou–Litina, D. Targeting Lipoxygenases (LOs): Drug Design And Discovery. Curr. Enzym. Inhib. 2013, 9, 89–105. [Google Scholar] [CrossRef]
- Garrido, G.; Gonzalez, D.; Delporte, C.; Backhouse, N.; Quintero, G.; Nunez-Selles, A.J.; Morales, M.A. Analgesic and Anti-Inflammatory Effects of Mangifera indica L. Extract (Vimang). Phytother. Res. 2001, 15, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Weber, V.; Rubat, C.; Duroux, E.; Lartigue, C.; Madesclaire, M.; Coudert, P. New 3- and 4-Hydroxyfuranones as Anti-Oxidants and Anti-Inflammatory Agents. Bioorg. Med. Chem. 2005, 13, 4552–4564. [Google Scholar] [CrossRef]
- Merchant, N.; Bhaskar, L.V.K.S.; Momin, S.; Sujatha, P.; Reddy, A.B.M.; Nagaraju, G.P. 5-Lipoxygenase: Its Involvement in Gastrointestinal Malignancies. Crit. Rev. Oncol. Hematol. 2018, 127, 50–55. [Google Scholar] [CrossRef]
- Lötzer, K.; Funk, C.D.; Habenicht, A.J.R. The 5-Lipoxygenase Pathway in Arterial Wall Biology and Atherosclerosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2005, 1736, 30–37. [Google Scholar] [CrossRef]
- Kim, W.; Son, B.; Lee, S.; Do, H.; Youn, B.H. Targeting the Enzymes Involved in Arachidonic Acid Metabolism to Improve Radiotherapy. Cancer Metastasis Rev. 2018, 37, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Sunderhaus, J.D.; Dockendorff, C.; Martin, S.F. Synthesis of Diverse Heterocyclic Scaffolds via Tandem Additions to Imine Derivatives and Ring-Forming Reactions. Tetrahedron 2009, 65, 6454–6469. [Google Scholar] [CrossRef]
- Natarajan, R.; Anthoni Samy, H.N.; Sivaperuman, A.; Subramani, A. Structure-Activity Relationships of Pyrimidine Derivatives and Their Biological Activity—A Review. Med. Chem. 2022, 19, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Mohana Roopan, S.; Sompalle, R. Synthetic Chemistry of Pyrimidines and Fused Pyrimidines: A Review. Synth. Commun. 2016, 46, 645–672. [Google Scholar] [CrossRef]
- Prachayasittikul, S.; Pingaew, R.; Worachartcheewan, A.; Sinthupoom, N.; Prachayasittikul, V.; Ruchirawat, S.; Prachayasittikul, V. Roles of Pyridine and Pyrimidine Derivatives as Privileged Scaffolds in Anticancer Agents. Mini-Rev. Med. Chem. 2016, 17, 869–901. [Google Scholar] [CrossRef] [PubMed]
- Cocco, M.T.; Congiu, C.; Onnis, V.; Piras, R. Synthesis and Antitumor Evaluation of 6-Thioxo-, 6-Oxo- and 2,4-Dioxopyrimidine Derivatives. IL Farmaco 2001, 56, 741–748. [Google Scholar] [CrossRef]
- Omar, A.M.; Abd El Razik, H.A.; Hazzaa, A.A.; El-Attar, M.A.Z.; El Demellawy, M.A.; Abdel Wahab, A.E.; El Hawash, S.A.M. New Pyrimidines and Triazolopyrimidines as Antiproliferative and Antioxidants with Cyclooxygenase-1/2 Inhibitory Potential. Future Med. Chem. 2019, 11, 1585–1603. [Google Scholar] [CrossRef]
- Goßnitzer, E.; Feierl, G.; Wagner, U. Synthesis, Structure Investigations, and Antimicrobial Activity of Selected s-Trans-6-Aryl-4-Isopropyl-2-{2-[(E)-1-Phenylalkylidene]-(E)-Hydrazino}-1,4-Dihydropyrimidine Hydrochlorides. Eur. J. Pharm. Sci. 2002, 15, 49–61. [Google Scholar] [CrossRef]
- Sedaghati, B.; Fassihi, A.; Arbabi, S.; Ranjbar, M.; Memarian, H.R.; Saghaie, L.; Omidi, A.; Sardari, A.; Jalali, M.; Abedi, D. Synthesis and Antimicrobial Activity of Novel Derivatives of Biginelli Pyrimidines. Med. Chem. Res. 2012, 21, 3973–3983. [Google Scholar] [CrossRef]
- Devi, K.; Narayanaswamy, V.K.; Rao, G.K. Synthesis of Substituted 3,4-Dihydropyrlmidine-2(1h)-Thiones and Their Biological Activity. Indian. J. Heterocycl. Chem. 2009, 18, 305–306. [Google Scholar]
- Mohamed, M.S.; Youns, M.M.; Ahmed, N.M. Synthesis, Antimicrobial, Antioxidant Activities of Novel 6-Aryl-5-Cyano Thiouracil Derivatives. Eur. J. Med. Chem. 2013, 69, 591–600. [Google Scholar] [CrossRef]
- Narayanaswamy, V.K.; Nayak, S.K.; Pillay, M.; Prasanna, R.; Coovadia, Y.M.; Odhav, B. Synthesis and Antitubercular Activity of 2-(Substituted Phenyl/Benzyl-Amino)-6-(4-Chlorophenyl)-5-(Methoxycarbonyl)-4-Methyl-3,6-Dihydropyrimidin-1-Ium Chlorides. Chem. Biol. Drug Des. 2013, 81, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.M.; Laughton, C.A.; Queener, S.F.; Stevens, M.F.G. Structural Studies on Bioactive Compounds. Part 36: Design, Synthesis and Biological Evaluation of Pyrimethamine-Based Antifolates against Pneumocystis Carinii. Bioorg. Med. Chem. 2002, 10, 3001–3010. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.A.; Bushnell, D.J.; Duncan, I.B.; Dunsdon, S.J.; Hall, M.J.; Machin, P.J.; Merrett, J.H.; Parkes, K.E.B.; Roberts, N.A.; Thomas, G.J.; et al. Synthesis and Antiviral Activity of Monofluoro and Difluoro Analogues of Pyrimidine Deoxyribonucleosides against Human Immunodeficiency Virus (HIV-1) Joseph. J. Med. Chem. 1990, 33, 2137–2145. [Google Scholar] [CrossRef]
- Guillemont, J.; Pasquier, E.; Palandjian, P.; Vernier, D.; Gaurrand, S.; Lewi, P.J.; Heeres, J.; De Jonge, M.R.; Koymans, L.M.H.; Daeyaert, F.F.D.; et al. Synthesis of Novel Diarylpyrimidine Analogues and Their Antiviral Activity against Human Immunodeficiency Virus Type 1. J. Med. Chem. 2005, 48, 2072–2079. [Google Scholar] [CrossRef] [PubMed]
- Lachhab, S.; El Mansouri, A.E.; Mehdi, A.; Dennemont, I.; Neyts, J.; Jochmans, D.; Andrei, G.; Snoeck, R.; Sanghvi, Y.S.; Ait Ali, M.; et al. Synthesis of New 3-Acetyl-1,3,4-Oxadiazolines Combined with Pyrimidines as Antileishmanial and Antiviral Agents. Mol. Divers. 2022, 27, 2147–2159. [Google Scholar] [CrossRef]
- Ashour, H.M.; Shaaban, O.G.; Rizk, O.H.; El-Ashmawy, I.M. Synthesis and Biological Evaluation of Thieno [2′,3′:4,5] Pyrimido [1,2-b][1,2,4]Triazines and Thieno[2,3-d][1,2,4]Triazolo[1,5-a] Pyrimidines as Anti-Inflammatory and Analgesic Agents. Eur. J. Med. Chem. 2013, 62, 341–351. [Google Scholar] [CrossRef]
- Bhalgat, C.M.; Irfan Ali, M.; Ramesh, B.; Ramu, G. Novel Pyrimidine and Its Triazole Fused Derivatives: Synthesis and Investigation of Antioxidant and Anti-Inflammatory Activity. Arab. J. Chem. 2014, 7, 986–993. [Google Scholar] [CrossRef]
- Kumar, S.; Narasimhan, B. Therapeutic Potential of Heterocyclic Pyrimidine Scaffolds. Chem. Cent. J. 2018, 12, 38. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Govender, R.; Khedr, M.A.; Venugopala, R.; Aldhubiab, B.E.; Harsha, S.; Odhav, B. Design, Synthesis, and Computational Studies on Dihydropyrimidine Scaffolds as Potential Lipoxygenase Inhibitors and Cancer Chemopreventive Agents. Drug Des. Devel Ther. 2015, 9, 911–921. [Google Scholar] [CrossRef]
- Myriagkou, M.; Papakonstantinou, E.; Deligiannidou, G.E.; Patsilinakos, A.; Kontogiorgis, C.; Pontiki, E. Novel Pyrimidine Derivatives as Antioxidant and Anticancer Agents: Design, Synthesis and Molecular Modeling Studies. Molecules 2023, 28, 3913. [Google Scholar] [CrossRef] [PubMed]
- Tale, R.H.; Rodge, A.H.; Hatnapure, G.D.; Keche, A.P.; Patil, K.M.; Pawar, R.P. The Synthesis, Anti-Inflammatory and Antimicrobial Activity Evaluation of Novel Thioanalogs of 3,4-Dihydrothiopyrimidin-2(1H)-One Derivatives of N-Aryl Urea. Med. Chem. Res. 2012, 21, 4252–4260. [Google Scholar] [CrossRef]
- Tozkoparan, B.; Ertan, M.; Kelicen, P.; Demirdamar, R. Synthesis and Anti-Inflammatory Activities of Some Thiazolo[3,2-a]Pyrimidine Derivatives. IL Farmaco 1999, 54, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Pontiki, E.; Hadjipavlou-Litina, D. Antioxidant and Anti-Inflammatory Activity of Aryl-Acetic and Hydroxamic Acids as Novel Lipoxygenase Inhibitors. Med. Chem. 2006, 2, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Pontiki, E.; Hadjipavlou-Litina, D.; Litinas, K.; Nicolotti, O.; Carotti, A. Design, Synthesis and Pharmacobiological Evaluation of Novel Acrylic Acid Derivatives Acting as Lipoxygenase and Cyclooxygenase-1 Inhibitors with Antioxidant and Anti-Inflammatory Activities. Eur. J. Med. Chem. 2011, 46, 191–200. [Google Scholar] [CrossRef]
- Pontiki, E.; Hadjipavlou-Litina, D. Multi-Target Cinnamic Acids for Oxidative Stress and Inflammation: Design, Synthesis, Biological Evaluation and Modeling Studies. Molecules 2018, 24, 12. [Google Scholar] [CrossRef] [PubMed]
- Yasuko, K.; Tomohiro, N.; Sei-Itsu, M.; Ai-Na, L.; Yasuo, F.; Takashi, T. Caffeic Acid Is a Selective Inhibitor for Leukotriene Biosynthesis. Biochim. Biophys. Acta Lipids Lipid Metabol. 1984, 792, 92–97. [Google Scholar] [CrossRef]
- Tiwari, A.; Bendi, A.; Bhathiwal, A.S. An Overview on Synthesis and Biological Activity of Chalcone Derived Pyrazolines. ChemistrySelect 2021, 6, 12757–12795. [Google Scholar] [CrossRef]
- Nardini, M.; D’Aquino, M.; Tomassi, G.; Gentili, V.; Di Felice, M.; Scaccini, C. Inhibition of Human Low-Density Lipoprotein Oxidation by Caffeic Acid and Other Hydroxycinnamic Acid Derivatives. Free Radic. Biol. Med. 1995, 19, 541–552. [Google Scholar] [CrossRef]
- Pontiki, E.; Hadjipavlou-Litina, D.; Geromichalos, G.; Papageorgiou, A. Anticancer Activity and Quantitative-Structure Activity Relationship (QSAR) Studies of a Series of Antioxidant/Anti-Inflammatory Aryl-Acetic and Hydroxamic Acids. Chem. Biol. Drug Des. 2009, 74, 266–275. [Google Scholar] [CrossRef]
- Feng, L.-S.; Cheng, J.-B.; Su, W.-Q.; Li, H.-Z.; Xiao, T.; Chen, D.-A.; Zhang, Z.-L. Cinnamic Acid Hybrids as Anticancer Agents: A Mini-Review. Arch. Pharm. 2022, 355, e2200052. [Google Scholar] [CrossRef]
- Szwajgier, D.; Borowiec, K.; Pustelniak, K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients 2017, 9, 477. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Zang, L.Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of Antioxidant Protection by P-Coumaric Acid on Low-Density Lipoprotein Cholesterol Oxidation. Am. J. Physiol. Cell Physiol. 2000, 279, 954–960. [Google Scholar] [CrossRef]
- Ma, W.F.; Yang, H.K.; Hu, M.J.; Li, Q.; Ma, T.Z.; Zhou, Z.Z.; Liu, R.Y.; You, W.W.; Zhao, P.L. One-Pot Synthesis and Antiproliferative Activity of Novel 2,4-Diaminopyrimidine Derivatives Bearing Piperidine and Piperazine Moieties. Eur. J. Med. Chem. 2014, 84, 127–134. [Google Scholar] [CrossRef]
- Rostom, S.A.F.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.A.; Abdel Wahab, A.E. Synthesis of Some Pyrazolines and Pyrimidines Derived from Polymethoxy Chalcones as Anticancer and Antimicrobial Agents. Arch. Pharm. 2011, 344, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Varano, F.; Catarzi, D.; Vigiani, E.; Vincenzi, F.; Pasquini, S.; Varani, K.; Colotta, V. Piperazine-and Piperidine-Containing Thiazolo[5,4-d]Pyrimidine Derivatives as New Potent and Selective Adenosine A2a Receptor Inverse Agonists. Pharmaceuticals 2020, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- McHardy, T.; Caldwell, J.J.; Cheung, K.M.; Hunter, L.J.; Taylor, K.; Rowlands, M.; Ruddle, R.; Henley, A.; De Brandon, A.H.; Valenti, M.; et al. Discovery of 4-Amino-l-(7H-Pyrrolo[2,3-d]Pyrimidin-4-Yl)Piperidine-4-Carboxamides as Selective, Orally Active Inhibitors of Protein Kinase B (Akt). J. Med. Chem. 2010, 53, 2239–2249. [Google Scholar] [CrossRef] [PubMed]
- Atwal, K.S.; O’Neil, S.V.; Ahmad, S.; Doweyko, L.; Kirby, M.; Dorso, C.R.; Chandrasena, G.; Chen, B.C.; Zhao, R.; Zahler, R. Synthesis and Biological Activity of 5-Aryl-4-(4-(5-Methyl-1H-Imidazol-4-Yl)Piperidin-1-Yl)Pyrimidine Analogs as Potent, Highly Selective, and Orally Bioavailable NHE-1 Inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 4796–4799. [Google Scholar] [CrossRef] [PubMed]
- Ban, M.; Taguchi, H.; Katsushima, T.; Aoki, S.; Watanabe, A. Novel Antiallergic Agents. Part I: Synthesis and Pharmacology of Pyrimidine Amide Derivatives. Bioorg. Med. Chem. 1998, 6, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Boland, S.; Bourin, A.; Alen, J.; Geraets, J.; Schroeders, P.; Castermans, K.; Kindt, N.; Boumans, N.; Panitti, L.; Vanormelingen, J.; et al. Design, Synthesis and Biological Characterization of Selective LIMK Inhibitors. Bioorg. Med. Chem. Lett. 2015, 25, 4005–4010. [Google Scholar] [CrossRef]
- Palani, A.; Shapiro, S.; Clader, J.W.; Greenlee, W.J.; Vice, S.; McCombie, S.; Cox, K.; Strizki, J.; Baroudy, B.M. Oximino-Piperidino-Piperidine-Based CCR5 Antagonists. Part 2: Synthesis, SAR and Biological Evaluation of Symmetrical Heteroaryl Carboxamides. Bioorg. Med. Chem. Lett. 2003, 13, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Imaeda, Y.; Tawada, M.; Suzuki, S.; Tomimoto, M.; Kondo, M.; Tarui, N.; Sanada, T.; Kanagawa, R.; Snell, G.; Behnke, C.A.; et al. Structure-Based Design of a New Series of N-(Piperidin-3-Yl)Pyrimidine-5-Carboxamides as Renin Inhibitors. Bioorg. Med. Chem. 2016, 24, 5771–5780. [Google Scholar] [CrossRef]
- Sova, M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Mini-Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Mincione, E.; Barontini, M.; Provenzano, G.; Setti, L. Obtaining 4-Vinylphenols by Decarboxylation of Natural 4-Hydroxycinnamic Acids under Microwave Irradiation. Tetrahedron 2007, 63, 9663–9667. [Google Scholar] [CrossRef]
- Peperidou, A.; Kapoukranidou, D.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Multitarget Molecular Hybrids of Cinnamic Acids. Molecules 2014, 19, 20197–20226. [Google Scholar] [CrossRef] [PubMed]
- Molinspiration Cheminformatics. Available online: www.molinspiration.com (accessed on 5 September 2023).
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 3, 3–25. [Google Scholar] [CrossRef]
- Gacche, R.; Khsirsagar, M.; Kamble, S.; Bandgar, B.; Dhole, N.; Shisode, K.; Chaudhari, A. Antioxidant and Anti-Inflammatory Related Activities of Selected Synthetic Chalcones: Structure-Activity Relationship Studies Using Computational Tools. Chem. Pharm. Bull. 2008, 56, 897–901. [Google Scholar] [CrossRef]
- Veber, D.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Rishton, G.; LaBonte, K.; Williams, A.; Kassam, K.; Kolovanov, E. Computational Approaches to the Prediction of Blood-Brain Barrier Permeability: A Comparative Analysis of Central Nervous System Drugs versus Secretase Inhibitors for Alzheimer’s Disease. Curr. Opin. Drug Discov. Dev. 2006, 9, 303–313. [Google Scholar]
- Cazacu, N.; Chilom, C.G. TolC Protein from Outer Membrane of Escherichia Coli Targeted by Polyphenolic Compounds. Rom. Rep. Phys. 2023, 75, 603. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Dooley, M.M.; Sano, N.; Kawashima, H.; Nakamura, T. Effects of 2,2′-Azobis (2-Amidinopropane) Hydrochloride in Vivo and Protection by Vitamin E. Free Radic. Biol. Med. 1990, 9, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Yokozawa, T.; Eun Ju Cho; Hara, Y.; Kitani, K. Antioxidative Activity of Green Tea Treated with Radical Initiator 2,2′-Azobis(2-Amidinopropane) Dihydrochloride. J. Agric. Food Chem. 2000, 48, 5068–5073. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, D.; Hakim, G.; Zambonin, L.; Landi, L. The Effect of Oxygen Radicals on Rat Thymocyte Glucose Transport Is Independent of the Site of Their Generation. Free Radic. Biol. Med. 1999, 26, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Musialik, M.; Kita, M.; Litwinienko, G. Initiation of Lipid Autoxidation by ABAP at PH 4-10 in SDS Micelles. Org. Biomol. Chem. 2008, 6, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Krainev, A.G.; Bigelow, D.J. Comparison of 2,2′-Azobis(2-Amidinopropane) Hydrochloride (AAPH) and 2,2′-Azobis(2,4-Dimethylvaleronitrile) (AMVN) as Free Radical Initiators: A Spin-Trapping Study. J. Chem. Soc. Perkin Trans. 1996, 2, 747–754. [Google Scholar] [CrossRef]
- Kasthuri, J.K.; Singh Jadav, S.; Thripuram, V.D.; Gundabolu, U.R.; Ala, V.B.; Kolla, J.N.; Jayaprakash, V.; Ahsan, M.J.; Bollikolla, H.B. Synthesis, Characterization, Docking and Study of Inhibitory Action of Some Novel C-Alkylated Chalcones on 5-LOX Enzyme. ChemistrySelect 2017, 2, 8771–8778. [Google Scholar] [CrossRef]
- Mavridis, E.; Bermperoglou, E.; Pontiki, E.; Hadjipavlou-Litina, D. 5-(4H)-Oxazolones and Their Benzamides as Potential Bioactive Small Molecules. Molecules 2020, 25, 3173. [Google Scholar] [CrossRef]
- Kostopoulou, I.; Tzani, A.; Polyzos, N.I.; Karadendrou, M.A.; Kritsi, E.; Pontiki, E.; Liargkova, T.; Hadjipavlou-Litina, D.; Zoumpoulakis, P.; Detsi, A. Exploring the 2′-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents. Molecules 2021, 2, 2777. [Google Scholar] [CrossRef]
- Kouzi, O.; Pontiki, E.; Hadjipavlou-Litina, D. 2-Arylidene-1-Indandiones as Pleiotropic Agents with Antioxidant and Inhibitory Enzymes Activities. Molecules 2019, 24, 4411. [Google Scholar] [CrossRef]
- Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and Pyrazolines as Anti-Inflammatory Agents. Molecules 2021, 26, 3439. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.L.; La Rosa, S.; Ohta, K.; Boyle, P.H.; Leurquin, F.; Lemaçon, A.; Suckling, C.J. The Synthesis of 7-Deazaguanines as Potential Inhibitors of Guanosine Triphosphate Cyclohydrolase I. Tetrahedron 2004, 60, 943–959. [Google Scholar] [CrossRef]
- Baddiley, J.; Lythgoe, B.; McNeil, D.; Todd, A.R. Experiments on the Synthesis of Purine Nucleosides. Part I. Model Experiments on the Synthesis of 9-Alkylpurines. J. Chem. Soc. 1943, 383–386. [Google Scholar] [CrossRef]
- Cresswell, R.M.; Strauss, T. Displacement of the 2-Methylmercapto Group in Pyrimidines Bearing a 5-Nitroso Substituent. J. Org. Chem. 1963, 28, 2563–2564. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Fiser, A.; Šali, A. MODELLER: Generation and Refinement of Homology-Based Protein Structure Models. Methods Enzymol. 2003, 374, 461–491. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved Side-Chain Torsion Potentials for the Amber Ff99SB Protein Force Field. Proteins Struct. Funct. Bioinform. 2010, 78, 1950–1958. [Google Scholar] [CrossRef]
- Li, P.; Roberts, B.P.; Chakravorty, D.K.; Merz, K.M.J. Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. J. Chem. Theory Comput. 2013, 9, 2733–2748. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Sousa Da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber PYthon Parser InterfacE. BMC Res. Notes 2012, 5, 367. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Center for Computational Structural Biology Autodock Vina. Available online: https://vina.scripps.edu/ (accessed on 10 September 2023).
Compound | No of Atoms | milogP a | MW b | No of OH and NH c | No of O and N d | No of Violations | TPSA e | No of Rotatable Bonds f | Volume g |
---|---|---|---|---|---|---|---|---|---|
(1) | 10 | 1.22 | 157.20 | 3 | 4 | 0 | 72.03 | 1 | 129.73 |
(2) | 12 | 0.58 | 186.20 | 3 | 6 | 0 | 101.21 | 2 | 144.66 |
(3) | 16 | 0.98 | 223.24 | 3 | 7 | 0 | 104.45 | 2 | 195.92 |
(4) | 33 | 4.75 | 445.48 | 2 | 9 | 0 | 116.76 | 7 | 395.24 |
(5) | 25 | 2.74 | 359.41 | 2 | 8 | 0 | 107.53 | 5 | 305.56 |
(6) | 35 | 5.48 | 538.40 | 2 | 9 | 2 | 116.76 | 8 | 429.93 |
(7) | 31 | 3.65 | 422.49 | 2 | 9 | 0 | 110.76 | 7 | 388.17 |
(8) | 26 | 3.02 | 353.38 | 2 | 8 | 0 | 107.53 | 5 | 314.85 |
(9) | 30 | 4 | 403.44 | 2 | 8 | 0 | 107.53 | 5 | 358.84 |
Compd. | % Interaction with the Stable Free Radical DPPH, at 100 μM 20 min | % Interaction with the Stable Free Radical DPPH, at 100 μM 60 min | % Inhibition of AAPH-Induced Linoleic Acid Peroxidation at 100 μM | % Inhibition of LOX 100 μM or IC50 (μM) * |
---|---|---|---|---|
(1) | na | na | na | na |
(2) | 18 | 9 | na | na |
(3) | 18 | 19 | na | na |
(4) | 14 | 15 | 71 | 35% |
(5) | 22 | 3 | 78 | 10.7 μM |
(6) | 21 | na | 30 | 38% |
(7) | 23 | 2 | 82 | 41% |
(8) | 25 | 5 | na | 49% |
(9) | 20 | na | na | 1.1 μΜ |
NDGA | 87 | 93 | - | 0.45 μM |
Trolox | - | - | 92 | - |
Compd. | Docking Scores (kcal/mol) |
---|---|
(1) | −5.2 |
(2) | −5.7 |
(3) | −7.2 |
(4) | −11.2 |
(5) | −8.7 |
(6) | −10.3 |
(7) | −8.4 |
(8) | −9.7 |
(9) | −10.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saragatsis, M.; Pontiki, E. Synthesis and Antioxidant Activities of Novel Pyrimidine Acrylamides as Inhibitors of Lipoxygenase: Molecular Modeling and In Silico Physicochemical Studies. Molecules 2024, 29, 1189. https://doi.org/10.3390/molecules29061189
Saragatsis M, Pontiki E. Synthesis and Antioxidant Activities of Novel Pyrimidine Acrylamides as Inhibitors of Lipoxygenase: Molecular Modeling and In Silico Physicochemical Studies. Molecules. 2024; 29(6):1189. https://doi.org/10.3390/molecules29061189
Chicago/Turabian StyleSaragatsis, Michail, and Eleni Pontiki. 2024. "Synthesis and Antioxidant Activities of Novel Pyrimidine Acrylamides as Inhibitors of Lipoxygenase: Molecular Modeling and In Silico Physicochemical Studies" Molecules 29, no. 6: 1189. https://doi.org/10.3390/molecules29061189
APA StyleSaragatsis, M., & Pontiki, E. (2024). Synthesis and Antioxidant Activities of Novel Pyrimidine Acrylamides as Inhibitors of Lipoxygenase: Molecular Modeling and In Silico Physicochemical Studies. Molecules, 29(6), 1189. https://doi.org/10.3390/molecules29061189