Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (163)

Search Parameters:
Keywords = pumice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3406 KB  
Article
Pilot-Scale Evaluation of Municipal Sewage Sludge Stabilization Using Vermifiltration
by Masoud Taheriyoun, Ahmad Ahamdi, Mohammad Nazari-Sharabian and Moses Karakouzian
Infrastructures 2026, 11(1), 31; https://doi.org/10.3390/infrastructures11010031 - 19 Jan 2026
Viewed by 61
Abstract
Sludge management is one of the most costly and technically challenging components of municipal wastewater treatment, highlighting the need for sustainable and low-cost stabilization technologies. This study evaluated a pilot-scale vermifiltration system for municipal sewage sludge stabilization under varying hydraulic and organic loading [...] Read more.
Sludge management is one of the most costly and technically challenging components of municipal wastewater treatment, highlighting the need for sustainable and low-cost stabilization technologies. This study evaluated a pilot-scale vermifiltration system for municipal sewage sludge stabilization under varying hydraulic and organic loading conditions. Three vermifilter pilots incorporating Eisenia andrei earthworms were operated using lightweight expanded clay aggregate (LECA), high-density polyethylene (HDPE) plastic media, and mineral pumice. The systems were tested at hydraulic loading rates (HLRs) of 150, 300, and 450 L/m2·d. Performance was assessed using chemical oxygen demand (COD), total solids (TS), volatile solids (VS), VS/TS ratio, sludge volume index (SVI), and sludge dewaterability indicators, including specific resistance to filtration (SRF) and time to filtration (TTF). Optimal performance occurred at an HLR of 150 L/m2·d, achieving maximum reductions of 49% in COD, 30% in TS, and 40% in VS, along with an SVI reduction of up to 78%. Increasing HLR significantly reduced treatment efficiency due to shorter retention times and biofilm washout. A regression analysis showed the strongest association between COD removal and organic loading rate (R2 = 0.63) under the coupled HLR–OLR conditions tested, while weaker correlations were observed for SVI and VS/TS. Dewaterability improved markedly after vermifiltration, particularly in the LECA-based system. Although filter media type did not significantly affect COD or SVI removal, pumice and plastic media provided greater hydraulic stability at higher loadings. These results demonstrate that vermifiltration is an effective and environmentally sustainable option for municipal sludge stabilization when operated under controlled hydraulic conditions. Full article
Show Figures

Figure 1

26 pages, 3565 KB  
Article
Effect of GGBFS and Fly Ash on Elevated Temperature Resistance of Pumice-Based Geopolymers
by Mohammed Shubaili
Infrastructures 2026, 11(1), 28; https://doi.org/10.3390/infrastructures11010028 - 15 Jan 2026
Viewed by 126
Abstract
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive [...] Read more.
The current study investigated the effects of geopolymer composites formulated from pumice dust partially replaced by ground granulated blast furnace slag (GGBFS) and fly ash (FA) at levels of 10%, 20%, 30%, and 40% by weight. The mixtures were evaluated for flowability, compressive strength (7, 28, and 56 days), density, and water absorption (28 and 56 days) at ambient temperatures. Moreover, compressive strength, mass loss, density, and water absorption were evaluated after exposure of the mixtures to elevated temperatures (250 °C, 500 °C, and 750 °C) at 28 days. All specimens were initially cured at 60 °C for 24 h, followed by storage under ambient laboratory conditions until testing. The inclusion of GGBFS into the mixtures decreased flowability, and the inclusion of FA resulted in its improvement. At ambient temperature, GGBFS-based mixtures, which were high in calcium content, exhibited substantially superior compressive strength and reduced absorption relative to FA-based mixtures due to the development of dense C-A-S-H gel networks. However, the compressive strength of FA-based mixtures considerably increased when exposed to a temperature of 250 °C. Moreover, at 750 °C, the FA-based mixtures showed superior residual strength (up to 18.1 MPa), lower mass loss, and reduced absorption, indicating enhanced thermal stability due to the dominance of thermally resistant N-A-S-H gels. X-ray diffraction results further supported these trends by showing the rapid deterioration of calcium-rich phases under heat and the comparative stability of aluminosilicate structures in FA-based systems. Overall, the inclusion of up to 40% GGBFS is beneficial for early strength and densification, whereas the incorporation of up to 40% FA improves durability and mechanical retention under high-temperature conditions. Full article
Show Figures

Figure 1

15 pages, 726 KB  
Article
Gamma-Ray Attenuation Performance of PEEK Reinforced with Natural Pumice and Palygorskite
by Ahmed Alharbi
Polymers 2026, 18(2), 198; https://doi.org/10.3390/polym18020198 - 11 Jan 2026
Viewed by 234
Abstract
Lightweight, lead-free polymer–mineral composites have attracted increasing interest as radiation-attenuating materials for applications where reduced mass and environmental compatibility are required. In this work, the γ-ray attenuation behavior of poly(ether ether ketone) (PEEK) reinforced with natural palygorskite and pumice was evaluated at [...] Read more.
Lightweight, lead-free polymer–mineral composites have attracted increasing interest as radiation-attenuating materials for applications where reduced mass and environmental compatibility are required. In this work, the γ-ray attenuation behavior of poly(ether ether ketone) (PEEK) reinforced with natural palygorskite and pumice was evaluated at filler concentrations of 10–40 wt%. Photon interaction parameters, including the linear attenuation coefficient (μ), half-value layer (HVL), mean free path (λ), and effective atomic number (Zeff), were computed over the energy range 15 keV–15 MeV using the Phy-X/PSD platform and validated through full Geant4 Monte Carlo transmission simulations. At 15 keV, μ increased from 1.46cm1 for pure PEEK to 4.21cm1 and 8.499cm1 for the 40 wt% palygorskite- and pumice-filled composites, respectively, reducing the HVL from 0.69 cm to 0.24 cm and 0.11 cm. The corresponding Zeff values increased from 6.5 (pure PEEK) to 9.4 (40 wt% palygorskite) and 15.3 (40 wt% pumice), reflecting the influence of higher-Z oxide constituents in pumice. At higher photon energies, the attenuation curves converged as Compton scattering became dominant, although pumice-filled PEEK retained marginally higher μ and shorter λ up to the MeV region. These findings demonstrate that natural mineral fillers can enhance the photon attenuation behavior of PEEK while retaining the known thermal stability and mechanical performance of the polymer matrix as reported in the literature, indicating their potential use as lightweight, secondary radiation-attenuating components in medical, industrial, and aerospace applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

27 pages, 5053 KB  
Article
Effect of Basaltic Pumice Powder on the Mechanical and Thermal Resistance Properties of Sustainable Alkali-Activated Mortars
by Taha Salah Wahhab Al-Antaki and Anıl Niş
Sustainability 2025, 17(24), 11281; https://doi.org/10.3390/su172411281 - 16 Dec 2025
Viewed by 217
Abstract
In the research, the effect of basaltic pumice powder on the mechanical and thermal resistance properties of alkali-activated mortars (AAM) was studied. The class F fly ash, basaltic pumice powder (BPP), and ground granulated blast furnace slag were utilized as sustainable binder materials. [...] Read more.
In the research, the effect of basaltic pumice powder on the mechanical and thermal resistance properties of alkali-activated mortars (AAM) was studied. The class F fly ash, basaltic pumice powder (BPP), and ground granulated blast furnace slag were utilized as sustainable binder materials. The BPP was incorporated instead of fly ash and slag at concentrations of 10, 20, 30, 40, and 50%. In addition, the effects of different sodium hydroxide (NaOH) molarities (8, 12, 16 M) were investigated on the thermal resistance properties. The influence of curing time and its effects on different elevated temperatures (200, 400, and 600 °C) were also studied together at 7, 28, and 56 days on the AAMs. Flexural strength, compressive strength, weight change, and ultrasonic pulse velocity tests were carried out at the macro-scale. The microstructures of the AAM samples were analyzed using SEM and EDX spectroscopy. The results showed that dissolution of basaltic pumice particles requires a longer curing time. The 50% pumice-incorporated 8 M samples at 7 d exhibited the worst, whereas 16 M samples without pumice at 56 d performed the best in terms of mechanical strength and thermal durability. The optimal formulation for the best elevated temperature resistance is the 30% BPP and 16 M NaOH molarity. Full article
Show Figures

Figure 1

13 pages, 5292 KB  
Article
Synthesis of Ceramic Foams, Development of Insulating Panels, and Energy Performance Evaluation for Social Housing Using Thermal Simulation
by Nahyr Michelle Tercero-González, Daniel Lardizábal-Gutiérrez, Jorge Escobedo-Bretado, Ivan Vásquez-Duarte, Ricardo Beltran-Chacon and Caleb Carreño-Gallardo
Ceramics 2025, 8(4), 153; https://doi.org/10.3390/ceramics8040153 - 11 Dec 2025
Viewed by 424
Abstract
The growing energy demand in the residential sector, driven by the extensive use of air conditioning systems, poses serious environmental and economic challenges. A sustainable alternative is the use of efficient insulating materials derived from waste resources. This study presents the synthesis of [...] Read more.
The growing energy demand in the residential sector, driven by the extensive use of air conditioning systems, poses serious environmental and economic challenges. A sustainable alternative is the use of efficient insulating materials derived from waste resources. This study presents the synthesis of glass–ceramic foams produced from recycled glass (90 wt%), pumice (5 wt%), and limestone (5 wt%), sintered at 800 °C for 10 min. The resulting foams exhibited a low apparent density of 684 kg/m3 and thermal conductivity of 0.09 W/m·K. These were incorporated into composite insulating panels composed of 70 wt% ceramic pellets and 30 wt% Portland cement, achieving a thermal conductivity of 0.18 W/m·K. The panels were evaluated in a 64.8 m2 social housing model located in Chihuahua, Mexico, using TRNSYS v.17 to simulate annual energy performance. Results showed that applying a 1.5-inch ceramic foam panel reduced the annual energy demand by 16.9% and the total energy cost by 14.7%, while increasing the panel thickness to 2 in improved savings to 18.4%. Compared with expanded polystyrene (EPS), which achieved 24.9% savings, the proposed ceramic panels offer advantages in fire resistance, durability, local availability, and environmental sustainability. This work demonstrates an effective, low-cost, and circular-economy-based solution for improving thermal comfort and energy efficiency in social housing. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

16 pages, 4804 KB  
Article
Acoustic, Thermal, and Mechanical Performance of Polymer-Coated Pumice Aggregate Lightweight Concretes
by Özlem Sallı Bideci, Alper Bideci, Ashraf Ashour and Amir Khan
Polymers 2025, 17(24), 3248; https://doi.org/10.3390/polym17243248 - 6 Dec 2025
Viewed by 484
Abstract
Pumice aggregate, with its highly porous structure, offers excellent lightweight and insulating characteristics; however, its excessive water absorption and weak interfacial bonding often limit its mechanical and durability performance in concrete applications. To overcome these drawbacks, this study developed a polymer-coated pumice aggregate [...] Read more.
Pumice aggregate, with its highly porous structure, offers excellent lightweight and insulating characteristics; however, its excessive water absorption and weak interfacial bonding often limit its mechanical and durability performance in concrete applications. To overcome these drawbacks, this study developed a polymer-coated pumice aggregate (PCPA) concrete by applying a thin polyester layer onto the aggregate surface to enhance matrix–aggregate adhesion and reduce permeability. The mechanical, thermal, and acoustic performances of PCPA were systematically evaluated. Results revealed that polyester coating led to a notable improvement in compressive strength (up to 25%) and significantly reduced weight loss after freeze–thaw cycles. Furthermore, PCPA samples exhibited enhanced resistance to thermal degradation, maintaining structural stability even at 600 °C, and achieved a 40% higher sound absorption coefficient at 630 Hz compared to uncoated pumice concrete. These findings demonstrate that polyester coating effectively addresses the inherent limitations of pumice concrete, offering a promising approach for producing lightweight concretes with superior durability and multifunctional performance. Full article
Show Figures

Figure 1

19 pages, 3194 KB  
Article
Hybrid Nylon-6/Pumice Nonwoven Composites as Nature-Based Adsorbents for Methylene Blue Dye-Contaminated Wastewater: Insights into Monolayer and Multilayer Adsorption Mechanisms
by Carlos Alberto Ávila-Orta, Germán Alvarado-Tenorio, Erick Ricardo Ramírez-López, Gregorio Cadenas-Pliego, Víctor Javier Cruz-Delgado, María de Lourdes Hernández-Rodríguez, Lucía Fabiola Cano-Salazar, Yesenia Pérez-García, Fernando Pérez-Flores, Karla Itzel Sevilla-Vargas and Gustavo Soria-Argüello
Water 2025, 17(23), 3382; https://doi.org/10.3390/w17233382 - 26 Nov 2025
Viewed by 668
Abstract
The contamination of water bodies by dye effluents from micro-scale in-house denim laundries remains a significant environmental concern in central México, particularly in the Atoyac River, where conventional treatment methods are not economically viable. This study develops and evaluates Nylon-6/pumice powder (PPw) nonwoven [...] Read more.
The contamination of water bodies by dye effluents from micro-scale in-house denim laundries remains a significant environmental concern in central México, particularly in the Atoyac River, where conventional treatment methods are not economically viable. This study develops and evaluates Nylon-6/pumice powder (PPw) nonwoven composites as hybrid adsorptive membranes for the removal of methylene blue (MB) from aqueous solutions. Pumice, a locally abundant siliceous mineral, was incorporated into Nylon-6 through melt-compounding and melt-blown fiber processing at 1 wt% and 5 wt% loadings. SEM, XRD, and TGA confirmed even filler distribution, structural stability, and the development of a porous, layered structure. Batch adsorption tests revealed a rapid initial dye adsorption, followed by a slower diffusion-controlled phase, with equilibrium achieved within 15 min for PPw and within 30 min for the composites. The data fitted both Langmuir and Freundlich isotherms, indicating that MB adsorption involved a combined mechanism: monolayer adsorption on uniform silanol/aluminol sites and multilayer physical adsorption at the polymer–mineral interfaces. Higher PPw content increased adsorption capacity (qmax = 1.1460 mg/g) and surface uniformity, resulting in favorable Freundlich exponents (n = 2). Finally, it was found that adsorption proceeds via chemisorption, where the pumice powder provides reactive sites. These findings demonstrate that Nylon-6/PPw nonwoven composites combine the strength of a synthetic material with the surface reactivity of a natural mineral, providing an effective and scalable Nature-Based Solution for decentralized dye removal, aligned with Sustainable Development Goals 6 and 12. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 1975 KB  
Article
Evaluation of Cucumber (Cucumis sativus L.) Growth in an Open Soilless System Using Different Substrates
by Teresa Leuratti, Nicola Michelon, Alejandra Paredes, Jaime Santamaria, Giampaolo Zanin, Stefano Bona, Giuseppina Pennisi, Giorgio Gianquinto and Francesco Orsini
Horticulturae 2025, 11(11), 1356; https://doi.org/10.3390/horticulturae11111356 - 11 Nov 2025
Viewed by 1002
Abstract
The soil of the Trifinio region, the tri-national territory between Guatemala, Honduras, and El Salvador, is damaged by the expansion of monoculture, which decreases fertility and causes problems for local farmers. Furthermore, the region also faces issues of erosion and soil contamination. As [...] Read more.
The soil of the Trifinio region, the tri-national territory between Guatemala, Honduras, and El Salvador, is damaged by the expansion of monoculture, which decreases fertility and causes problems for local farmers. Furthermore, the region also faces issues of erosion and soil contamination. As an alternative to soil cultivation, soilless systems can be adopted, not requiring fertile soil, and significantly increasing yields and resource use efficiency. To encourage soilless technique application in the region, the aim of this study was to compare 18 different substrate mixes to identify the most suitable for the local cultivation of cucumber (Cucumis sativus L.). The substrates were obtained comparing three rates of peat and compost (0%, 20% and 40%, by volume) in factorial combination, with the remaining being either coir or pumice (filling component). Plant growth, flower setting, physiological status (relative chlorophyll content and leaf temperature), and plant production were evaluated. Highest yield was achieved with 20% peat, while compost (20% and 40%) was able to increase fruit length and improve the relative chlorophyll content, but did not affect total production. However, when focusing on environmental sustainability as an important standpoint, a peat-free substrate should be utilized even though the results favored the 20% peat treatment for production. Considering that the differences in production in favor of 20% peat treatment were of limited practical relevance. In regard to the filling components (coir and pumice) yields were unaffected and only minor parameters were changed. Based on the results obtained, a substrate consisting of 60% coir and 40% compost resulted in the best option for the soilless cultivation of cucumber in the Trifinio region, with both materials being sustainable and easily available for local farmers. Full article
Show Figures

Figure 1

6 pages, 1755 KB  
Brief Report
The 1572 CE Santorini Eruption from Little-Known Historical Documents
by Gerassimos A. Papadopoulos
GeoHazards 2025, 6(4), 76; https://doi.org/10.3390/geohazards6040076 - 3 Nov 2025
Viewed by 1410
Abstract
The Santorini volcano in the South Aegean Volcanic Arc is of great scientific importance. Knowledge of historical eruptions is valuable for better understanding the volcanic cycle and for improved hazard assessments. One of the little-known historical eruptions occurred either in 1570 or in [...] Read more.
The Santorini volcano in the South Aegean Volcanic Arc is of great scientific importance. Knowledge of historical eruptions is valuable for better understanding the volcanic cycle and for improved hazard assessments. One of the little-known historical eruptions occurred either in 1570 or in 1573 or from 1570 to 1573 CE. We bring to light a very little-known but reliable Greek manuscript dated in 1588 CE which improves our knowledge about this eruption. The manuscript documents that the eruption occurred in 1572 and took place within the sea caldera between Santorini and Palaia Kameni. It makes it clear that “fire, smoke, and stones” were coming out between the two islands and a new volcanic island named Mikri Kameni was born. This landscape has been verified by independent maps of the 17th and 18th centuries. The floating pumice was transported by the sea as far as to Thessaloniki and Constantinople. Also, we learn a lot about the consequences of the eruption: (1) smoke and heat destroyed the vineyards and the planting season on Santorini, i.e., spring–summer, (2) it is likely that sulfurous gases were released, and (3) the residents of Santorini were forced to move to nearby islands. The duration of the eruption was ~1 year, but the fire and smoke disappeared suddenly. The Volcanic Explosivity Index of the eruption was estimated to be as high as 3. Full article
Show Figures

Figure 1

21 pages, 6044 KB  
Article
Investigations of the Nucleating Agent Effects on Polypropylene of Pumice from Three Distinct Areas in Türkiye
by Yasin Özdemir, Metehan Atagur, İbrahim Şen and Kutlay Sever
Polymers 2025, 17(21), 2928; https://doi.org/10.3390/polym17212928 - 31 Oct 2025
Viewed by 783
Abstract
This study investigates the mechanical and thermal properties of polypropylene (PP) composites incorporating pumice, a naturally occurring porous volcanic rock with high SiO2 content, sourced from three regions in Türkiye (Nevşehir, Alaçatı, and Kütahya). Pumice was processed to particle sizes below 10 [...] Read more.
This study investigates the mechanical and thermal properties of polypropylene (PP) composites incorporating pumice, a naturally occurring porous volcanic rock with high SiO2 content, sourced from three regions in Türkiye (Nevşehir, Alaçatı, and Kütahya). Pumice was processed to particle sizes below 10 microns to maximize nucleating effectiveness, and composites were fabricated by melt compounding. The distinct mineralogical composition, porosity, and surface chemistry of the pumice samples enabled systematic evaluation of how regional variations influence crystallization and mechanical performance. A multi-analytical characterization approach, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and standardized mechanical tests (tensile, flexural, and impact), was applied. Results revealed that Alaçatı pumice at 0.1 wt% increased the impact strength of PP by about 11%, while maintaining stiffness. This demonstrates that pumice, unlike conventional fillers, can simultaneously enhance toughness and rigidity. Thermal analysis confirmed improved stability, with higher degradation onset and maximum decomposition temperatures observed in pumice-filled PP. DSC results indicated that certain pumice loadings promoted nucleation and increased crystallinity, while excessive amounts disrupted chain packing. SEM examinations confirmed uniform dispersion at low loadings, with agglomeration at higher levels reducing impact resistance. This work provides the first systematic demonstration of pumice powders as effective nucleating agents in PP, combining regional mineralogical diversity with measurable performance benefits. These findings indicate that pumice can serve as a sustainable, low-cost alternative to conventional nucleating agents, with potential applications in polymer components requiring improved toughness and thermal stability. Full article
Show Figures

Figure 1

10 pages, 298 KB  
Article
Surface Roughness and Microbial Adhesion on Four Provisional Prosthodontic Restorative Materials
by Ola Al Hatem, Joe C. Ontiveros, Donald M. Belles, Maria D. Gonzalez and Ransome van der Hoeven
Dent. J. 2025, 13(11), 498; https://doi.org/10.3390/dj13110498 - 27 Oct 2025
Viewed by 757
Abstract
Objective: The aim of this study was to evaluate surface roughness (Ra) and microbial adhesion on four provisional prosthodontic materials in comparison to zirconium oxide. Methods: Four provisional prosthodontic restorative materials were evaluated in this study: poly methyl methacrylate (PMMA) acrylic [...] Read more.
Objective: The aim of this study was to evaluate surface roughness (Ra) and microbial adhesion on four provisional prosthodontic materials in comparison to zirconium oxide. Methods: Four provisional prosthodontic restorative materials were evaluated in this study: poly methyl methacrylate (PMMA) acrylic resin (ALIKE; GC America Inc., Alsip, IL, USA), dimethacrylate (Bis-acryl) resin (Integrity; Dentsply Sirona, Charlotte, NC, USA), 3D-printed temporary crown and bridge resin (Formlabs Inc., Somerville, MA, USA), prepolymerized poly methyl methacrylate (milled PMMA) (Harvest Dental Laboratory Products, Brea, CA, USA), and zirconium oxide (Ivoclar Vivadent AG, Liechtenstein, Germany). A total of 90 samples were prepared and divided into two groups per material (treated and untreated). Provisional material samples were prepared per manufacturer’s instructions, polished with the same sequence using acrylic burs followed by Acrylipro silicone polishers (Brasseler, Savannah, GA, USA), and pumice with a goat brush. Zirconia was polished with a green grinding stone (ZR Grinders; Brassseler, Savannah, GA, USA), followed by a feather lite (Dialite ZR polisher; Brasseler, Savannah, GA, USA). The Ra of all samples was measured using a digital profilometer. Sterilized samples were incubated in Todd Hewitt yeast extract (THY) broth containing Candida albicans SC5314 and Streptococcus mutans BM71 at 37 °C under anaerobic conditions for 72 h. Subsequently, the number of colony-forming units (CFU) adhered to each sample was determined by serial dilution plating. Normality and homoscedasticity were assessed prior to statistical analysis. Welch’s ANOVA was then performed to evaluate differences among all samples, followed by Games–Howell post hoc tests for pairwise comparisons. A p < 0.05 was considered significant in all experiments. Results: Zirconia demonstrated the lowest surface roughness and significantly reduced adhesion of S. mutans and C. albicans compared to all other materials (p < 0.001). Milled PMMA exhibited significantly lower roughness and microbial adhesion than conventional PMMA (p < 0.001), with no significant difference from Printed PMMA in microbial adhesion. Additional pairwise differences were observed between Bis-acryl and PMMA (p = 0.0425), Milled and Printed PMMA (p < 0.0001), and Bis-acryl and Printed PMMA (p < 0.0001). Conclusions: Zirconia and milled PMMA showed superior surface properties and reduced microbial adhesion, supporting their use in long-term provisional restorations. Materials with higher microbial retention, such as self-curing PMMA, bis-acryl, and 3D-printed resins, may be less suitable for extended use. These findings guide material selection to improve clinical outcomes and highlight the need for further in vivo research. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Graphical abstract

14 pages, 3819 KB  
Article
In Vitro Evaluation of Tooth Enamel Abrasion and Roughness Using Toothpaste with and Without Activated Charcoal: An SEM Analysis
by Fiorella Thais Aquino Carmen, Renzo Jesús Pro Romero, Alexander Roger Espinoza Salcedo and Paul Martín Herrera-Plasencia
Dent. J. 2025, 13(10), 482; https://doi.org/10.3390/dj13100482 - 21 Oct 2025
Cited by 1 | Viewed by 2758
Abstract
Background/Objectives: Dental enamel constitutes the first barrier of defense against external factors that constantly generate wear and damage. This study aimed to evaluate in vitro the abrasion and roughness of dental enamel using toothpaste with and without activated charcoal and to analyze this [...] Read more.
Background/Objectives: Dental enamel constitutes the first barrier of defense against external factors that constantly generate wear and damage. This study aimed to evaluate in vitro the abrasion and roughness of dental enamel using toothpaste with and without activated charcoal and to analyze this under scanning electron microscopy (SEM). Materials and methods: The research design was experimental; 10 enamel blocks were randomly assigned to each group to perform brushing cycles with soft- and medium-filament brushes with two types of toothpaste, one with activated charcoal and one without activated charcoal. A pumice stone with etching acid was used as the positive control and artificial saliva served as the negative control; both were analyzed separately. Roughness was evaluated using a roughness meter and abrasion with an analytical balance. The surface of the enamel blocks of each group was randomly analyzed under an SEM. Statistical analysis was performed using the Shapiro–Wilk test and the homogeneity of variances with Bartlett’s test. Student’s t-test (two-tailed) was applied to compare tooth enamel roughness and abrasion. Results: Both enamel roughness (p = 0.0016) and abrasion (p = 0.0001) were significantly higher in the groups using activated charcoal paste and medium-filament brushes. SEM observation revealed greater alteration on the surface of the enamel subjected to brushing cycles with activated charcoal paste and a medium-filament brush. Conclusions: The in vitro study showed that the use of toothpaste with activated charcoal increases the roughness and abrasion of tooth enamel, especially when the medium-filament brush is used. Full article
Show Figures

Graphical abstract

23 pages, 3759 KB  
Article
Taguchi-Based Experimental Optimization of PET and Bottom Ash Cement Composites for Sustainable Cities
by Arzu Cakmak, Hacer Mutlu Danaci, Salih Taner Yildirim and İsmail Veli Sezgin
Sustainability 2025, 17(20), 9206; https://doi.org/10.3390/su17209206 - 17 Oct 2025
Viewed by 855
Abstract
Waste valorization in construction materials offers a promising pathway to reducing environmental burdens while promoting circular resource strategies in the built environment. This study develops a novel composite mortar formulated with sustainable materials and alternative aggregates, namely polyethylene terephthalate (PET) particles recovered from [...] Read more.
Waste valorization in construction materials offers a promising pathway to reducing environmental burdens while promoting circular resource strategies in the built environment. This study develops a novel composite mortar formulated with sustainable materials and alternative aggregates, namely polyethylene terephthalate (PET) particles recovered from post-consumer plastic waste and bottom ash from thermal power generation. Natural pumice was incorporated to improve the lightness and the thermal insulation, with cement serving as the binder. The mix design was systematically optimized using the Taguchi method to enhance performance while minimizing carbon emissions. The resulting mortar, produced at both laboratory and small-scale commercial levels, demonstrated favorable technical properties: dry density of 1.3 g/cm3, compressive strength of 5.96 MPa, thermal conductivity of 0.27 W/(m*K), and water absorption of 16.1%. After exposure to 600 °C, it retained 60.6% of its strength and exhibited only a 10.1% mass loss. These findings suggest its suitability for non-load-bearing urban components where sustainability, thermal resistance, and durability are essential. The study contributes to global sustainability goals, particularly Sustainable Development Goal (SDG) 11, 12, and 13, by illustrating how waste valorization can foster resilient construction while reducing the environmental footprint of cities. Full article
Show Figures

Figure 1

21 pages, 9819 KB  
Article
Development of Natural Rubber-Based Elasto Ball as an Alternative Material to Substitute Pumice in the Garment Washing Process
by Maya Komalasari, Onny Aulia Rachman, Husaini Ardy, Lia A. T. W. Asri and Yati Mardiyati
Textiles 2025, 5(4), 47; https://doi.org/10.3390/textiles5040047 - 13 Oct 2025
Cited by 1 | Viewed by 778
Abstract
Distressed fabric is a popular fashion trend that adds a distinct visual appeal to garments. Distressing involves acid washing with pumice stones containing potassium permanganate. This approach is inappropriate for knitted textiles, which can generate holes and reduce quality. This project seeks to [...] Read more.
Distressed fabric is a popular fashion trend that adds a distinct visual appeal to garments. Distressing involves acid washing with pumice stones containing potassium permanganate. This approach is inappropriate for knitted textiles, which can generate holes and reduce quality. This project seeks to create an Elasto Ball (EB) as an alternative to pumice stones in the acid-washing procedure of knitted materials. The Elasto Ball consists of natural rubber foam filled with silica and a silica–lignin hybrid derived from rice husks. The efficacy of the filler is enhanced during the manufacturing of Elasto Ball by employing the NXT silane coupling agent throughout the silanization process. The silanized elasto ball exhibits thermal stability up to 400 °C and a porosity of up to 5%. In garment washing assessments, the Elasto Ball can diminish the fabric’s color by 40–50% without causing damage. The findings of this study indicate that Elasto Ball can function as an efficient, eco-friendly substitute for washing balls in garment washing procedures. Full article
Show Figures

Figure 1

17 pages, 2611 KB  
Article
The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials
by Julia Płatkiewicz, Robert Frankowski, Tomasz Grześkowiak, Włodzimierz Urbaniak and Agnieszka Zgoła-Grześkowiak
Processes 2025, 13(10), 3197; https://doi.org/10.3390/pr13103197 - 8 Oct 2025
Viewed by 830
Abstract
The objective of this study was to investigate the adsorption of 11 azoles (tebuconazole, ketoconazole, econazole, miconazole, fluconazole, clotrimazole, climbazole, flutriafol, epoxiconazole, tiabendazole, and imazalil) on natural and waste-derived sorbents such as ceramsite, perlite, pumice, sawdust, coconut fibers, heavy oil fly ash (HOFA), [...] Read more.
The objective of this study was to investigate the adsorption of 11 azoles (tebuconazole, ketoconazole, econazole, miconazole, fluconazole, clotrimazole, climbazole, flutriafol, epoxiconazole, tiabendazole, and imazalil) on natural and waste-derived sorbents such as ceramsite, perlite, pumice, sawdust, coconut fibers, heavy oil fly ash (HOFA), activated carbon, and silica gel. The results of adsorption efficiency for most sorbents varied depending on the azole compounds and their concentration. The highest adsorption for all tested compounds was obtained for activated carbon and heavy oil fly ash, reaching about 100% in both tested concentrations (0.2 mg L−1 and 0.02 mg L−1). The HOFA material was characterized in terms of elemental analysis (CHNS), confirming the elemental contents of 52% C, 0.65% H, 0.4% N, and 2.3% S. The specific surface area of HOFA was 11.2 m2 g−1, and scanning electron microscopy (SEM) results showed the spherical yet porous nature of the particles. Furthermore, the calculated adsorption isotherms demonstrated that for most tested azoles, the Dubinin–Radushkevich (D-R) isotherm best fits the data, with R2 = 0.93 or more, which is characteristic of porous carbon materials. The results highlight the significant potential of the tested HOFA sorbent for effectively removing azoles, as the tests performed showed that it was possible to remove these compounds with a concentration of up to 0.2 mg L−1 within an hour. This is particularly important because HOFA is an easily accessible waste material. Furthermore, the adsorption of azoles will not increase the cost of HOFA disposal when using the standard procedures currently applied to this waste. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

Back to TopTop