In Vitro Evaluation of Tooth Enamel Abrasion and Roughness Using Toothpaste with and Without Activated Charcoal: An SEM Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size
2.2. Data Compilation
2.3. Materials
- -
- Toothpaste with activated charcoal: Oral B Natural Essence (Procter & Gamble, Naucapal de Juárez, Mexico, lot 30904354P4). Toothpaste without activated charcoal: Colgate Total 12 Antisarro (Colgate Palmolive, Guanajuato, Mexico, lot 3348MX1131);
- -
- Toothbrushes with soft filaments: Colgate Procuidado (Colgate Palmolive, Binh Duong Province, Vietnam, lot 3333Z). Toothbrushes with medium filaments: Colgate Colors (Colgate Palmolive, Binh Duong Province, Vietnam, lot 0374QZ);
- -
- Artificial saliva (manufactured by LUSA, Laboratorios Unidos S.A. Lima, Peru, lot 2081683);
- -
- Pumice stone: fine grain size (<50 μm). (Manufactured by Vitalloy, Lima, Peru);
- -
- Phosphoric acid 37% (Manufactured by Densell, Buenos Aires, Argentina; lot 2204789).
2.4. Procedure
2.5. Scanning Electron Microscope (SEM)
2.6. Statistical Analysis
3. Results
3.1. Abrasion and Roughness of Tooth Enamel
3.2. Enamel Roughness According to Toothbrush and Toothpaste Type
3.3. Enamel Abrasion According to Toothbrush and Toothpaste Type
3.4. Scanning Electron Microscope (SEM) Analysis of the Enamel Blocks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarna-Boś, K.; Skic, K.; Boguta, P.; Adamczuk, A.; Vodanovic, M.; Chałas, R. Elemental mapping of human teeth enamel, dentine and cementum in view of their microstructure. Micron 2023, 172, 103485. [Google Scholar] [CrossRef]
- Aspinall, S.; Parker, J.; Khutoryanskiy, V. Oral care product formulations, properties and challenges. Colloids Surf. B Biointerfaces 2021, 200, 111567. [Google Scholar] [CrossRef]
- Palomino, R.C.; Delgado, L. Lo que debemos saber sobre dentífricos blanqueadores. Rev. Estomatol. Hered. 2022, 32, 405–409. [Google Scholar] [CrossRef]
- Rode, S.; Sato, T.; Matos, F.; Correia, A.; Camargo, S. Toxicity and effect of whitening toothpastes on enamel surface. Braz. Oral Res. 2021, 35, e025. [Google Scholar] [CrossRef] [PubMed]
- Dobler, L.; Hamza, B.; Attin, T.; Wegehaupt, F.J. Abrasive Enamel and Dentin Wear Resulting from Brushing with Toothpastes with Highly Discrepant Relative Enamel Abrasivity (REA) and Relative Dentin Abrasivity (RDA) Values. Oral Health Prev. Dent. 2023, 21, 41–48. [Google Scholar] [CrossRef]
- Greuling, A.; Emke, J.M.; Eisenburger, M. Abrasion Behaviour of Different Charcoal Toothpastes When Using Electric Toothbrushes. Dent. J. 2021, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Sawai, M. An easy classification for dental cervical abrasions. Eur. J. Dent. 2014, 5, 142–146. [Google Scholar] [CrossRef]
- Flores, A. Cervical abrasion injuries in current dentistry. J. Dent. Health Oral Disord. Ther. 2018, 9, 189–192. [Google Scholar] [CrossRef]
- Zuza, A.; Racic, M.; Ivkovic, N.; Krunic, J.; Stojanovic, N.; Bozovic, D.; Bankovic-Lazarevic, D.; Vujaskovic, M. Prevalence of non-carious cervical lesions among the general population of the Republic of Srpska, Bosnia and Herzegovina. Int. Dent. J. 2019, 69, 281–288. [Google Scholar] [CrossRef]
- Nayyer, M.; Zahid, S.; Hassan, S.H.; Mian, S.A.; Mehmood, S.; Khan, H.A.; Kaleem, M.; Zafar, M.S.; Khan, A.S. Comparative abrasive wear resistance and surface analysis of dental resin-based materials. Eur. J. Dent. 2018, 12, 57–66. [Google Scholar] [CrossRef]
- Bollenl, C.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 58–69. [Google Scholar] [CrossRef]
- Ramírez, C.; Dubón, S.; Madrid, M.; Sánchez, I. Lesiones dentales no cariosas: Etiología y diagnóstico clínico. Revisión de literatura. Rev. Cient. Esc. Univ. Cienc. Salud 2020, 7, 42–55. [Google Scholar] [CrossRef]
- Sanchez, N.; Fayne, R.; Burroway, B. Charcoal: An ancient material with a new face. Clin. Dermatol. 2020, 38, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Vertuan, M.; da Silva, J.F.; de Oliveira, A.C.M.; da Silva, T.T.; Justo, A.P.; Zordan, F.L.S.; Magalhães, A.C. The in vitro Effect of Dentifrices with Activated Charcoal on Eroded Teeth. Int. Dent. J. 2022, 73, 518–523. [Google Scholar] [CrossRef]
- Emídio, A.G.; e Silva, V.F.F.M.; Ribeiro, E.P.; Zanin, G.T.; Lopes, M.B.; Guiraldo, R.D.; Berger, S.B. In vitro assessment of activated charcoal-based dental products. J. Esthet. Restor. Dent. 2023, 35, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Zamudio-Santiago, J.; Ladera-Castañeda, M.; Santander-Rengifo, F.; López-Gurreonero, C.; Cornejo-Pinto, A.; Echavarría-Gálvez, A.; Cervantes-Ganoza, L.; Cayo-Rojas, C. Effect of 16% Carbamide Peroxide and Activated-Charcoal-Based Whitening Toothpaste on Enamel Surface Roughness in Bovine Teeth: An In vitro Study. Biomedicines 2022, 11, 22. [Google Scholar] [CrossRef]
- Rostamzadeh, P.; Omrani, L.; Abbasi, M.; Yekaninejad, M.; Ahmadi, E. Effect of whitening toothpastes containing activated charcoal, abrasive particles, or hydrogen peroxide on the color of aged microhybrid composite. Dent. Res. J. 2021, 18, 106. [Google Scholar] [CrossRef]
- Greenwall, L.; Greenwall, J.; Wilson, N. Charcoal-containing dentifrices. Br. Dent. J. 2019, 226, 697–700. [Google Scholar] [CrossRef]
- Ireland, J.; Roberts, R.; Palmer, G.; Bauman, D.; Bazer, F. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research1. J. Anim. Sci. 2008, 86, 2797–2805. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, E.; Peláez, A.; Christiani, J. El esmalte dental bovino como modelo experimental para la investigación en odontología. Una revisión de la literatura. Rev. Asoc. Odontol. Argent. 2021, 109, 137–143. [Google Scholar] [CrossRef]
- Hazar, A.; Hazar, E. Effects of Whitening Dentifrices on the Enamel Color, Surface Roughness, and Morphology. Odovtos-Int. J. Dent. Sci. 2023, 25, 20–29. [Google Scholar] [CrossRef]
- Forouzanfar, A.; Hasanpour, P.; Yazdandoust, Y.; Bagheri, H.; Mohammadipour, H. Evaluating the Effect of Active Charcoal-Containing Toothpaste on Color Change, Microhardness, and Surface Roughness of Tooth Enamel and Resin Composite Restorative Materials. Int. J. Dent. 2023, 2023, e6736623. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.; Mantilla, M.; Tolen, S.; Ledesma, M.; Mata, X. Efecto abrasivo de pastas con carbón activado. Rev. Investig. Cienc. Salud 2021, 16, 10–12. [Google Scholar]
- Ramírez, J.; Arango, L. Desgaste del esmalte por diferentes tratamientos químicos y mecánicos. Odontología 2019, 21, 51–66. [Google Scholar] [CrossRef]
- Herrera, C.; Rojas, R.; Girano, J.; Vergara, B.; Castro, Y. Efecto aclarante del ácido clorhídrico (18%) y el ácido fosfórico (37%) sobre el esmalte dental. Estudio experimental in vitro. Rev. Odont. Mex. 2020, 24, 90–98. [Google Scholar] [CrossRef]
- Suriyasangpetch, S.; Sivavong, P.; Niyatiwatchanchai, B.; Osathanon, T.; Gorwong, P.; Pianmee, C.; Nantanapiboon, D. Effect of Whitening Toothpaste on Surface Roughness and Colour Alteration of Artificially Extrinsic Stained Human Enamel: In vitro Study. Dent. J. 2022, 10, 191. [Google Scholar] [CrossRef]
- Maciel, J.; Geng, R.; Pires, F. Remineralization, color stability and surface roughness of tooth enamel brushed with activated charcoal-based products. J. Esthet. Restor. Dent. 2023, 35, 1144–1151. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Martorell, S. Características clinicoetiológicas y terapéuticas en dientes con lesiones cervicales no cariosas e indicadores epidemiológicos. Rev. Mediciego 2020, 26, e1215. [Google Scholar]
- de Andrade, I.C.G.B.; Silva, B.M.; Turssi, C.P.; do Amaral, F.L.B.; Basting, R.T.; de Souza, E.M.; França, F.M.G. Effect of whitening dentifrices on color, surface roughness and microhardness of dental enamel in vitro. Am. J. Dent. 2021, 34, 300–306. [Google Scholar]
- Greenwood, J. Contact of Rough Surfaces: The Greenwood and Williamson/Tripp, Fuller and Tabor Theories. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.W., Eds.; Springer: Boston, MA, USA, 2013; pp. 517–522. [Google Scholar] [CrossRef]
- Lile, I.E.; Osser, G.; Negruţiu, B.M.; Valea, C.N.; Vaida, L.L.; Marian, D.; Dulceanu, R.C.; Bulzan, C.O.; Herlo, J.N.; Gag, O.L.; et al. The Structures–Reactivity Relationship on Dental Plaque and Natural Products. Appl. Sci. 2023, 13, 9111. [Google Scholar] [CrossRef]
- Viana, Í.; Weiss, G.; Sakae, L.; Niemeyer, S.H.; Borges, A.; Scaramucci, T. Activated charcoal toothpastes do not increase erosive tooth wear. J. Dent. 2021, 109, 103677. [Google Scholar] [CrossRef] [PubMed]
- Koc, V.; Bagdatli, Z.; Yilmaz, A.; Yalçın, F.; Altundaşar, E.; Gurgan, S. Effects of charcoal-based whitening toothpastes on human enamel in terms of color, surface roughness, and microhardness: An in vitro study. Clin. Oral. Investig. 2021, 25, 5977–5985. [Google Scholar] [CrossRef]
- Segovia, M.; Lescano, M.; Gili, M. Use of bovine teeth as a choice for research work. Rev. Ateneo Argent. Odontol. 2022, 66, 48–51. [Google Scholar]
- Ortiz-Ruiz, A.J.; de Dios Teruel-Fernández, J.; Alcolea-Rubio, L.A.; Hernández-Fernández, A.; Martínez-Beneyto, Y.; Gispert-Guirado, F. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Ann. Anat.-Anat. Anz. 2018, 218, 7–17. [Google Scholar] [CrossRef] [PubMed]
Roughness | Abrasion | ||||||
---|---|---|---|---|---|---|---|
Variable | n | SFT | MFT | p-Value | SFT | MFT | p-Value |
Artificial saliva | 10 | −0.0037 | 0.0067 | 0.1292 | −0.00011 | −0.00003 | 0.2400 |
Activated charcoal | 10 | 0.29963 | 0.5251 | 0.0016 * | −0.00082 | −0.00155 | 0.0001 * |
No activated charcoal | 10 | 0.1895 | 0.2847 | 0.0971 | −0.00157 | −0.00293 | 0.5188 |
Pumice stone and acid | 10 | 0.4034 | 0.5052 | 0.2522 | −0.00392 | −0.00424 | 0.5186 |
Roughness (μm) with Soft-Filament Toothbrush | ||||||||
Groups | n | ( − ) | S.D. | SE | Median | IQR | Min. | Max. |
Artificial saliva | 10 | −0.004 | 0.018 | 0.006 | −0.001 | 0.027 | −0.038 | 0.014 |
Activated charcoal | 10 | 0.300 | 0.138 | 0.044 | 0.282 | 0.194 | 0.131 | 0.596 |
No activated charcoal | 10 | 0.189 | 0.085 | 0.027 | 0.208 | 0.158 | 0.071 | 0.330 |
Pumice stone and acid | 10 | 0.403 | 0.222 | 0.070 | 0.387 | 0.366 | 0.123 | 0.802 |
Roughness (μm) with Medium-Filament Toothbrush | ||||||||
Groups | n | ( − ) | D.E | EE | Median | IQR | Min. | Max. |
Artificial saliva | 10 | 0.007 | 0.010 | 0.003 | 0.008 | 0.011 | −0.013 | 0.025 |
Activated charcoal | 10 | 0.525 | 0.134 | 0.042 | 0.502 | 0.182 | 0.376 | 0.841 |
No activated charcoal | 10 | 0.285 | 0.150 | 0.047 | 0.272 | 0.191 | 0.110 | 0.619 |
Pumice stone and acid | 10 | 0.505 | 0.157 | 0.050 | 0.468 | 0.259 | 0.321 | 0.764 |
Abrasion with Soft-Filament Toothbrush | ||||||||
Groups | n | ( − ) | S.D. | SE | Median | IQR | Min. | Max. |
Artificial saliva | 10 | −0.00011 | 0.00013 | 0.00004 | −0.00010 | 0.00020 | −0.0004 | 0 |
Activated charcoal | 10 | −0.00082 | 0.00025 | 0.00008 | −0.00090 | 0.00038 | −0.0011 | −0.0004 |
No activated charcoal | 10 | −0.00157 | 0.00065 | 0.00021 | −0.00130 | 0.00062 | −0.0032 | −0.0010 |
Pumice stone | 10 | −0.00392 | 0.00144 | 0.00045 | −0.00380 | 0.00180 | −0.0068 | −0.0021 |
Abrasion with Medium-Filament Toothbrush | ||||||||
Groups | n | ( − ) | D.E | EE | Mediana | IQR | Min. | Max. |
Artificial saliva | 10 | −3 × 10−5 | 0.00016 | 0.00005 | −0.00010 | 0.00020 | −0.0004 | 0.00003 |
Activated charcoal | 10 | −0.00155 | 0.00034 | 0.00011 | −0.00090 | 0.00038 | −0.0021 | −0.0011 |
No activated charcoal | 10 | −0.00293 | 0.00275 | 0.00087 | −0.00130 | 0.00062 | −0.0094 | −0.001 |
Pumice stone | 10 | −0.00424 | 0.00055 | 0.00017 | −0.00380 | 0.00180 | −0.0052 | −0.0035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aquino Carmen, F.T.; Pro Romero, R.J.; Espinoza Salcedo, A.R.; Herrera-Plasencia, P.M. In Vitro Evaluation of Tooth Enamel Abrasion and Roughness Using Toothpaste with and Without Activated Charcoal: An SEM Analysis. Dent. J. 2025, 13, 482. https://doi.org/10.3390/dj13100482
Aquino Carmen FT, Pro Romero RJ, Espinoza Salcedo AR, Herrera-Plasencia PM. In Vitro Evaluation of Tooth Enamel Abrasion and Roughness Using Toothpaste with and Without Activated Charcoal: An SEM Analysis. Dentistry Journal. 2025; 13(10):482. https://doi.org/10.3390/dj13100482
Chicago/Turabian StyleAquino Carmen, Fiorella Thais, Renzo Jesús Pro Romero, Alexander Roger Espinoza Salcedo, and Paul Martín Herrera-Plasencia. 2025. "In Vitro Evaluation of Tooth Enamel Abrasion and Roughness Using Toothpaste with and Without Activated Charcoal: An SEM Analysis" Dentistry Journal 13, no. 10: 482. https://doi.org/10.3390/dj13100482
APA StyleAquino Carmen, F. T., Pro Romero, R. J., Espinoza Salcedo, A. R., & Herrera-Plasencia, P. M. (2025). In Vitro Evaluation of Tooth Enamel Abrasion and Roughness Using Toothpaste with and Without Activated Charcoal: An SEM Analysis. Dentistry Journal, 13(10), 482. https://doi.org/10.3390/dj13100482