Taguchi-Based Experimental Optimization of PET and Bottom Ash Cement Composites for Sustainable Cities
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Compressive Strength
3.2. Dry Unit Weight
3.3. Water Absorption
3.4. Capillarity Absorption Coefficient
3.5. Thermal Conductivity
3.6. High-Temperature Weight and Strength Loss
3.7. Cost Analysis
3.8. Carbon Dioxide Equivalent (CO2-e) Emissions
3.9. Statistical Validation (ANOVA Results)
4. General
5. Summary of Results
- Compressive Strength: Increased with cement content (25.1% rise from 250 to 300 kg/m3). Optimal strength was achieved at a pumice/bottom ash ratio of 40/60 with 4% PET.
- Dry Unit Weight: Rose with cement; maximum values observed at 30/70 pumice/bottom ash and 10% PET.
- Water Absorption: Decreased with higher cement and pumice/bottom ash ratios. The lowest absorption was recorded at 7% PET.
- Capillary Water Absorption: Lowest values were obtained at 300 kg/m3 cement, 50/50 pumice/bottom ash, and 7% PET.
- Thermal Conductivity: Increased with cement but decreased with higher PET and pumice/bottom ash ratios. Increasing PET from 4% to 10% reduced conductivity by 38%.
- High-Temperature Weight Loss: Increased with higher PET but decreased with higher cement and pumice/bottom ash ratios.
- High-Temperature Strength Loss: Lowest at 50/50 pumice/bottom ash, reducing strength loss by 7% compared to 30/70.
- Cost Analysis: Costs increased with cement and PET content but were only minimally affected by pumice/bottom ash ratio. Cement increase from 250 to 300 kg/m3, raised cost by 2.5%.
- Carbon Emissions: Rose with cement but decreased with PET. Cement increase led to a 3.5% rise in emissions.
- Optimum Mix: Type 3 (250 kg/m3 cement, 50/50 pumice/bottom ash, 10% PET) showed the most balanced performance.
- Performance: The optimum mix reached 5 MPa compressive strength, dry unit weight of 1.3 g/cm3, water absorption of 16.1%, and thermal conductivity of 0.27 W/(m*K), making it suitable for lightweight construction.
- Energy Efficiency: Production required less energy compared to conventional block manufacturing.
- Sustainability: The process enables recycling of its own waste, reduces raw material demand, and contributes to a circular economy approach.
6. Conclusions
7. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PET | Polyethylene Terephthalate |
SDG | Sustainable Development Goal |
MPa | Megapascal |
dB | Decibel |
g/cm3 | Gram per cubic centimeter |
kg | Kilogram |
kg/m3 | Kilogram per cubic meter |
kN | Kilonewton |
m3 | Cubic meter |
mm | Millimeter |
N/mm2 | Newton per square millimeter (stress or pressure) |
Tf | Temperature difference (K) |
W/(m·K) | Thermal conductivity unit |
% | Percent |
°C | Degrees Celsius |
λ | Thermal conductivity coefficient (W/(m·K)) |
CO2 | Carbon Dioxide |
References
- Sayara, T. Environmental impact assessment of quarries and stone cutting industries in Palestine: Case study of Jammain. J. Environ. Prot. Sustain. Dev. 2016, 2, 32–38. [Google Scholar]
- Srivastava, A.; Singh, S.K. Utilization of alternative sand for preparation of sustainable mortar: A review. J. Clean. Prod. 2020, 253, 119706. [Google Scholar] [CrossRef]
- Tunc, E.T. Recycling of marble waste: A review based on strength of concrete containing marble waste. J. Environ. Manag. 2019, 231, 86–97. [Google Scholar] [CrossRef]
- Altun, M.G.; Oltulu, M. Effect of Different Types of Fiber Utilization on Mechanical Properties of Recycled Aggregate Concrete Containing Silica Fume. J. Green Build. 2020, 15, 119–136. [Google Scholar] [CrossRef]
- Cobreros, C.; Espinosa, D.; Hidalgo, F.; Manzano-Ramírez, A.; Reyes, J.L. Cereal Straw Production Analysis, Availability of Materials, and Provincial Map for Manufacturing of Sustainable Prefabricated Panels. BioResources 2014, 9, 786–800. [Google Scholar] [CrossRef]
- Poon, C.S.; Chan, D. The use of recycled aggregate in concrete in Hong Kong. Resour. Conserv. Recycl. 2007, 50, 293–305. [Google Scholar] [CrossRef]
- Bhardwaj, B.; Kumar, P. Waste foundry sand in concrete: A review. Constr. Build. Mater. 2017, 156, 661–674. [Google Scholar] [CrossRef]
- Tiwari, A.; Singh, S.; Nagar, R. Feasibility assessment for partial replacement of fine aggregate to attain cleaner production perspective in concrete: A review. J. Clean. Prod. 2016, 135, 490–507. [Google Scholar] [CrossRef]
- Akçaözoğlu, S. An Investigation Using Waste PET Bottles ss Aggregate in Lightweight Mortars. Ph.D. Thesis, Çukurova University, Adana, Turkey, 2008. (In Turkish). [Google Scholar]
- Pittau, F.; Giacomel, D.; Iannaccone, G.; Malighetti, L. Environmental Consequences of Refurbishment Versus Demolition and Reconstruction: A Comparative Life Cycle Assessment of An Italian Case Study. J. Green Build. 2020, 15, 155–172. [Google Scholar] [CrossRef]
- Sangeetha, M. Eco-Friendly Plastic Houses. Available online: https://www.ecoideaz.com/innovative%20green-ideas/eco-friendly-plastic-houses/ (accessed on 3 February 2025).
- Osial, M.; Pregowska, A.; Wilczewski, S.; Urbańska, W.; Giersig, M. Waste Management for Green Concrete Solutions: A Concise Critical Review. Recycling 2022, 7, 37. [Google Scholar] [CrossRef]
- Karthika, R.B.; Vidyapriya, V.; Sri, K.V.N.; Beaula, K.M.G.; Harini, R.; Sriram, M. Experimental study on lightweight concrete using pumice aggregate. Mater. Today Proc. 2021, 43, 1606–1613. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Lamba, P.; Kaur, D.P.; Raj, S.; Sorout, J. Recycling/reuse of plastic waste as construction material for sustainable development: A review. Environ. Sci. Pollut. Res. 2022, 29, 86156–86179. [Google Scholar] [CrossRef] [PubMed]
- Saleem, J.; Baig, M.Z.K.; Shahid, U.B.; Luque, R.; McKay, G. Mixed plastics waste valorization to high-added value products via thermally induced phase separation and spin-casting. Green Energy Environ. 2024, 9, 1627–1640. [Google Scholar] [CrossRef]
- Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste—A Review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current technologies for plastic waste treatment: A review. J. Clean. Prod. 2021, 282, 124523. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Manalo, A.C.; Karunasena, W.; Lau, K.T. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation. Waste Manag. 2016, 48, 72–80. [Google Scholar] [CrossRef]
- Yu, S.; Li, Q.; Zhang, Y.; Zhou, H. New possibility for PET plastic recycling by a tailored hydrolytic enzyme. Green Energy Environ. 2024, 9, 163–165. [Google Scholar] [CrossRef]
- Rajendran, S.; Scelsi, L.; Hodzic, A.; Soutis, C.; Al-Maadeed, M.A. Environmental impact assessment of composites containing recycled plastics. Resour. Conserv. Recycl. 2012, 60, 131–139. [Google Scholar] [CrossRef]
- Yildirim, S.T.; Duygun, N.P. Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 022054. [Google Scholar] [CrossRef]
- Van Oss, H.G.; Padovani, A.C. Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities. J. Ind. Ecol. 2003, 7, 93–126. [Google Scholar] [CrossRef]
- Thorneycroft, J.; Orr, J.; Savoikar, P.; Ball, R.J. Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Constr. Build. Mater. 2018, 161, 63–69. [Google Scholar] [CrossRef]
- Araghi, H.J.; Nikbin, I.M.; Rahimi, S.R.; Rahmani, E.; Allahyari, H. An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. Constr. Build. Mater. 2015, 77, 461–471. [Google Scholar] [CrossRef]
- Hameed, A.M.; Ahmed, B.A.F. Employment the plastic waste to produce the lightweight concrete. Energy Procedia 2019, 157, 30–38. [Google Scholar] [CrossRef]
- Li, Y.; White, D.J.; Lee Peyton, R. Composite material from fly ash and post-consumer PET. Resour. Conserv. Recycl. 1998, 24, 87–93. [Google Scholar] [CrossRef]
- Li, H.; Lei, J.; Zhu, L.; Yao, Y.; Li, Y.; Li, T.; Qiu, C. MOF synthesis using waste PET for applications of adsorption, catalysis and energy storage. Green Energy Environ. 2024, 9, 1650–1665. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.-L.; Texier, H.; Gavalda, S. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Feuerborn, H.J.; Weir, A. Coal Combustion Products: A Global Perspective. In Proceedings of the Presented at the World of Coal Ash Conference, Lexington, KY, USA, 22–25 April 2013. [Google Scholar]
- Yüksel, İ.; Özkan, Ö.; Bilir, T. Production of Briquette With Bottom Ash. J. Fac. Eng. Arch. Gazi Univ. 2006, 2, 527–532. (In Turkish) [Google Scholar]
- Hui, K.S.; Hui, K.N.; Lee, S.K. A novel and green approach to produce nano-porous materials zeolite A and MCM-41 from coal fly ash and their applications in environmental protection. Int J Chem Biol Eng 2009, 2, 165–175. [Google Scholar]
- Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009, 29, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Moulton, L.K.; Seals, R.K.; Anderson, D.A. Utilization of ash from coal burning power plants in highway construction. Transp. Res. Rec. 1973, 430, 26–39. [Google Scholar]
- Kumar, S.; Stewart, J. Utilization of Illinois PCC Dry Bottom Ash for Compacted Landfill Barriers. Soil Sediment Contam. Int. J. 2003, 12, 401–415. [Google Scholar] [CrossRef]
- Bakoshi, T.; Kohno, K.; Kawasaki, S.; Yamaji, N. Strength and durability of concrete using bottom ash as replacement for fine aggregate. Spec. Publ. 1998, 179, 159–172. [Google Scholar] [CrossRef]
- Siddique, R. Utilization of coal combustion by-products in sustainable construction materials. Resour. Conserv. Recycl. 2010, 54, 1060–1066. [Google Scholar] [CrossRef]
- Xu, Y.; Wong, Y.L.; Poon, C.S.; Anson, M. Impact of high temperature on PFA concrete. Cem. Concr. Res. 2001, 31, 1065–1073. [Google Scholar] [CrossRef]
- Arenas, C.G.; Marrero, M.; Leiva, C.; Solís-Guzmán, J.; Arenas, L.F.V. High fire resistance in blocks containing coal combustion fly ashes and bottom ash. Waste Manag. 2011, 31, 1783–1789. [Google Scholar] [CrossRef]
- Litvan, G.G. Furthur study of particulate admixtures for enhanced freeze-thaw resistance of concrete. J. Proc. 1985, 82, 724–730. [Google Scholar] [CrossRef]
- Ijaz, N.; Ye, W.M.; ur Rehman, Z.; Ijaz, Z.; Junaid, M.F. Global insights into micro-macro mechanisms and environmental implications of limestone calcined clay cement (LC3) for sustainable construction applications. Sci. Total Environ. 2024, 907, 167794. [Google Scholar] [CrossRef] [PubMed]
- Salman, N.M.; Ma, G.; Ijaz, N.; Wang, L. Importance and potential of cellulosic materials and derivatives in extrusion-based 3D concrete printing (3DCP): Prospects and challenges. Constr. Build. Mater. 2021, 291, 123281. [Google Scholar] [CrossRef]
- TS EN 197-1:2002; Cement—Part 1: Composition, Specifications and Conformity Criteria. Turkish Standards Institution: Ankara, Turkey, 2002.
- Elyasigorji, F.; Farajiani, F.; Hajipour Manjili, M.; Lin, Q.; Elyasigorji, S.; Farhangi, V.; Tabatabai, H. Comprehensive review of direct and indirect pozzolanic reactivity testing methods. Buildings 2023, 13, 2789. [Google Scholar] [CrossRef]
- Tural, H.G.; Ozarisoy, B.; Derogar, S.; Ince, C. Investigating the governing factors influencing the pozzolanic activity through a database approach for the development of sustainable cementitious materials. Constr. Build. Mater. 2024, 411, 134253. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, D.; Zhang, S.; Cui, H.; Li, D. Effect of Nano-SiO2 on the Hydration and Microstructure of Cement Pastes. Nanomaterials 2016, 6, 241. [Google Scholar] [CrossRef]
- Mangi, S.A.; Ibrahim, M.H.W.; Jamaluddin, N.; Arshad, M.F.; Mudjanarko, S.W. Recycling of Coal Ash in Concrete as a Partial Cementitious Resource. Resources 2019, 8, 99. [Google Scholar] [CrossRef]
- Akinyele, J.O.; Igba, U.T.; Adigun, B.G. Effect of waste PET on the structural properties of burnt bricks. Sci. Afr. 2020, 7, e00301. [Google Scholar] [CrossRef]
- Azhdarpour, A.M.; Nikoudel, M.R.; Taheri, M. The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation. Constr. Build. Mater. 2016, 109, 55–62. [Google Scholar] [CrossRef]
- Mohammadiahmadabad, Y. Use of Waste Pet Bottles in Normal Concrete Production and Its Effects on Concrete Properties. Master’s Thesis, Atatürk University, Erzurum, Turkey, June 2014. (In Turkish). [Google Scholar]
- Sadrmomtazi, A.; Dolati-Milehsara, S.; Lotfi-Omran, O.; Sadeghi-Nik, A. The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. J. Clean. Prod. 2016, 112, 2363–2373. [Google Scholar] [CrossRef]
- TS EN 1015-11:2000; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. Turkish Standards Institution: Ankara, Turkey, 2000.
- TS EN 1015-18:2004; Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. Turkish Standards Institution: Ankara, Turkey, 2007.
- TS EN 12664:2009; Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods. Turkish Standards Institution: Ankara, Turkey, 2009.
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Gürsel, A.P.; Meral, Ç. Comparative Life Cycle Analysis of Cement Production in Turkey. In Proceedings of the 2nd Project and Construction Management Congress, İzmir Institute of Technology, İzmir, Turkey, 13–16 September 2012; pp. 1–13. (In Turkish). [Google Scholar]
- Orhon, A.V.; Altin, M. Carbon Footprint of Concrete Structures. In Proceedings of the National Conference on Sustainable Building Design, Bornova, Turkey, 12–13 November 2012; pp. 12–13. (In Turkish). [Google Scholar]
- Excellent CO2 Balance. Available online: https://petrecyclingteam.com/en/excellent-co2-balance?utm_source (accessed on 21 April 2025).
- Nikbin, I.M.; Dezhampanah, S.; Charkhtab, S.; Mehdipour, S.; Shahvareh, I.; Ebrahimi, M.; Pournasir, A.; Pourghorban, H. Life cycle assessment and mechanical properties of high strength steel fiber reinforced concrete containing waste PET bottle. Constr. Build. Mater. 2022, 337, 127553. [Google Scholar] [CrossRef]
- Usahanunth, N.; Pochanart, P. CO2-emission assessment of the concrete added crushed PET bottles waste. Interdiscip. Res. Rev. 2017, 12, 9–15. [Google Scholar] [CrossRef]
- Fraley, S.; Oom, M.; Terrien, B.; Date, J.Z. Design of Experiments via Taguchi Methods: Orthogonal Arrays. University of Michigan Chemical Process Dynamic and Controls Open Textbook, Eds.; Peter Wolf et.al., University of Michigan (Openmichigan), USA, 2009, 14 (747–757). Available online: https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/14%3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays (accessed on 3 February 2025).
- Chen, S.; Liu, R.; Liu, L.; Huang, X.; Lin, J. Effects of Polyethylene Terephthalate Particle Size on the Performance of Engineered Cementitious Composites. Polymers 2024, 16, 2143. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, Y.; Qiu, T.; Lv, J.; Guo, P.; Liu, X. The Microstructure and Modification of the Interfacial Transition Zone in Lightweight Aggregate Concrete: A Review. Buildings 2025, 15, 2784. [Google Scholar] [CrossRef]
- Hossain, K.M.A. Volcanic ash and pumice as cement additives: Pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cem. Concr. Res. 2005, 35, 1141–1144. [Google Scholar] [CrossRef]
- Woo, B.H.; Jeon, I.K.; Yoo, D.H.; Kim, S.S.; Lee, J.B.; Kim, H.G. Utilization of municipal solid waste incineration bottom ash as fine aggregate of cement mortars. Sustainability 2021, 13, 8832. [Google Scholar] [CrossRef]
- Bai, Y.; Darcy, F.; Basheer, P.A.M. Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate. Constr. Build. Mater. 2005, 19, 691–697. [Google Scholar] [CrossRef]
- Konak, S. Stress-Strain Behavior of Concrete Product by Fine Aggregates with Granulated Blast Furnace Slag And Bottom Ash. Master’s Thesis, Bülent Ecevit University, Zonguldak, Turkey, November 2018. (In Turkish). [Google Scholar]
- Demirel, B.; Kelestemur, O. Effect of the Curing Age on the Mechanical and Physical Properties of Subjected to Elevated Temperature Concretes Added Pumice and Silica Fume. Electron. J. Constr. Technol. 2011, 7, 1–13. (In Turkish) [Google Scholar]
- Jaturapitakkul, C.; Cheerarot, R. Development of bottom ash as pozzolanic material. J. Mater. Civ. Eng. 2003, 15, 48–53. [Google Scholar] [CrossRef]
- Akçaözoǧlu, S.; Atiş, C.D.; Akçaözoǧlu, K. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Manag. 2010, 30, 285–290. [Google Scholar] [CrossRef]
- Lee, H.K.; Kim, H.K.; Hwang, E.A. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete. Waste Manag. 2010, 30, 274–284. [Google Scholar] [CrossRef]
- Pekdemir, M. Investigating Several Mechanical Properties of Concrete Made up with Hasankale Pasinler Pumice. Master’s Thesis, Atatürk University, Erzurum, Turkey, December 2011. (In Turkish). [Google Scholar]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Torkittikul, P.; Nochaiya, T.; Wongkeo, W.; Chaipanich, A. Utilization of coal bottom ash to improve thermal insulation of construction material. J. Mater. Cycles Waste Manag. 2015, 19, 305–317. [Google Scholar] [CrossRef]
- Gündüz, L.; Uǧur, I. The effects of different fine and coarse pumice aggregate/cement ratios on the structural concrete properties without using any admixtures. Cem. Concr. Res. 2005, 35, 1859–1864. [Google Scholar] [CrossRef]
- Mboya, H.A.; Njau, K.N.; Mrema, A.L.; King’ondu, C.K. Influence of scoria and pumice on key performance indicators of Portland cement concrete. Constr. Build. Mater. 2019, 197, 444–453. [Google Scholar] [CrossRef]
- Marzouk, O.Y.; Dheilly, R.M.; Queneudec, M. Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Manag. 2007, 27, 310–318. [Google Scholar] [CrossRef]
- Hossain, K.M.A.; Ahmed, S.; Lachemi, M. Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Constr. Build. Mater. 2011, 25, 1186–1195. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Koting, S.; Katman, H.Y.B.; Babalghaith, A.M.; Patah, M.F.A.; Ibrahim, M.R.; Karim, M.R. A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability 2021, 13, 8031. [Google Scholar] [CrossRef]
- Mezarcıöz, S.; Ogulata, R.T. Optimization of Bursting Strength of Single Jersey Fabrics with Taguchi Orthogonal Design. Text. Appar. 2010, 20, 320–328. (In Turkish) [Google Scholar]
- Chamber of Civil Engineers Construction Works General Technical Specifications. Available online: https://www.ktimo.Org/Sayfalar/Download?Path=~%2FContent%2Fimages%2Fdosyalar%2F5dcb1c6b-F933-4c6d-963c-5b6a3ec00372.Pdf&dosyaad%C4%B1=Teknik%20%C5%9Eartname.Pdf/ (accessed on 2 January 2025). (In Turkish).
- Kudret Brick Industry and Trade Inc. Website. 2025. Available online: https://www.kudret.com/dusey-delikli-tuglalar/ (accessed on 3 February 2025). (In Turkish).
- Teknobims Information Document. Available online: https://www.teknobims.com.tr/katalog.pdf (accessed on 3 February 2025). (In Turkish).
- KÇS Kipaş Aerated Concrete Information Document. Available online: https://kcs.com.tr/wp-content/uploads/2025/10/kcskipasgazbeton-1.pdf (accessed on 3 February 2025). (In Turkish).
Sieve Size (mm) | Retained (%) | Passing (%) |
---|---|---|
16.0 | 0.40 | 100 |
8.0 | 14.3 | 85.7 |
4.0 | 45.9 | 39.7 |
2.0 | 59.4 | 40.3 |
1.0 | 35.1 | 5.23 |
0.5 | 5.00 | 0.24 |
0.25 | 0.24 | 0.00 |
Pan | 0.00 | 0.00 |
Total | 100 | 100 |
Chemical Composition | Materials | |
---|---|---|
Cement (%) | Bottom Ash (%) | |
SiO2 | 20.5 | 48.6 |
Al2O3 | 4.65 | 16.1 |
Fe2O3 | 3.40 | 5.82 |
MgO | 2.03 | 2.82 |
Na2O | - | 0.49 |
CaO | 68.7 | 16.9 |
P2O5 | 0.08 | 2.28 |
SO3 | 2.20 | 2.02 |
Loss on Ignition (LOI) | - | 0.87 |
Reactive CaO | - | 9.51 |
Reactive SiO2 | 25.7 | 22.5 |
Free CaO | - | <0.01 |
Chloride (Cl−) | 0.02 | 0.01 |
Parameters | Levels | ||
---|---|---|---|
1 | 2 | 3 | |
Cement (kg/m3) | 250 | 275 | 300 |
Pumice/Bottom Ash (% by volume) | 30/70 | 40/60 | 50/50 |
PET (% by binder weight) | 4 | 7 | 10 |
Types | Cement (kg/m3) | Pumice/Bottom Ash (%) | PET (%) |
---|---|---|---|
1 | 250 | 30/70 | 4 |
2 | 250 | 40/60 | 7 |
3 | 250 | 50/50 | 10 |
4 | 275 | 30/70 | 7 |
5 | 275 | 40/60 | 10 |
6 | 275 | 50/50 | 4 |
7 | 300 | 30/70 | 10 |
8 | 300 | 40/60 | 4 |
9 | 300 | 50/50 | 7 |
Test Type | Standard | Specimen Size (mm) | Number of Sets per Formulation | Total Number of Specimens |
---|---|---|---|---|
Compressive Strength (28 days) | TS EN 1015-11:2000 [53] | 100 × 100 × 100 | 6 | 6 × 9 = 54 |
Water Absorption and Capillarity | EN 1015-18:2004 [54] | 100 × 100 × 100 | 3 | 3 × 9 = 27 |
High-Temperature Resistance | — | 50 × 50 × 50 | 9 | 9 × 9 = 81 |
Thermal Conductivity | EN 12664:2009 [55] | 300 × 300 × 50 | 3 | 3 × 9 = 27 |
Total | — | — | — | 189 |
Performance Characteristic | Performance Attribute | Formula | Explanation |
---|---|---|---|
“Bigger is better.” | Compressive Strength | i: Experiment number u: Trial number Ni: Number of trials conducted for the i-th experiment y: Desired mean value yu: Measured value of each observation | |
“Smaller is better.” | Dry unit weight, Water absorption, Capillary water absorption, Thermal conductivity, Pressure and weight loss after high temperature, Cost and carbon dioxide emissions |
Mixture No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
28-day Compressive Strength (MPa) | 6.33 | 7.37 | 5.96 | 4.89 | 9.27 | 10.80 | 8.82 | 12.40 | 10.30 | |
Unit Weight in Water (g) | 571 | 583 | 541 | 555 | 569 | 619 | 540 | 640 | 642 | |
Saturated Surface Dry Weight (g) | 1558 | 1556 | 1509 | 1520 | 1554 | 1605 | 1510 | 1633 | 1628 | |
Dry Unit Weight (g/cm3) | 1.32 | 1.33 | 1.30 | 1.34 | 1.33 | 1.34 | 1.36 | 1.46 | 1.48 | |
Water Absorption (%) | 18.00 | 16.70 | 16.10 | 13.60 | 16.40 | 19.50 | 14.40 | 12.10 | 9.88 | |
Void Ratio (%) | 24.10 | 22.80 | 21.60 | 18.90 | 22.20 | 26.60 | 19.60 | 17.70 | 14.90 | |
Thermal Conductivity Coefficient (W/(m·K)) | 0.28 | 0.28 | 0.27 | 0.30 | 0.31 | 0.31 | 0.32 | 0.39 | 0.41 | |
Strength Loss at 600 °C (%) | 42.40 | 52.20 | 60.60 | 54.50 | 70.50 | 67.90 | 58.40 | 64.60 | 75.10 | |
Measurement Time (Minutes) Water Absorption Percentages % | 15 min | 0.64 | 1.70 | 2.93 | 1.64 | 2.08 | 1.17 | 1.43 | 1.12 | 0.74 |
60 min | 1.07 | 2.29 | 3.59 | 2.30 | 2.81 | 1.72 | 1.98 | 1.79 | 1.24 | |
240 min | 2.05 | 3.07 | 4.52 | 3.23 | 3.88 | 2.69 | 2.91 | 2.79 | 1.95 | |
1440 min | 4.48 | 4.84 | 6.55 | 5.34 | 6.21 | 5.00 | 4.80 | 4.77 | 3.23 | |
Capillarity Coefficient (g/cm2) | 15 min | 8.63 | 22.73 | 38.16 | 22.00 | 27.84 | 15.76 | 18.97 | 16.46 | 10.95 |
60 min | 14.37 | 30.67 | 46.77 | 30.9 | 37.55 | 23.26 | 26.28 | 26.21 | 18.39 | |
240 min | 27.59 | 41.07 | 58.97 | 43.4 | 51.9 | 36.26 | 38.53 | 40.85 | 28.93 | |
1440 min | 60.32 | 64.71 | 85.45 | 71.73 | 83.02 | 67.42 | 63.68 | 69.75 | 48.00 | |
Weight Loss (%) | 600 °C | 8.70 | 10.70 | 10.10 | 10.30 | 12.10 | 8.30 | 11.80 | 7.90 | 9.80 |
800 °C | 12.50 | 14.70 | 16.80 | 14.00 | 17.30 | 12.10 | 16.50 | 11.50 | 13.40 | |
1000 °C | 15.20 | 18.00 | 19.80 | 17.60 | 19.30 | 15.40 | 19.60 | 14.20 | 17.30 |
Mixture No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Unit Cost ($) | 30.28 | 31.23 | 32.17 | 33.82 | 34.65 | 32.76 | 37.24 | 35.35 | 36.29 |
Carbon Dioxide Emission (kg CO2-e/m3) | 235 | 226 | 218 | 251 | 243 | 259 | 267 | 284 | 276 |
S/N Values (dB) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mixture No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Impact Per. (%) |
Compressive Strength (28 days) | 14.27 | 16.88 | 14.51 | 14.4 | 17.23 | 15.69 | 18.58 | 21.70 | 20.06 | 11.11 |
Dry Unit Weight | −2.41 | −2.48 | −2.28 | −2.57 | −2.50 | −2.57 | −2.67 | −3.29 | −3.39 | 11.11 |
Water Absorption | −25.13 | −24.48 | −24.16 | −22.90 | −24.32 | −26.34 | −23.19 | −21.75 | −19.90 | 11.11 |
Capillary Coefficient | −35.61 | −36.22 | −38.63 | −37.11 | −38.38 | −36.58 | −36.08 | −36.87 | −33.62 | 11.11 |
Thermal Conductivity | 31.16 | 28.16 | 48.67 | 31.09 | 37.39 | 26.21 | 30.16 | 26.91 | 28.71 | 11.11 |
High Temperature Strength Loss | −32.55 | −34.36 | −35.65 | −34.74 | −36.96 | −36.63 | −35.32 | −36.21 | −37.51 | 11.11 |
High Temperature Weight Loss | −21.88 | −23.39 | −24.13 | −23.09 | −24.35 | −21.80 | −24.24 | −21.22 | −22.83 | 11.11 |
Cost | −57.08 | −57.34 | −57.60 | −58.03 | −58.24 | −57.76 | −58.87 | −58.42 | −58.65 | 11.11 |
Carbon dioxide Emission | −47.42 | −47.08 | −46.77 | −47.99 | −47.71 | −48.27 | −48.53 | −49.07 | −48.82 | 11.11 |
Average S/N | −19.62 | −20.03 | −18.44 | −20.10 | −19.76 | −20.89 | −20.02 | −19.80 | −19.55 | 100 |
S/N Values (dB) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mixture No | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Impact Per. (%) |
Compressive Strength (28 days) | 14.27 | 16.88 | 14.51 | 14.4 | 17.23 | 15.69 | 18.58 | 21.7 | 20.06 | 5.17 |
Dry Unit Weight | −2.41 | −2.48 | −2.28 | −2.57 | −2.5 | −2.57 | −2.67 | −3.29 | −3.39 | 15.52 |
Water Absorption | −25.13 | −24.48 | −24.16 | −22.9 | −24.32 | −26.34 | −23.19 | −21.75 | −19.9 | 8.62 |
Capillary Coefficient | −35.61 | −36.22 | −38.63 | −37.11 | −38.38 | −36.58 | −36.08 | −36.87 | −33.62 | 8.62 |
Thermal Conductivity | 31.16 | 28.16 | 48.67 | 31.09 | 37.39 | 26.21 | 30.16 | 26.91 | 28.71 | 17.24 |
High Temperature Strength Loss | −32.55 | −34.36 | −35.65 | −34.74 | −36.96 | −36.63 | −35.32 | −36.21 | −37.51 | 8.62 |
High Temperature Weight Loss | −21.88 | −23.39 | −24.13 | −23.09 | −24.35 | −21.8 | −24.24 | −21.22 | −22.83 | 8.62 |
Cost | −57.08 | −57.34 | −57.6 | −58.03 | −58.24 | −57.76 | −58.87 | −58.42 | −58.65 | 15.52 |
Carbon dioxide Emission | −47.42 | −47.08 | −46.77 | −47.99 | −47.71 | −48.27 | −48.53 | −49.07 | −48.82 | 12.07 |
Average S/N | −18.77 | −19.45 | −16.36 | −19.25 | −18.54 | −20.32 | −19.49 | −19.74 | −19.35 | 100 |
Block Type | Dry Unit Weight (g/cm3) | Compressive Strength (N/mm2 or MPa) | Thermal Conductivity Calculation Value(λ) (W/(m·K)) | Water Absorption (%) |
---|---|---|---|---|
Horizontal Hole Brick [82] | min 0.50–max. 1.0 | min. 2.0–max. 7.5 | — | max. 15 |
* Horizontal Hole Brick [83] | min. 0.6–max. 0.7 | min. 2.0–max. 2.5 | — | — |
Vertical Hole and Pressed Clay Brick [82] | min. 1.0–max. 2.0 | min. 4.5–max. 22 | — | max. 15 |
* Vertical Hole Brick [82,83] | min. 0.65–max. 1.1 | min. 3–max. 14 | min. 0.18–max. 0.50 | — |
Solid Mixing Brick [82] | — | min. 2.5–max. 5 | — | max. 15 |
Perforated Mixing Brick [82] | max. 1.4 | min. 2.5–max. 5 | — | max. 15 |
Concrete Brick Cement Dosage 250 kg/m3 Brick [82] | max. 1.6 for wall–max. 1.4 for slab | min. 2.0–max. 3.5 | — | max. 20 |
Concrete Brick Cement Dosage 300 kg/m3 Brick [82] | max. 1.6 for wall–max. 1.4 for slab | min. 4.0–max. 7.0 | — | max. 20 |
Concrete Block Cement Dosage 200 kg/m3 Brick [82] | min. 1.6 | min. 5 | — | max. 15 |
Concrete Block Cement Dosage 250 kg/m3 Brick [82] | min. 1.6 | min. 7 | — | max. 15 |
Concrete Block Cement Dosage 300 kg/m3 Brick [82] | min. 1.6 | min. 9 | — | max. 15 |
* Pumice [84] | min. 0.72–max. 1.28 | min. 1.5–max. 5 | min. 0.11–max. 0.50 | — |
* Autoclaved Aerated Concrete [85] | min. 0.30–max. 0.58 | min. 1.5–max. 5 | min. 0.082–max. 0.19 | — |
Type 3-Optimal Sample | 1.3 | 5.96 | 0.27 | 16.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cakmak, A.; Danaci, H.M.; Yildirim, S.T.; Sezgin, İ.V. Taguchi-Based Experimental Optimization of PET and Bottom Ash Cement Composites for Sustainable Cities. Sustainability 2025, 17, 9206. https://doi.org/10.3390/su17209206
Cakmak A, Danaci HM, Yildirim ST, Sezgin İV. Taguchi-Based Experimental Optimization of PET and Bottom Ash Cement Composites for Sustainable Cities. Sustainability. 2025; 17(20):9206. https://doi.org/10.3390/su17209206
Chicago/Turabian StyleCakmak, Arzu, Hacer Mutlu Danaci, Salih Taner Yildirim, and İsmail Veli Sezgin. 2025. "Taguchi-Based Experimental Optimization of PET and Bottom Ash Cement Composites for Sustainable Cities" Sustainability 17, no. 20: 9206. https://doi.org/10.3390/su17209206
APA StyleCakmak, A., Danaci, H. M., Yildirim, S. T., & Sezgin, İ. V. (2025). Taguchi-Based Experimental Optimization of PET and Bottom Ash Cement Composites for Sustainable Cities. Sustainability, 17(20), 9206. https://doi.org/10.3390/su17209206