The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Equipment
2.2. Adsorbents Tested for Removal of Azoles
2.3. Physicochemical Characterization of HOFA
2.4. Azole Adsorption
2.5. LC-MS/MS Analysis
3. Results and Discussion
3.1. Adsorption of Azoles
3.2. Characterization of Heavy Oil Fly Ash
3.3. Adsorption Isotherms and Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GAFFI—Global Action Fund for Fungal Infection. Available online: https://gaffi.org/ (accessed on 20 November 2024).
- Parker, J.E.; Warrilow, A.G.S.; Price, C.L.; Mullins, J.G.L.; Kelly, D.E.; Kelly, S.L. Resistance to Antifungals That Target CYP51. J. Chem. Biol. 2014, 7, 143–161. [Google Scholar] [CrossRef]
- Pathadka, S.; Yan, V.K.C.; Neoh, C.F.; Al-Badriyeh, D.; Kong, D.C.M.; Slavin, M.A.; Cowling, B.J.; Hung, I.F.N.; Wong, I.C.K.; Chan, E.W. Global Consumption Trend of Antifungal Agents in Humans From 2008 to 2018: Data From 65 Middle- and High-Income Countries. Drugs 2022, 82, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Alexandrino, D.A.M.; Mucha, A.P.; Almeida, C.M.R.; Carvalho, M.F. Microbial Degradation of Two Highly Persistent Fluorinated Fungicides—Epoxiconazole and Fludioxonil. J. Hazard. Mater. 2020, 394, 122545. [Google Scholar] [CrossRef] [PubMed]
- García-Valcárcel, A.I.; Tadeo, J.L. Influence of Moisture on the Availability and Persistence of Clotrimazole and Fluconazole in Sludge-amended Soil. Environ. Toxicol. Chem. 2012, 31, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-F.; Ying, G.-G. Occurrence, Fate and Ecological Risk of Five Typical Azole Fungicides as Therapeutic and Personal Care Products in the Environment: A Review. Environ. Int. 2015, 84, 142–153. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, J.; Xiong, S.; Peng, X.; Wei, G.; Liu, L.; Sun, X.; Li, L. Development of Ultrasound-Assisted Extraction of Commonly Used Azole Antifungals in Soils. Anal. Methods 2018, 10, 5265–5272. [Google Scholar] [CrossRef]
- Lindberg, R.H.; Fick, J.; Tysklind, M. Screening of Antimycotics in Swedish Sewage Treatment Plants—Waters and Sludge. Water Res. 2010, 44, 649–657. [Google Scholar] [CrossRef]
- Kahle, M.; Buerge, I.J.; Hauser, A.; Müller, M.D.; Poiger, T. Azole Fungicides: Occurrence and Fate in Wastewater and Surface Waters. Environ. Sci. Technol. 2008, 42, 7193–7200. [Google Scholar] [CrossRef]
- Assress, H.A.; Nyoni, H.; Mamba, B.B.; Msagati, T.A.M. Occurrence and Risk Assessment of Azole Antifungal Drugs in Water and Wastewater. Ecotoxicol. Environ. Saf. 2020, 187, 109868. [Google Scholar] [CrossRef]
- Wick, A.; Fink, G.; Ternes, T.A. Comparison of Electrospray Ionization and Atmospheric Pressure Chemical Ionization for Multi-Residue Analysis of Biocides, UV-Filters and Benzothiazoles in Aqueous Matrices and Activated Sludge by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2010, 1217, 2088–2103. [Google Scholar] [CrossRef]
- Chen, Z.-F.; Ying, G.-G.; Lai, H.-J.; Chen, F.; Su, H.-C.; Liu, Y.-S.; Peng, F.-Q.; Zhao, J.-L. Determination of Biocides in Different Environmental Matrices by Use of Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2012, 404, 3175–3188. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Z.; Wang, C.; Peng, X. Chiral Profiling of Azole Antifungals in Municipal Wastewater and Recipient Rivers of the Pearl River Delta, China. Environ. Sci. Pollut. Res. 2013, 20, 8890–8899. [Google Scholar] [CrossRef]
- Liu, J.; Xia, W.; Wan, Y.; Xu, S. Azole and Strobilurin Fungicides in Source, Treated, and Tap Water from Wuhan, Central China: Assessment of Human Exposure Potential. Sci. Total Environ. 2021, 801, 149733. [Google Scholar] [CrossRef] [PubMed]
- Płatkiewicz, J.; Frankowski, R.; Cieślak, A.; Grześkowiak, T.; Zgoła-Grześkowiak, A. Long-term study of azoles in surface water and treated wastewater. J. Environ. Manag. 2025, 380, 124820. [Google Scholar] [CrossRef] [PubMed]
- Casado, J.; Rodríguez, I.; Ramil, M.; Cela, R. Selective Determination of Antimycotic Drugs in Environmental Water Samples by Mixed-Mode Solid-Phase Extraction and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2014, 1339, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-F.; Ying, G.-G.; Ma, Y.-B.; Lai, H.-J.; Chen, F.; Pan, C.-G. Typical Azole Biocides in Biosolid-Amended Soils and Plants Following Biosolid Applications. J. Agric. Food Chem. 2013, 61, 6198–6206. [Google Scholar] [CrossRef]
- European Union. Commission Implementing Regulation (EU) 2021/726 of 4 May 2021; European Union: Brussels, Belgium, 2021. [Google Scholar]
- European Union. Commission Delegated Regulation (EU) 2022/643 of 10 February 2022; European Union: Brussels, Belgium, 2022. [Google Scholar]
- European Food Safety Authority; European Centre for Disease Prevention and Control; European Chemicals Agency; European Environment Agency; European Medicines Agency; European Commission’s Joint Research Centre (JRC). Impact of the use of azole fungicides, other than as human medicines, on the development of azole-resistant Aspergillus spp. EFSA J. 2025, 23, e9200. [Google Scholar] [CrossRef]
- European Commission: Joint Research Centre; Gomez Cortes, L.; Porcel Rodriguez, E.; Marinov, D.; Sanseverino, I.; Lettieri, T. Selection of Substances for the 5th Watch List Under the Water Framework Directive; Publications Office of the European Union: Luxembourg, 2025; Available online: https://data.europa.eu/doi/10.2760/956398 (accessed on 28 September 2025).
- Cai, W.; Ye, P.; Yang, B.; Shi, Z.; Xiong, Q.; Gao, F.; Liu, Y.; Zhao, J.; Ying, G. Biodegradation of typical azole fungicides in activated sludge under aerobic conditions. J. Environ. Sci. 2020, 103, 288–297. [Google Scholar] [CrossRef]
- Peng, X.; Huang, Q.; Zhang, K.; Yu, Y.; Wang, Z.; Wang, C. Distribution, behavior and fate of azole antifungals during mechanical, biological, and chemical treatments in sewage treatment plants in China. Sci. Total Environ. 2012, 426, 311–317. [Google Scholar] [CrossRef]
- Iancu, V.I.; Chiriac, L.F.; Paun, I.; Pirvu, F.; Dinu, C.; Kim, L.; Pascu, L.F.; Niculescu, M. Occurrence and distribution of azole antifungal agents in eight urban Romanian waste water treatment plants. Sci. Total Environ. 2024, 920, 170898. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef]
- Huber, F.; Berwanger, J.; Polesya, S.; Mankovsky, S.; Ebert, H.; Giessibl, F.J. Chemical Bond Formation Showing a Transition from Physisorption to Chemisorption. Science 2019, 366, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Kecili, R.; Hussain, C.M. Mechanism of Adsorption on Nanomaterials. In Nanomaterials in Chromatography; Elsevier: Amsterdam, The Netherlands, 2018; pp. 89–115. [Google Scholar]
- Ambaye, T.G.; Vaccari, M.; van Hullebusch, E.D.; Amrane, A.; Rtimi, S. Mechanisms and Adsorption Capacities of Biochar for the Removal of Organic and Inorganic Pollutants from Industrial Wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Ali, S.; Zaman, W. Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules 2024, 29, 4317. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Joshiba, G.J.; Femina, C.C.; Varshini, P.; Priyadharshini, S.; Karthick, M.S.A.; Jothirani, R. A Critical Review on Recent Developments in the Low-Cost Adsorption of Dyes from Wastewater. Desalination Water Treat. 2019, 172, 395–416. [Google Scholar] [CrossRef]
- Hoang, A.T.; Le, V.V.; Al-Tawaha, A.R.M.S.; Nguyen, D.N.; Al-Tawaha, A.R.M.S.; Noor, M.M.; Pham, V.V. An Absorption Capacity Investigation of New Absorbent Based on Polyurethane Foams and Rice Straw for Oil Spill Cleanup. Pet. Sci. Technol. 2018, 36, 361–370. [Google Scholar] [CrossRef]
- Gargiulo, V.; Di Natale, F.; Alfe, M. From Agricultural Wastes to Advanced Materials for Environmental Applications: Rice Husk-Derived Adsorbents for Heavy Metals Removal from Wastewater. J. Environ. Chem. Eng. 2024, 12, 113497. [Google Scholar] [CrossRef]
- Goksu, A.; Tanaydin, M.K. Adsorption of Hazardous Crystal Violet Dye by Almond Shells and Determination of Optimum Process Conditions by Taguchi Method. Desalination Water Treat. 2017, 88, 189–199. [Google Scholar] [CrossRef]
- Beleño Cabarcas, M.T.; Torres Ramos, R.; Valdez Salas, B.; González Mendoza, D.; Mendoza Gómez, A.; Curiel Álvarez, M.A.; Castillo Sáenz, J.R. Application of Cotton Stalk as an Adsorbent for Copper(II) Ions in Sustainable Wastewater Treatment. Sustainability 2024, 16, 4291. [Google Scholar] [CrossRef]
- Chong, M.Y.; Tam, Y.J. Bioremediation of Dyes Using Coconut Parts via Adsorption: A Review. SN Appl. Sci. 2020, 2, 187. [Google Scholar] [CrossRef]
- Song, C.; Wu, S.; Cheng, M.; Tao, P.; Shao, M.; Gao, G. Adsorption Studies of Coconut Shell Carbons Prepared by KOH Activation for Removal of Lead(II) From Aqueous Solutions. Sustainability 2013, 6, 86–98. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Fernando, P.S.A.; Ahmed, R.T.; Srinath, R.; Priyadharshini, M.; Vignesh, A.M.; Thanjiappan, A. Effect of Temperature on the Adsorption of Methylene Blue Dye onto Sulfuric Acid-Treated Orange Peel. Chem. Eng. Commun. 2014, 201, 1526–1547. [Google Scholar] [CrossRef]
- Abdullah, R.H.; Oda, A.M.; Omran, A.R.; Mottaleb, A.S.; Mubarakah, T.M. Study of Adsorption Characteristics a Low-Cost Sawdust for the Removal of Direct Blue 85 Dye from Aqueous Solutions. Indones. J. Chem. 2018, 18, 724–732. [Google Scholar] [CrossRef]
- Uddin, M.T.; Rahman, M.A.; Rukanuzzaman, M.; Islam, M.A. A Potential Low Cost Adsorbent for the Removal of Cationic Dyes from Aqueous Solutions. Appl. Water Sci. 2017, 7, 2831–2842. [Google Scholar] [CrossRef]
- Abatan, O.G.; Alaba, P.A.; Oni, B.A.; Akpojevwe, K.; Efeovbokhan, V.; Abnisa, F. Performance of Eggshells Powder as an Adsorbent for Adsorption of Hexavalent Chromium and Cadmium from Wastewater. SN Appl. Sci. 2020, 2, 1996. [Google Scholar] [CrossRef]
- Khoshraftar, Z.; Masoumi, H.; Ghaemi, A. On the Performance of Perlite as a Mineral Adsorbent for Heavy Metals Ions and Dye Removal from Industrial Wastewater: A Review of the State of the Art. Case Stud. Chem. Environ. Eng. 2023, 8, 100385. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Halim, A.A.; Mohammad, A.W. The Removal of Anionic and Cationic Dyes from an Aqueous Solution Using Biomass-Based Activated Carbon. Sci. Rep. 2021, 11, 8623. [Google Scholar] [CrossRef]
- El Maguana, Y.; Elhadiri, N.; Benchanaa, M.; Chikri, R. Activated Carbon for Dyes Removal: Modeling and Understanding the Adsorption Process. J. Chem. 2020, 2020, 2096834. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, Z.; Wei, Y.; Zhou, Y.; Yang, X.; Yang, Y.; Yang, J.; Zhang, J.; Luo, L.; Zhou, Z. Carbon-Based Materials as Adsorbent for Antibiotics Removal: Mechanisms and Influencing Factors. J. Environ. Manag. 2019, 237, 128–138. [Google Scholar] [CrossRef]
- Mourão, P.; Cassavela, C.; Cansado, I.; Castanheiro, J.; Ribeiro, L.; Pagnanelli, F. Adsorption of Bisphenol A by Granular Activated Carbon Prepared with Different Silicates as Binders. Int. J. Environ. Sci. Technol. 2024, 21, 3719–3734. [Google Scholar] [CrossRef]
- Pui, W.K.; Yusoff, R.; Aroua, M.K. A Review on Activated Carbon Adsorption for Volatile Organic Compounds (VOCs). Rev. Chem. Eng. 2019, 35, 649–668. [Google Scholar] [CrossRef]
- Li, J.; Dong, X.; Liu, X.; Xu, X.; Duan, W.; Park, J.; Gao, L.; Lu, Y. Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents. Sustainability 2022, 14, 15579. [Google Scholar] [CrossRef]
- Qiu, L.; Suo, C.; Zhang, N.; Yuan, R.; Chen, H.; Zhou, B. Adsorption of Heavy Metals by Activated Carbon: Effect of Natural Organic Matter and Regeneration Methods of the Adsorbent. Desalination Water Treat. 2022, 252, 148–166. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Lo, I.-T. Theoretical and Experimental Adsorption of Silica Gel and Activated Carbon onto Chlorinated Organic Compounds in Water: A Case Study on the Remediation Assessment of a Contaminated Groundwater Site. Appl. Sci. 2022, 12, 11955. [Google Scholar] [CrossRef]
- Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z. Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite. Energy Procedia 2014, 50, 113–120. [Google Scholar] [CrossRef]
- Caramuscio, P.; De Stefano, L.; Seggiani, M.; Vitolo, S.; Narducci, P. Preparation of Activated Carbons from Heavy-Oil Fly Ashes. Waste Manag. 2003, 23, 345–351. [Google Scholar] [CrossRef]
- Bakkar, A.; El-Sayed Seleman, M.M.; Zaky Ahmed, M.M.; Harb, S.; Goren, S.; Howsawi, E. Recovery of Vanadium and Nickel from Heavy Oil Fly Ash (HOFA): A Critical Review. RSC Adv. 2023, 13, 6327–6345. [Google Scholar] [CrossRef]
- Kårelid, V.; Larsson, G.; Björlenius, B. Pilot-Scale Removal of Pharmaceuticals in Municipal Wastewater: Comparison of Granular and Powdered Activated Carbon Treatment at Three Wastewater Treatment Plants. J. Environ. Manag. 2017, 193, 491–502. [Google Scholar] [CrossRef]
- Crini, G.; Exposito Saintemarie, A.; Rocchi, S.; Fourmentin, M.; Jeanvoine, A.; Millon, L.; Morin-Crini, N. Simultaneous Removal of Five Triazole Fungicides from Synthetic Solutions on Activated Carbons and Cyclodextrin-Based Adsorbents. Heliyon 2017, 3, e00380. [Google Scholar] [CrossRef]
- Niinipuu, M.; Bergknut, M.; Boily, J.-F.; Rosenbaum, E.; Jansson, S. Influence of Water Matrix and Hydrochar Properties on Removal of Organic and Inorganic Contaminants. Environ. Sci. Pollut. Res. 2020, 27, 30333–30341. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H.; Liu, Y.; Wang, X.; Valizadeh, K. The Sorption of Tebuconazole and Linuron from an Aqueous Environment with a Modified Sludge-Based Biochar: Effect, Mechanisms, and Its Persistent Free Radicals Study. J. Chem. 2021, 2021, 2912054. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Lv, D.-Z.; Zhou, D.-D.; Yang, Z.-H.; Wang, M.-Y.; Abdelhai Senosy, I.; Liu, X.; Chen, M.; Zhuang, L.-Y. Enhanced Removal Efficiency towards Azole Fungicides from Environmental Water Using a Metal Organic Framework Functionalized Magnetic Lignosulfonate. Sep. Purif. Technol. 2021, 279, 119785. [Google Scholar] [CrossRef]
- Lu, Z.-H.; Wang, M.-Y.; Zhou, D.-D.; Senosy, I.A.; Yang, Z.-H.; Lv, D.-Z.; Liu, X.; Zhuang, L.-Y.; Chen, M. Integration of Bimetallic Organic Frameworks and Magnetic Biochar for Azole Fungicides Removal. Environ. Adv. 2022, 7, 100152. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and Adsorption Capacities of Low-Cost Sorbents for Wastewater Treatment: A Review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Samanta, A.K.; Basu, G.; Mishra, L. Role of Major Constituents of Coconut Fibres on Absorption of Ionic Dyes. Ind. Crop. Prod. 2018, 117, 20–27. [Google Scholar] [CrossRef]
- Chikri, R.; Elhadiri, N.; Benchanaa, M.; El Maguana, Y. Efficiency of Sawdust as Low-Cost Adsorbent for Dyes Removal. J. Chem. 2020, 2020, 8813420. [Google Scholar] [CrossRef]
- Dai, D.; Fan, M. Preparation of Bio-Composite from Wood Sawdust and Gypsum. Ind. Crop. Prod. 2015, 74, 417–424. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Cymański, M.; Olejarczyk, M.; Urbaniak, W.; Szymańska, J.; Szostak, M.; Paukszta, D. Composites of Polyolefin Thermoplastic Polymers with Mineral Fillers. Patent Application PL 441763 A1, 18 July 2024. [Google Scholar]
- Al-Degs, Y.S.; Ghrir, A.; Khoury, H.; Walker, G.M.; Sunjuk, M.; Al-Ghouti, M.A. Characterization and Utilization of Fly Ash of Heavy Fuel Oil Generated in Power Stations. Fuel Process. Technol. 2014, 123, 41–46. [Google Scholar] [CrossRef]
- Aburizaiza, A. Sequential Leaching of Vanadium from Heavy Fuel Oil Fly Ash Generated from Saudi Arabia Thermal Power Plants. Curr. J. Appl. Sci. Technol. 2019, 32, 1–17. [Google Scholar] [CrossRef]
- Georgiou, A.; Chousidis, N.; Ioannou, I. Self-Compacting Cementitious Composites with Heavy Fuel Fly Ash Replacement. Constr. Mater. 2022, 2, 276–296. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Teng, H. Langmuir and Dubinin-Radushkevich Analyses on Equilibrium Adsorption of Activated Carbon Fabrics in Aqueous Solutions. J. Chem. Technol. Biotechnol. 2000, 75, 1066–1072. [Google Scholar] [CrossRef]
- Nguyen, C.; Do, D.D. The Dubinin–Radushkevich Equation and the Underlying Microscopic Adsorption Description. Carbon 2001, 39, 1327–1336. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application Studies of Activated Carbon Derived from Rice Husks Produced by Chemical-Thermal Process—A Review. Adv. Colloid. Interface Sci. 2011, 163, 39–52. [Google Scholar] [CrossRef]
- Humpola, P.D.; Odetti, H.S.; Fertitta, A.E.; Vicente, J.L. Thermodynamic Analysis of Adsorption Models of Phenol in Liquid Phase on Different Activated Carbons. J. Chil. Chem. Soc. 2013, 58, 1541–1544. [Google Scholar] [CrossRef]
- Saleh, T.A. Kinetic models and thermodynamics of adsorption processes: Classification. Interface Sci. Technol. 2022, 34, 65–97. [Google Scholar] [CrossRef]
- University of Hertfordshire, 2020. PPDB: Pesticide Properties DataBase [WWW Document]. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm (accessed on 6 November 2024).
- Cui, N.; Wang, P.; Xu, N. Sorption Behaviour of Tebuconazole on Microplastics: Kinetics, Isotherms and Influencing Factors. Environ. Technol. 2023, 44, 3937–3948. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Tang, C.; Peng, X. Determination of Commonly Used Azole Antifungals in Various Waters and Sewage Sludge Using Ultra-High Performance Liquid Chromatography– Tandem Mass Spectrometry. J. Chromatogr. A 2010, 1217, 3481–3488. [Google Scholar] [CrossRef]







| Isotherm | TEB | KET | ECO | MIC | FLU | CLI | CLO | EPO | FLUTR | TIAB | IMAZ |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Langmuir | 0.9149 | 0.1061 | 0.8319 | 0.9179 | 0.9837 | 0.9528 | 0.9897 | 0.9534 | 0.9600 | 0.9181 | 0.9379 |
| Freudlich | 0.9672 | 0.2188 | 0.8952 | 0.9349 | 0.9934 | 0.9886 | 0.9854 | 0.9731 | 0.9983 | 0.9371 | 0.9904 |
| Temkin | 0.8644 | 0.3153 | 0.9312 | 0.9106 | 0.9002 | 0.8916 | 0.8307 | 0.8512 | 0.8285 | 0.9140 | 0.8729 |
| D-R | 0.9725 | 0.2189 | 0.8978 | 0.9352 | 0.9975 | 0.9947 | 0.9852 | 0.9765 | 0.9948 | 0.9397 | 0.9958 |
| Azoles | Slope | Intercept | qm [mg g−1] | β [mol2 K−2 J−2] | E [kJ mol−1] | R2 |
|---|---|---|---|---|---|---|
| TEB | −2.30 × 10−4 | 1.51 | 4.53 | 2.30 × 10−4 | 46.6 | 0.9725 |
| KET | −2.62 × 10−4 | 3.29 | 26.9 | 2.62 × 10−4 | 43.7 | 0.2189 |
| ECO | −2.23 × 10−4 | 2.13 | 8.40 | 2.23 × 10−4 | 47.4 | 0.8978 |
| MIC | −4.30 × 10−4 | 6.28 | 533 | 4.30 × 10−4 | 34.1 | 0.9352 |
| FLU | −2.49 × 10−4 | −0.76 | 0.47 | 2.49 × 10−4 | 44.8 | 0.9975 |
| CLI | −1.89 × 10−4 | 0.12 | 1.13 | 1.89 × 10−4 | 51.4 | 0.9947 |
| CLO | −2.18 × 10−4 | 0.13 | 1.14 | 2.18 × 10−4 | 47.9 | 0.9852 |
| EPO | −2.34 × 10−4 | 1.23 | 3.43 | 2.34 × 10−4 | 46.2 | 0.9765 |
| FLUTR | −2.11 × 10−4 | −0.20 | 0.82 | 2.11 × 10−4 | 48.7 | 0.9948 |
| TIAB | −4.09 × 10−4 | 3.93 | 50.9 | 4.09 × 10−4 | 35.0 | 0.9397 |
| IMAZ | −2.51 × 10−4 | 0.07 | 1.07 | 2.51 × 10−4 | 44.7 | 0.9958 |
| Azoles | Slope | Intercept | qe [mg g−1] | qe2 | K2 | R2 |
|---|---|---|---|---|---|---|
| TEB | 250 | 794 | 1.26 × 10−3 | 1.59 × 10−6 | 2523 | 1.0000 |
| KET | 250 | 0.30 | 3.32 | 11.03 | 0.0004 | 1.0000 |
| ECO | 250 | 21.8 | 4.58 × 10−2 | 2.10 × 10−3 | 1.91 | 1.0000 |
| MIC | 250 | 535 | 1.87 × 10−3 | 3.50 × 10−6 | 1142 | 1.0000 |
| FLU | 250 | 373 | 2.68 × 10−3 | 7.17 × 10−6 | 557 | 1.0000 |
| CLI | 250 | 125 | 8.03 × 10−3 | 6.44 × 10−5 | 62.0 | 1.0000 |
| CLO | 249 | 3164 | 3.16 × 10−4 | 9.99 × 10−8 | 40,266 | 0.9997 |
| EPO | 250 | 23.6 | 4.23 × 10−2 | 1.79 × 10−3 | 2.23 | 1.0000 |
| FLUTR | 259 | 2542 | 3.93 × 10−4 | 1.55 × 10−7 | 24,993 | 0.9998 |
| TIAB | 250 | −11.1 | −8.98 × 10−2 | 8.06 × 10−3 | 0.50 | 1.0000 |
| IMAZ | 254 | 656 | 1.52 × 10−3 | 2.32 × 10−6 | 1693 | 1.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Płatkiewicz, J.; Frankowski, R.; Grześkowiak, T.; Urbaniak, W.; Zgoła-Grześkowiak, A. The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials. Processes 2025, 13, 3197. https://doi.org/10.3390/pr13103197
Płatkiewicz J, Frankowski R, Grześkowiak T, Urbaniak W, Zgoła-Grześkowiak A. The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials. Processes. 2025; 13(10):3197. https://doi.org/10.3390/pr13103197
Chicago/Turabian StylePłatkiewicz, Julia, Robert Frankowski, Tomasz Grześkowiak, Włodzimierz Urbaniak, and Agnieszka Zgoła-Grześkowiak. 2025. "The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials" Processes 13, no. 10: 3197. https://doi.org/10.3390/pr13103197
APA StylePłatkiewicz, J., Frankowski, R., Grześkowiak, T., Urbaniak, W., & Zgoła-Grześkowiak, A. (2025). The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials. Processes, 13(10), 3197. https://doi.org/10.3390/pr13103197

