Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = pulsed electron deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1488 KB  
Article
Gate Metal Defect Screening at Wafer-Level for Improvement of HTGB in Power GaN HEMT
by Yu-Ting Chuang and Niall Tumilty
Micromachines 2025, 16(11), 1260; https://doi.org/10.3390/mi16111260 - 6 Nov 2025
Abstract
The increasing market demand for high-power and high-frequency applications necessitates the development of highly reliable Gallium Nitride (GaN) High-Electron-Mobility Transistors (HEMTs). While GaN offers superior performance and efficiency over traditional silicon, gate-related defects pose a significant reliability challenge, often leading to premature device [...] Read more.
The increasing market demand for high-power and high-frequency applications necessitates the development of highly reliable Gallium Nitride (GaN) High-Electron-Mobility Transistors (HEMTs). While GaN offers superior performance and efficiency over traditional silicon, gate-related defects pose a significant reliability challenge, often leading to premature device failure under stress. Traditional High-Temperature Gate Bias (HTGB) testing is effective but time-consuming and costly, particularly when defects are only identified post-packaging. This study focuses on developing an effective wafer-level screening methodology to mitigate the financial burden and reputational risk associated with late-stage defect discovery. Failure analysis of an HTGB premature failure revealed a gate metal deposition defect characterized by identical elemental composition to the bulk metal, suggesting a small-volume structural anomaly. Crucially, a comparative analysis showed that Forward Gate Current (IGON) is an insensitive screening metric due to high inherent gate leakage through the passivation layer. In contrast, the Reverse Gate Current (IGOFF) exhibited sensitivity, particularly under the tensile stress induced by package molding, which is attributed to the piezoelectric effect altering the depletion region width beneath the p-GaN gate. Based on this observation, a multi-pulse IDSS test was developed as a wafer-level screen. This method successfully amplified the subtle electrical field perturbations caused by the gate defect. After screening 231 dies using the new methodology, zero failures were recorded after 1000 h of HTGB stress, a significant improvement over the initial failure rate of 0.43% (1 out of 231). This work demonstrates that early, sensitive wafer-level screening of gate defects is indispensable for optimizing manufacturing yield and enhancing long-term device reliability. Full article
Show Figures

Figure 1

13 pages, 1686 KB  
Article
The Influence of Ultrashort Laser Pulse Duration on Shock Wave Generation in Water Under Tight Focusing Conditions
by Nikita Rishkov, Nika Asharchuk, Vladimir Yusupov and Evgenii Mareev
Photonics 2025, 12(11), 1067; https://doi.org/10.3390/photonics12111067 - 28 Oct 2025
Viewed by 272
Abstract
The control of mechanical effects, such as shock waves, induced by ultrashort laser pulses in water is crucial for applications in biomedicine and material processing. However, optimizing these effects requires a detailed understanding of how laser parameters, particularly pulse duration, influence the underlying [...] Read more.
The control of mechanical effects, such as shock waves, induced by ultrashort laser pulses in water is crucial for applications in biomedicine and material processing. However, optimizing these effects requires a detailed understanding of how laser parameters, particularly pulse duration, influence the underlying energy deposition mechanisms. This study systematically investigates the dependence of shock wave amplitude on fluence (up to 10 J/cm2) and pulse duration (200 fs to 10 ps) of near-infrared laser pulses under tight focusing conditions (Numerical aperture NA = 0.42), using a combined experimental and numerical approach based on the dynamical rate equation model. Our key finding is that the shock wave amplitude is governed by the total kinetic energy of the electrons in the laser-induced plasma, leading to a distinct maximum at approximately 5 ps (confidence interval: 4.5–5.5 ps) and saturation at fluences ~7 J/cm2. This optimum arises from a balance between the increasing effectiveness of avalanche ionization for longer pulses and the competing effects of electron recombination and reduced photoionization efficiency. Consequently, these results identify a practical parameter window—pulse durations of 4–6 ps at moderate fluences—for optimizing laser-induced mechanical effects in applications such as laser surgery in aqueous media. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

24 pages, 38190 KB  
Article
Effect of Electrically Assisted Heat Treatment on Crack Arrest and Healing in Laser-Cladded Ni–Based Coatings
by Xuxiang Song, Xiao Li, Wenping Wang and Zhicheng Zhao
J. Manuf. Mater. Process. 2025, 9(11), 348; https://doi.org/10.3390/jmmp9110348 - 23 Oct 2025
Viewed by 434
Abstract
Cracks in laser-cladded coatings represent a critical challenge that severely limits their industrial deployment. In this study, high-frequency pulsed direct current-assisted electrically assisted heat treatment (EAHT) was applied to repair cracks in laser-cladded Ni60/WC coatings deposited on 45# medium carbon steel. The influence [...] Read more.
Cracks in laser-cladded coatings represent a critical challenge that severely limits their industrial deployment. In this study, high-frequency pulsed direct current-assisted electrically assisted heat treatment (EAHT) was applied to repair cracks in laser-cladded Ni60/WC coatings deposited on 45# medium carbon steel. The influence of current density and treatment duration on crack arrest and healing behavior was systematically investigated. Dye penetrant testing and scanning electron microscopy (SEM) were employed to characterize the morphology and evolution of cracks before and after EAHT, while hardness, fracture toughness, and wear resistance tests were conducted to evaluate the mechanical properties. The results revealed that the crack repair process proceeds through three distinct stages: internal filling, nucleation and growth of healing points, and complete crack closure. The combined effects of Joule heating and current crowding induced by EAHT significantly facilitated progressive crack healing from the bottom upward. Optimal crack arrest and healing were achieved at a current density of 6.25 A/mm2, resulting in a maximum fracture toughness of 10.74 MPa·m1/2 and a transition of the wear mechanism from spalling to abrasive wear. This study demonstrates that EAHT promotes selective crack-tip heating and microstructural regulation through thermo-electro-mechanical coupling, thereby markedly enhancing the comprehensive performance of Ni-based WC coatings. Full article
Show Figures

Figure 1

20 pages, 4461 KB  
Article
Mechanosynthesis of SbSI Targets for Pulsed Electron Deposition of Ferro-Photovoltaic Thin Films
by Michele Casappa, Elena Del Canale, Davide Delmonte, Francesco Pattini, Giulia Spaggiari, Anna Moliterni, Cinzia Giannini, Andrea Aroldi, Edgardo Ademar Saucedo Silva, Alejandro Navarro, Davide Calestani, Giovanna Trevisi, Marzio Rancan, Lidia Armelao, Matteo Bronzoni, Edmondo Gilioli and Stefano Rampino
Coatings 2025, 15(10), 1232; https://doi.org/10.3390/coatings15101232 - 21 Oct 2025
Viewed by 390
Abstract
A solvent-free, solid-state mechanochemical method was developed to synthesize the chalcohalide compound SbSI at room temperature. Dry high-energy planetary ball milling of elemental antimony, sulfur, and iodine produced a pure, stoichiometric polycrystalline SbSI powder with an orthorhombic structure. This powder was then sintered [...] Read more.
A solvent-free, solid-state mechanochemical method was developed to synthesize the chalcohalide compound SbSI at room temperature. Dry high-energy planetary ball milling of elemental antimony, sulfur, and iodine produced a pure, stoichiometric polycrystalline SbSI powder with an orthorhombic structure. This powder was then sintered under mild thermal conditions to create dense targets. Amorphous SbSI thin films were subsequently deposited from these targets at room temperature using Pulsed Electron Deposition. The films maintained the correct stoichiometry and exhibited an optical bandgap of 1.89 eV. Post-deposition annealing at 90 °C in air successfully induced crystallization, demonstrating a viable, low-temperature, and eco-friendly route to produce polycrystalline SbSI thin films. This scalable approach has promising potential for optoelectronic and energy-harvesting applications. Full article
Show Figures

Figure 1

17 pages, 3861 KB  
Article
Substrate Temperature-Induced Crystalline Phase Evolution and Surface Morphology in Zirconium Thin Films Deposited by Pulsed Laser Ablation
by Berdimyrat Annamuradov, Zikrulloh Khuzhakulov, Mikhail Khenner, Jasminka Terzic, Danielle Gurgew and Ali Oguz Er
Coatings 2025, 15(10), 1198; https://doi.org/10.3390/coatings15101198 - 11 Oct 2025
Viewed by 480
Abstract
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited [...] Read more.
Zirconium (Zr) thin films were deposited on silicon (Si) substrates via pulsed laser deposition (PLD) using a 248 nm excimer laser. The effects of substrate temperature on film morphology and crystallinity were systematically investigated. X-ray diffraction (XRD) revealed that the Zr(100) plane exhibited the strongest orientation at 400 °C while Zr (002) was maximum at 500 °C. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses demonstrated an increase in surface roughness with temperature, with the smoothest surface observed at lower temperatures and significant island formation at 500 °C due to the transition to 3D growth. At 500 °C, interdiffusion effects led to the formation of zirconium silicide at the Zr/Si interface. To further interpret the experimental findings, computational modeling was employed to analyze the transition from 2D layer-by-layer growth to 3D island formation at elevated temperatures. Using a multi-parameter kinetics-free model based on free energy minimization, the critical film thickness for this transition was determined to be ~1–2 nm, aligning well with experimental observations. A separate kinetic model of island nucleation and growth predicts that this shift is driven by the kinetics of adatom surface diffusion. Additionally, the kinetic simulations revealed that, at 400 °C, adatom diffusivity optimally balances crystallization and surface energy minimization, yielding the highest film quality. At 500 °C, the rapid increase in diffusivity leads to the proliferation of 3D islands, consistent with the roughness trends observed in SEM and AFM data. These findings underscore the critical role of deposition parameters in tailoring Zr thin films for applications in advanced coatings and electronic devices. Full article
(This article belongs to the Collection Collection of Papers on Thin Film Deposition)
Show Figures

Figure 1

26 pages, 11868 KB  
Article
Correlating Structural Properties with Catalytic Stability in Nanocrystalline La(Sr)CoO3 Thin Films Grown by Pulsed Electron Deposition (PED)
by Lukasz Cieniek, Dominik Grochala, Tomasz Moskalewicz, Agnieszka Kopia and Kazimierz Kowalski
Materials 2025, 18(19), 4550; https://doi.org/10.3390/ma18194550 - 30 Sep 2025
Viewed by 444
Abstract
This study investigates the structural, morphological, and gas-sensing properties of pure and strontium-doped lanthanum cobaltite (La1−xSrxCoO3) perovskite thin films obtained by Pulsed Electron Deposition (PED). This sustainable ablative technique successfully produced high-quality, dense, nanocrystalline films on Si [...] Read more.
This study investigates the structural, morphological, and gas-sensing properties of pure and strontium-doped lanthanum cobaltite (La1−xSrxCoO3) perovskite thin films obtained by Pulsed Electron Deposition (PED). This sustainable ablative technique successfully produced high-quality, dense, nanocrystalline films on Si and MgO substrates, demonstrating excellent stoichiometric transfer from the source targets. A comprehensive analysis using XRD, SEM, TEM, AFM, and XPS was conducted to characterize the films. The results show that Sr-doping significantly refines the microstructure, leading to smaller crystallites and a more uniform surface topography. Gas sensing measurements, performed in a temperature range of 100–450 °C, revealed that all films exhibit a characteristic p-type semiconductor response to nitrogen dioxide (NO2). The La0.8Sr0.2CoO3 composition, in particular, demonstrated the most promising performance, with enhanced sensitivity and excellent operational stability at temperatures up to 350 °C. These findings validate that PED is a reliable and precise method for fabricating complex oxide films and confirm that Sr-doped LaCoO3 is a highly promising material for developing high-temperature NO2 gas sensors. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

21 pages, 5385 KB  
Article
Research on the Mechanism and Process of Water-Jet-Guided Laser Annular Cutting for Hole Making in Inconel 718
by Qian Liu, Guoyong Zhao, Yugang Zhao, Shuo Yu and Guiguan Zhang
Micromachines 2025, 16(10), 1090; https://doi.org/10.3390/mi16101090 - 26 Sep 2025
Viewed by 638
Abstract
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable [...] Read more.
Nickel-based superalloys, serving as the preferred materials for hot-end structural components in aerospace engines, pose considerable challenges for the fabrication of high-quality gas film holes on their surfaces due to their inherent high hardness and strength. Water-jet-guided laser processing technology has exhibited notable potential in the realm of gas film hole fabrication; however, its engineering application is hindered by the lack of synergy between processing quality and efficiency. To tackle this issue, this study achieves efficient coupling between a 1064 nm high-power laser and a stable water jet, leveraging a multi-focal water–light coupling mode. Furthermore, an “inside-to-outside” multi-pass ring-cutting drilling strategy is introduced, and the controlled variable method is employed to investigate the influence of laser single-pulse energy, scanning speed, and pulse frequency on the surface morphology and geometric accuracy of micro-holes. Building upon this foundation, micro-holes fabricated using optimized process parameters are analyzed and validated using scanning electron microscopy and energy-dispersive spectroscopy. The findings reveal that single-pulse energy is a pivotal parameter for achieving micro-hole penetration. By moderately increasing the scanning speed and pulse frequency, melt deposition and thermal accumulation effects can be effectively mitigated, thereby enhancing the surface morphology and machining precision of micro-holes. Specifically, when the single-pulse energy is set at 0.8 mJ, the scanning speed at 25 mm/s, and the pulse frequency at 300 kHz, high-quality micro-holes with an entrance diameter of 820 μm and a taper angle of 0.32° can be fabricated in approximately 60 s. The micro-morphology and element distribution of the micro-holes affirm that water-jet-guided laser processing exhibits exceptional performance in minimizing recast layers, narrowing the heat-affected zone, and preserving the smoothness of the hole wall. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
Show Figures

Figure 1

14 pages, 2448 KB  
Article
A Fenclorim Molecularly Imprinted Electrochemical Sensor Based on a Polycatechol/Ti3C2Tx Composite
by Xiu Liu, Xing Tang, Hongjun Chen, Xiang Wu, Zitong Fu, Mingyu Peng, Chenzhong Jin and Jun Guo
Sensors 2025, 25(18), 5838; https://doi.org/10.3390/s25185838 - 18 Sep 2025
Viewed by 406
Abstract
Given the significance of safeners and their potential to emit harmful substances into the environment, it is essential to develop suitable analytical methods for detecting these compounds. This study presents a molecularly imprinted electrochemical sensor designed for the sensitive and rapid detection of [...] Read more.
Given the significance of safeners and their potential to emit harmful substances into the environment, it is essential to develop suitable analytical methods for detecting these compounds. This study presents a molecularly imprinted electrochemical sensor designed for the sensitive and rapid detection of fenclorim (FM), a type of safener. Titanium carbide nanomaterials (Ti3C2Tx) were electrochemically deposited onto the glassy carbon electrode (GCE) to enhance electron transfer. Subsequently, molecularly imprinted polymers were fabricated through the electropolymerization of catechol in the presence of FM. The electrochemical behavior of each modified electrode was investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized experimental conditions, the MIP/Ti3C2Tx/GCE sensor demonstrated a linear relationship with FM concentration ranging from 5 to 300 nM, with a limit of detection (LOD) of 1.56 nM (S/N = 3). Additionally, the sensor demonstrated excellent selectivity, stability, and reproducibility for FM detection and was successfully utilized for quantifying FM in real water samples. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

13 pages, 1342 KB  
Article
Electrical Resistivity Control for Non-Volatile-Memory Electrodes Induced by Femtosecond Laser Irradiation of LaNiO3 Thin Films Produced by Pulsed Laser Deposition
by Leonélio Cichetto, Carlos Doñate-Buendía, María Teresa Flores-Arias, Maria Aymerich, João Paulo de Campos da Costa, Eloísa Cordoncillo-Cordoncillo, João Paulo Pereira do Carmo, Oswaldo Hideo Ando, Héctor Beltrán Mir, Juan Manuel Andrés Bort, Elson Longo da Silva and Adenilson José Chiquito
Inorganics 2025, 13(9), 297; https://doi.org/10.3390/inorganics13090297 - 2 Sep 2025
Viewed by 776
Abstract
In this work, we investigated how the electrical resistivity of LaNiO3 thin films deposited on SrLaAlO4 (100), LaAlO3 (100), and MgO (100) single-crystal substrates by the pulsed laser deposition (PLD) technique can be controlled [...] Read more.
In this work, we investigated how the electrical resistivity of LaNiO3 thin films deposited on SrLaAlO4 (100), LaAlO3 (100), and MgO (100) single-crystal substrates by the pulsed laser deposition (PLD) technique can be controlled by femtosecond laser irradiation. Thin films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM-EDS), and temperature-dependent electrical resistivity measurements. The XRD data indicated good crystallinity and preferential crystallographic orientation. The electronic transport parameters of irradiated samples showed a remarkable decrease in the electrical resistivity for all studied films, which ranged from 38% to 52% depending on the temperature region considered and the type of substrate used. The results indicate a new and innovative route to decrease the electrical resistivity values in a precise, controlled, and localized manner, which could not be performed directly by well-known growth processes, allowing for direct application in non-volatile-memory electrodes. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

32 pages, 1741 KB  
Review
Advances and Prospects of Nanomaterial Coatings in Optical Fiber Sensors
by Wenwen Qu, Yanxia Chen, Shuangqiang Liu and Le Luo
Coatings 2025, 15(9), 1008; https://doi.org/10.3390/coatings15091008 - 1 Sep 2025
Cited by 1 | Viewed by 1643
Abstract
This review summarizes the recent advances in the application of nanomaterial coatings in optical fiber sensors, with a particular focus on deposition techniques and the research progress over the past five years in humidity sensing, gas detection, and biosensing. Benefiting from the high [...] Read more.
This review summarizes the recent advances in the application of nanomaterial coatings in optical fiber sensors, with a particular focus on deposition techniques and the research progress over the past five years in humidity sensing, gas detection, and biosensing. Benefiting from the high specific surface area, abundant surface active sites, and quantum confinement effects of nanomaterials, advanced thin-film fabrication techniques—including spin coating, dip coating, self-assembly, physical/chemical vapor deposition, atomic layer deposition (ALD), electrochemical deposition (ECD), electron beam evaporation (E-beam evaporation), pulsed laser deposition (PLD) and electrospinning, and other techniques—have been widely employed in the construction of functional layers for optical fiber sensors, significantly enhancing their sensitivity, response speed, and environmental stability. Studies have demonstrated that nanocoatings can achieve high-sensitivity detection of targets such as humidity, volatile organic compounds (VOCs), and biomarkers by enhancing evanescent field coupling and enabling optical effects such as surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR), and lossy mode resonance (LMR). This paper first analyzes the principles and optimization strategies of nanocoating fabrication techniques, then explores the mechanisms by which nanomaterials enhance sensor performance across various application domains, and finally presents future research directions in material performance optimization, cost control, and the development of novel nanocomposites. These insights provide a theoretical foundation for the functional design and practical implementation of nanomaterial-based optical fiber sensors. Full article
(This article belongs to the Special Issue Advanced Optical Film Coating)
Show Figures

Figure 1

17 pages, 2890 KB  
Article
Boosting the Photocatalytic Behavior of PbS/TiO2 Nanocomposites via the Pulsed Laser Deposition of PbS Nanoparticles onto TiO2 Nanotube Arrays Under Various Helium Background Pressures
by Ameni Rebhi, Karim Choubani, Anouar Hajjaji, Mohamed Ben Rabha, Mohammed A. Almeshaal, Brahim Bessais, Mounir Gaidi and My Ali El Khakani
Crystals 2025, 15(9), 783; https://doi.org/10.3390/cryst15090783 - 31 Aug 2025
Viewed by 794
Abstract
In this study, highly ordered titanium dioxide nanotubes (TiO2-NTs) have been synthesized using the electrochemical anodization procedure. Subsequently, the TiO2-NTs were successfully decorated with PbS nanoparticles (NPs) using the pulsed KrF-laser deposition (PLD) technique under vacuum and under different [...] Read more.
In this study, highly ordered titanium dioxide nanotubes (TiO2-NTs) have been synthesized using the electrochemical anodization procedure. Subsequently, the TiO2-NTs were successfully decorated with PbS nanoparticles (NPs) using the pulsed KrF-laser deposition (PLD) technique under vacuum and under different Helium background pressures (PHe) ranging from 50 to 400 mTorr. The prepared samples (PbS-NPs/TiO2-NTs) were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and UV–Vis and photoluminescence spectroscopies. XRD analyses confirmed that all TiO2-NTs crystallized in the anatase phase, while the PbS-NPs crystallized in the cfc lattice. The average crystallite size of the (200) crystallites was found to increase from 21 to 33 nm when the pressure of helium (PHe) was raised from vacuum to 200 mTorr and then dropped back to ~22 nm at PHe = 400 mTorr. Interestingly, the photoluminescence intensity of the PbS-NPs/TiO2-NTs samples was found to start diminishing for PHe ≥ 200 mTorr, indicating a lesser recombination rate of the photogenerated carriers, which also corresponded to a better photocatalytic degradation of the Amido Black (AB) dye. Indeed, the PbS-NPs/TiO2-NTs samples processed at PHe = 200 and 300 mTorr were found to exhibit the highest photocatalytic degradation efficiency towards AB with a kinetic constant 130% higher than that of bare TiO2-NTs. The PbS-NPs/TiO2-NTs photocatalyst samples processed under PHe = 200 or 300 mTorr were shown to remove 98% of AB within 180 min under UV light illumination. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysts Materials)
Show Figures

Figure 1

11 pages, 3094 KB  
Article
Lithium Niobate Thin Film on Silicon Fabricated by Pulsed Laser Deposition
by Shaoqing Song, Tianqi Xiao, Jiashun Song, Hongde Liu, Dahuai Zheng, Yongfa Kong and Jingjun Xu
Crystals 2025, 15(9), 756; https://doi.org/10.3390/cryst15090756 - 27 Aug 2025
Viewed by 1114
Abstract
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication [...] Read more.
Lithium niobate (LiNbO3, LN) is a multifunctional material with broad applicability in photonic and electronic devices. Recent advances in lithium niobate on insulator (LNOI) technology have significantly enhanced the integration density and miniaturization potential of LN-based platforms. Among the various fabrication techniques available, pulsed laser deposition (PLD) presents a cost-effective and versatile alternative to crystalline ion slicing (CIS), particularly advantageous for achieving high doping concentrations. However, a persistent challenge in PLD-grown lithium niobate film is cracking, primarily induced by the substantial thermal stress resulting from the mismatch in thermal expansion coefficients between LN and the substrate. In this study, we implemented a series of process modifications to address the cracking issue and successfully achieved crack-free LN films by introducing a lithium-deficient phase. This approach enabled the successful fabrication of highly Fe3+-doped LN films with a high electrical conductivity of 9.95 × 10−5 S/m while also exhibiting characteristic polarization switching behavior. These results demonstrate that PLD enables the fabrication of highly doped, structurally robust LN films and holds significant potential for the development of advanced electronic and optoelectronic devices. Full article
Show Figures

Figure 1

18 pages, 8946 KB  
Article
Dissimilar Resistance Spot Weld of Ni-Coated Aluminum to Ni-Coated Magnesium Using Cold Spray Coating Technology
by Mazin Oheil, Dulal Saha, Hamid Jahed and Adrian Gerlich
Metals 2025, 15(9), 940; https://doi.org/10.3390/met15090940 - 24 Aug 2025
Viewed by 880
Abstract
Direct fusion welding of aluminum (Al) to magnesium (Mg) results in the formation of brittle intermetallic compounds (IMCs) that significantly restrict the application of these joints in structural applications. In this study, cold spray, a promising solid-state coating deposition technology, was employed to [...] Read more.
Direct fusion welding of aluminum (Al) to magnesium (Mg) results in the formation of brittle intermetallic compounds (IMCs) that significantly restrict the application of these joints in structural applications. In this study, cold spray, a promising solid-state coating deposition technology, was employed to introduce a nickel (Ni) interlayer to facilitate joining of Al to Mg sheets by means of resistance spot welding (RSW). The ability of cold spraying to deposit metallic powder on the substrate without melting proves beneficial in mitigating the formation of the Al-Mg IMCs. The Ni-coated coupons were subsequently welded via resistance spot welding at optimized parameters: 27 kA for 15 cycles in two pulses with a 5-cycle inter-pulse delay. Scanning electron microscopy confirmed metallurgical bonding between the Al, Mg, and Ni coatings in the fusion zone. It is shown that the bonding between the three elements inhibits the formation of deleterious IMCs. Tensile shear testing showed joint strength exceeding 4.2 kN, highlighting the potential of the proposed cold spray RSW approach for dissimilar joining in structural applications. Full article
Show Figures

Figure 1

9 pages, 807 KB  
Communication
Optimization of the Saturable Absorption of 2D Bi2Te3 Layers
by Nayla Jimenez de la Vega, Arjun Karimbana Kandy, Fabien Lemarchand, Andrea Campos, Martiane Cabié, Carine Perrin-Pellegrino, Julien Lumeau, Jean-Yves Natoli and Konstantinos Iliopoulos
Photonics 2025, 12(8), 822; https://doi.org/10.3390/photonics12080822 - 19 Aug 2025
Viewed by 1180
Abstract
The saturable absorption of 2D Bi2Te3 layers is studied by using the Z-scan technique employing infrared 400 fs laser pulses. Optimization of the nonlinearities has been carried out by measuring the third-order nonlinear susceptibilities as a function of the film [...] Read more.
The saturable absorption of 2D Bi2Te3 layers is studied by using the Z-scan technique employing infrared 400 fs laser pulses. Optimization of the nonlinearities has been carried out by measuring the third-order nonlinear susceptibilities as a function of the film thickness. A thorough optimization of the thin film annealing conditions has been performed and is presented. For each thickness, the annealing parameters have been separately investigated. Scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometry studies have also been performed on the as-deposited and crystallized 2D layers. Full article
Show Figures

Figure 1

21 pages, 9876 KB  
Article
Laser-Induced Ablation of Hemp Seed-Derived Biomaterials for Transdermal Drug Delivery
by Alexandru Cocean, Georgiana Cocean, Silvia Garofalide, Nicanor Cimpoesu, Daniel Alexa, Iuliana Cocean and Silviu Gurlui
Int. J. Mol. Sci. 2025, 26(16), 7852; https://doi.org/10.3390/ijms26167852 - 14 Aug 2025
Viewed by 719
Abstract
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct [...] Read more.
Numerous studies on specific cannabis compounds (cannabinoids and phenolic acids) have demonstrated their therapeutic potential, with their administration methods remaining a key research focus. Transdermal drug delivery (TDD) systems are gaining attention due to their advantages, such as painless administration, controlled release, direct absorption into the bloodstream, and its ability to bypass hepatic metabolism. The thin films obtained via pulsed laser deposition consist of micro- and nanoparticles capable of migrating through skin pores upon contact. This study investigates the interaction of phenolic compounds in hemp seeds with pulsed laser beams. The main goal is to achieve the ablation and deposition of these compounds as thin films suitable for TDD applications. The other key objective is optimizing laser energy to enhance the industrial feasibility of this method. Thin layers were deposited on glass and hemp fabric using dual pulsed laser (DPL) ablation on a compressed hemp seed target held in a stainless steel ring. The target was irradiated for 30 min with two synchronized pulsed laser beams, each with parameters of 30 mJ, 532 nm, pulse width of 10 ns, and a repetition rate of 10 Hz. Each beam had an angle of incidence with the target surface of 45°, and the angle between the two beams was also 45°. To improve laser absorption, two approaches were used: (1) HS-DPL/glass and HS-DPL/hemp fabric, in which a portion of the stainless steel ring was included in the irradiated area, and (2) HST-DPL/glass and HST-DPL/hemp fabric—hemp seeds were mixed with turmeric powder, which is known to improve laser interaction and biocompatibility. The FTIR and Micro-FTIR spectroscopy (ATR) performed on thin films compared to the target material confirmed the presence of hemp-derived phenolic compounds, including tetrahydrocannabinol (THC), cannabidiol (CBD), ferulic acid, and coumaric acid, along with other functional groups such as amides. The ATR spectra have been validated against Gaussian 6 numerical simulations. Scanning electron microscopy (SEM) and substance transfer tests revealed the microgranular structure of thin films. Through the analyzes carried out, the following were highlighted: spherical structures (0.3–2 μm) for HS-DPL/glass, HS-DPL/hemp fabric, HST-DPL/glass, and HST-DPL/hemp fabric; larger spherical structures (8–13 μm) for HS-DPL/glass and HST-DPL/glass; angular, amorphous-like structures (~3.5 μm) for HS-DPL/glass; and crystalline-like structures (0.6–1.3 μm) for HST-DPL/glass. Microparticle transfer from thin films on the hemp fabric to the filter paper at a human body temperature (37 °C) confirmed their suitability for TDD applications, aligning with the “whole plant medicine” or “entourage effect” concept. Granular, composite, thin films were successfully developed, capable of releasing microparticles upon contact with a surface whose temperature is 37 °C, specific to the human body. Each of the microparticles in the thin films obtained with the DPL technique contains phenolic compounds (cannabinoids and phenolic acids) comparable to those in hemp seeds, effectively acting as “microseeds.” The obtained films are viable for TDD applications, while the DPL technique ensures industrial scalability due to its low laser energy requirements. Full article
Show Figures

Figure 1

Back to TopTop