Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = pulsed electromagnetic field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1227 KiB  
Article
PAPIMI Short Effect on Pain Perception and Heart Rate Variability in Chronic Musculoskeletal Pain: A Pilot Study
by Antonio Viti, Manuel Amore, Susanna Garfagnini, Diego Minciacchi and Riccardo Bravi
Healthcare 2025, 13(16), 2006; https://doi.org/10.3390/healthcare13162006 - 15 Aug 2025
Abstract
Background: Chronic musculoskeletal pain (CMP) is a multidimensional condition involving both peripheral and central mechanisms, with increasing evidence supporting an interplay between subjective pain perception and autonomic nervous system (ANS) function. However, few studies have explored whether a single non-invasive intervention can [...] Read more.
Background: Chronic musculoskeletal pain (CMP) is a multidimensional condition involving both peripheral and central mechanisms, with increasing evidence supporting an interplay between subjective pain perception and autonomic nervous system (ANS) function. However, few studies have explored whether a single non-invasive intervention can concurrently modulate both domains. Objectives: To evaluate the short-term effects of a single session of Pulsed Electromagnetic Field (PEMF) therapy—administered via the PAP Ion Magnetic Induction (PAPIMI™) device—on subjective pain intensity and heart rate variability (HRV) parameters in individuals with CMP. The relationship between perceived pain relief and physiological autonomic adaptations was also explored. Methods: Thirty adults with CMP underwent a single PAPIMI™ session. Subjective pain intensity was measured using the Numeric Pain Rating Scale (NPRS), while autonomic function was assessed via HRV. Pre- to post-intervention changes were analyzed using the Wilcoxon Signed-Rank test, while Spearman’s correlation was computed to assess associations between post-intervention changes in subjective perceived pain and HRV parameters. Results: A significant reduction in NPRS scores (p < 0.001) was found after PAPIMI intervention. Also, a significant increase in specific parasympathetic-related HRV indices, namely, RMSSD (p = 0.015) and HF power (p = 0.029), was observed. No significant correlations were found between post-intervention changes in pain perception and HRV metrics. Conclusions: A single PAPIMI session induced both analgesic effects and improvements in autonomic balance in individuals with CMP. These findings underscore the potential of PAPIMI as a non-pharmacological approach for rapid pain modulation and systemic rebalancing. Full article
Show Figures

Figure 1

18 pages, 1182 KiB  
Article
Effects of Remote Barley Seed Treatment with Weak Non-Thermal Pulsed Electromagnetic Fields on Plant Development and Yields
by Igor F. Turkanov, Elena V. Bondarchuk, Valery G. Gryaznov, Ekaterina A. Galkina, Alexey Yu. Guzenko, Vladimir G. Zainullin, Elena G. Kozar and Irina M. Kaigorodova
Seeds 2025, 4(3), 35; https://doi.org/10.3390/seeds4030035 - 18 Jul 2025
Viewed by 514
Abstract
Numerous scientific studies have confirmed the effectiveness of seed bioactivation using electromagnetic fields (EMFs) in agriculture. This article presents the results of the remote application of an EMF TOR device in the cultivation of barley Hordeum vulgare L. Laboratory studies and field tests [...] Read more.
Numerous scientific studies have confirmed the effectiveness of seed bioactivation using electromagnetic fields (EMFs) in agriculture. This article presents the results of the remote application of an EMF TOR device in the cultivation of barley Hordeum vulgare L. Laboratory studies and field tests were conducted, showing a positive effect on the growth and development of plants both when treating dry seeds before sowing and when treating sown seeds in the field. The optimal time period for EMF treatment was determined: treating air-dried seeds with EMFs before sowing for 10–15 min increased germination by 5–18% and the growth rate of seedlings by 2–3 times. The maximum observed effect occurred during the treatment period from 7:00 to 11:00. As a result of changing the balance of phytohormones, the further stimulation of the root system and the assimilation surface of plants was noted due to a 1.5-fold increase in the content of auxins. The density of productive stems, ear length, seed set, and 1000 seed weight increased, which ultimately led to an increase in yield by more than 10% and, in some varieties, to a decrease in the protein content in grains compared to the control variant (by 3–22%), bringing them closer to brewing conditions. Full article
Show Figures

Figure 1

19 pages, 1209 KiB  
Article
The Effects of Pulsed Electromagnetic Field (PEMF) on Muscular Strength, Functional Performance and Depressive Symptoms in Elderly Adults with Sarcopenia: A Short-Term Intervention
by Patrícia Sardinha Leonardo, Alberto Souza Sá Filho, Pedro Augusto Inacio, Paulo Ricardo França, Vicente Aprigliano, Fernando Teixeira, Michel Monteiro Macedo, Douglas Farias Fonseca, Pedro Sardinha Leonardo Lopes-Martins, Gustavo De Conti Teixeira Costa and Rodrigo Alvaro Brandão Lopes-Martins
Life 2025, 15(7), 1111; https://doi.org/10.3390/life15071111 - 16 Jul 2025
Viewed by 625
Abstract
Despite the benefits of resistance training in mitigating sarcopenia, adherence among frail older adults is often limited by osteoarticular pain, comorbidities, and logistical barriers. Pulsed electromagnetic field (PEMF) therapy has emerged as a potential alternative. However, evidence regarding its effects on functional and [...] Read more.
Despite the benefits of resistance training in mitigating sarcopenia, adherence among frail older adults is often limited by osteoarticular pain, comorbidities, and logistical barriers. Pulsed electromagnetic field (PEMF) therapy has emerged as a potential alternative. However, evidence regarding its effects on functional and psychological parameters remains scarce. Objectives: To assess the effects of 12 PEMF therapy sessions on knee extensor strength and functional performance (Timed Up and Go test—TUG) in older adults with sarcopenia. Secondary outcomes included changes in calf circumference (CC), SARC-F + CC scores, and depressive symptoms. Methods: A controlled, non-randomized experimental design was employed, with a pre-intervention control group serving as a baseline reference (PEMF group: n = 25; control group: n = 16). Participants received 12 PEMF therapy sessions (three times per week) targeting the quadriceps and gastrocnemius muscles. Outcomes were measured using knee-extension dynamometry, TUG, CC, SARC-F + CC, and the Yesavage Geriatric Depression Scale. Statistical analyses included ANCOVA, with baseline values as covariates. Results: Significant improvements were observed in knee-extension strength, which increased from 13.05 ± 4.8 kgf to 18.56 ± 8 kgf (p < 0.001); TUG test time improved from 23.1 ± 14.4 to 18.7 ± 10 s (p = 0.048); SARC-F + CC scores decreased from 11.6 ± 8.2 to 6.5 ± 7.6 (p < 0.001), though the interaction effect with time was not significant (p = 0.252). No statistically significant changes were observed in CC, which increased from 34.0 ± 4.0 cm to 36.0 ± 3.9 cm following the intervention (p = 0.548). Yesavage Geriatric Depression Scale scores improved significantly (7.9 ± 2.4 to 5.4 ± 1.7, p = 0.0013). Conclusions: PEMF therapy significantly improved lower-limb muscle strength and functional mobility in elderly individuals with sarcopenia. Additionally, depressive symptoms were significantly reduced. However, no significant changes were observed in CC or SARC-F + CC. Full article
Show Figures

Figure 1

16 pages, 1249 KiB  
Article
Impact of Electromagnetic Field on the Physicochemical Properties, Permeability, and Accumulation of Salicylic Acid
by Karolina Zyburtowicz-Ćwiartka, Anna Nowak, Anna Muzykiewicz-Szymańska, Łukasz Kucharski, Maciej Konopacki, Rafał Rakoczy and Paula Ossowicz-Rupniewska
Appl. Sci. 2025, 15(13), 7606; https://doi.org/10.3390/app15137606 - 7 Jul 2025
Viewed by 404
Abstract
Transdermal drug delivery offers a non-invasive route for the systemic and localized administration of therapeutics; however, the skin’s barrier function limits its efficiency. This study investigates the application of various electromagnetic field (EMF) configurations to enhance the transdermal delivery of salicylic acid, a [...] Read more.
Transdermal drug delivery offers a non-invasive route for the systemic and localized administration of therapeutics; however, the skin’s barrier function limits its efficiency. This study investigates the application of various electromagnetic field (EMF) configurations to enhance the transdermal delivery of salicylic acid, a model compound with moderate lipophilicity and ionizability. Samples were exposed to pulsed, oscillating, static, and rotating magnetic fields, and their effects on physicochemical properties, thermal stability, skin permeation, and accumulation were evaluated. Structural analyses (FTIR, XRD) and thermal assessments (TGA, DSC) confirmed that EMF exposure did not alter the chemical structure or stability of salicylic acid. In vitro transdermal studies using porcine skin and Franz diffusion cells revealed that pulsed magnetic fields—especially with a 5 s on/5 s off cycle—and rotating magnetic fields at 30–50 Hz significantly enhanced drug permeation compared to controls. In contrast, static fields of negative polarity increased skin retention, suggesting their potential for controlled, localized delivery. These findings demonstrate that EMFs can be used as tunable, non-destructive tools to modulate drug transport across the skin and support their integration into transdermal delivery systems aimed at optimizing therapeutic profiles. Full article
Show Figures

Figure 1

22 pages, 2690 KiB  
Article
PEMFs Restore Mitochondrial and CREB/BDNF Signaling in Oxidatively Stressed PC12 Cells Targeting Neurodegeneration
by Stefania Merighi, Mercedes Fernandez, Manuela Nigro, Alessia Travagli, Filippo Caldon, Simona Salati, Pier Andrea Borea, Ruggero Cadossi, Katia Varani and Stefania Gessi
Int. J. Mol. Sci. 2025, 26(13), 6495; https://doi.org/10.3390/ijms26136495 - 5 Jul 2025
Viewed by 521
Abstract
Alzheimer’s disease (AD), the most prevalent form of neurodegenerative dementia, is characterized by progressive cognitive decline and neuronal loss. Despite advances in pharmacological treatments, current therapies remain limited in efficacy and often induce adverse effects. Increasing evidence highlights oxidative stress, mitochondrial dysfunction, and [...] Read more.
Alzheimer’s disease (AD), the most prevalent form of neurodegenerative dementia, is characterized by progressive cognitive decline and neuronal loss. Despite advances in pharmacological treatments, current therapies remain limited in efficacy and often induce adverse effects. Increasing evidence highlights oxidative stress, mitochondrial dysfunction, and disrupted neurotrophic signaling as key contributors to AD pathogenesis. Pulsed electromagnetic fields (PEMFs) are emerging as a non-invasive, multifactorial approach with promising biological effects. In this study, we investigated the neuroprotective potential of PEMFs in NGF-differentiated PC12 cells exposed to hydrogen peroxide (H2O2) or amyloid-β peptide (Aβ), both of which model pathological features of AD. PEMF treatment significantly counteracted H2O2- and Aβ-induced cytotoxicity by restoring cell viability, reducing reactive oxygen species production, and improving catalase activity. Furthermore, PEMFs preserved the mitochondrial membrane potential and decreased caspase-3 activation and chromatin condensation. Mechanistically, PEMFs inhibited ERK phosphorylation and enhanced cAMP levels, CREB phosphorylation, and BDNF expression, pathways known to support neuronal survival and plasticity. In conclusion, these findings suggest that PEMFs modulate multiple stress response systems, promoting neuroprotection under oxidative and amyloidogenic conditions. Full article
(This article belongs to the Special Issue Potential Prevention and Treatment of Neurodegenerative Disorders)
Show Figures

Graphical abstract

11 pages, 1811 KiB  
Case Report
A Transcutaneous Randomized Pulsed Radiofrequency Application for Spine Pain Conditions: A Case Series
by Daniel de Moraes Ferreira Jorge, Olav Rohof, Melina Brigato Ferreira Jorge, Alexandre Teixeira, Cezar Augusto de Oliveira, Pablo Sobreiro, Douglas Freitas Dos Santos, Stephany Cares Huber and Jose Fabio Santos Duarte Lana
J. Funct. Morphol. Kinesiol. 2025, 10(3), 242; https://doi.org/10.3390/jfmk10030242 - 25 Jun 2025
Viewed by 578
Abstract
Background: Transcutaneous Randomized Pulsed Radiofrequency (TCPRF-STP) is a non-invasive therapeutic approach increasingly explored for managing spine-related pain, particularly in cases involving disc herniations and degenerative spine conditions. Objectives: To evaluate the use of transcutaneous PRF-STP in the treatment of spine pathologies and its [...] Read more.
Background: Transcutaneous Randomized Pulsed Radiofrequency (TCPRF-STP) is a non-invasive therapeutic approach increasingly explored for managing spine-related pain, particularly in cases involving disc herniations and degenerative spine conditions. Objectives: To evaluate the use of transcutaneous PRF-STP in the treatment of spine pathologies and its evolution in short-term follow-up. Methods: This case series examines the outcomes of three patients treated with TCPRF-STP for varying spine pathologies, including lumbar and cervical disc herniations, lumbar stenosis, and radiculopathy. All patients had previously undergone conventional conservative therapies without a satisfactory improvement and were unwilling or unable to undergo invasive procedures. The treatment involved the application of electromagnetic fields through adhesive skin patches at targeted sites. Patients underwent three sessions of TCPRF-STP, with follow-up assessments evaluating pain and MRI. Results: Transcutaneous PRF-STP showed notable reductions in pain (VAS 0 in most cases), improvements in movement, and the restoration of normal daily activities. Follow-up MRI scans demonstrated positive structural changes in the treated discs. Although long-term recurrence occurred in one case, the patient remained active without functional limitations. Conclusions: Transcutaneous PRF-STP offers a promising, minimally invasive alternative for patients seeking to avoid surgery, though further studies with larger cohorts and longer follow-up periods are necessary to establish more robust evidence of its efficacy. This technique could become an important adjunct in managing chronic spinal pain conditions, offering patients an option with minimal risk and hospital demands. Full article
(This article belongs to the Section Functional Anatomy and Musculoskeletal System)
Show Figures

Figure 1

24 pages, 7951 KiB  
Article
Spaceborne THz-ISAR Imaging of Space Target with Joint Motion Compensation Based on FrFT and GWO
by Ao Zhou, Qi Yang, Zhian Yuan, Hongqiang Wang, Jun Yi and Shuangxun Li
Remote Sens. 2025, 17(13), 2152; https://doi.org/10.3390/rs17132152 - 23 Jun 2025
Viewed by 346
Abstract
Recently, terahertz (THz) radar has been widely researched for its high-resolution in space target imaging. Due to the high rendezvous speed and the short wavelength of THz radar, the traditional stop-and-go model, along with its supporting algorithms, is not applicable. Therefore, a method [...] Read more.
Recently, terahertz (THz) radar has been widely researched for its high-resolution in space target imaging. Due to the high rendezvous speed and the short wavelength of THz radar, the traditional stop-and-go model, along with its supporting algorithms, is not applicable. Therefore, a method that jointly compensates the intra- and inter- pulse errors of space targets’ echo is proposed. The algorithm includes the following steps: firstly, a coarse estimation of targets’ translational velocity at part of pulses is conducted through Fractional Fourier transform (FrFT). Then, the improved least square fitting (ILSF) is employed to parameterize the velocity–time dependency of the target. Furthermore, the concept of synthetic waveform entropy (SWE) of a one-dimensional range profile is put forward as the accuracy metric of envelope alignment. Finally, with SWE serving as the fitness function, the Grey Wolf Optimizer (GWO) algorithm is used to search for optimal estimated translation parameters. After several iterations, a fine-grained estimation of target motion parameters is achieved, while simultaneously accomplishing precise joint compensation for intra-pulse and inter-pulse errors. The validity of the proposed method is verified by numerical simulation, electromagnetic calculation data, and field-measured data. Full article
Show Figures

Figure 1

18 pages, 4367 KiB  
Article
Three-Dimensional Phase-Space Design and Simulation of a Broadband THz Transmission Line Using Wigner Optics and Ray Tracing
by Jacob Gerasimov, Emmanuel Bender, Moshe Sitbon, Egor Dyunin and Michael Gerasimov
Electronics 2025, 14(13), 2506; https://doi.org/10.3390/electronics14132506 - 20 Jun 2025
Viewed by 350
Abstract
Designing a transmission line (TL) for a widely tunable, broadband terahertz radiation source presents substantial challenges due to the complexity of beam dynamics and spectral characteristics. Here, we investigate the propagation of the most significant radiation modes expected to traverse the TL, intended [...] Read more.
Designing a transmission line (TL) for a widely tunable, broadband terahertz radiation source presents substantial challenges due to the complexity of beam dynamics and spectral characteristics. Here, we investigate the propagation of the most significant radiation modes expected to traverse the TL, intended for integration with an advanced particle accelerator currently under construction at the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications. The total electromagnetic field at the source output is expressed in the frequency domain via cavity eigenmodes and transformed into an optical field representation using the Wigner distribution function (WDF). This formulation enables physically consistent modeling within the constraints of geometric optics and Wigner formalism of the spatiotemporal evolution of the radiation during propagation. The initial TL design is developed and optimized based on this representation. A 3D space–frequency analysis tool for pulsed radiation, based on the WDF, was implemented to characterize field behavior and guide system development. Complementary ray tracing simulations were conducted using the Zemax Optic Studio platform, supporting the assessment of optical feasibility through simulation and system feasibility. Full article
(This article belongs to the Special Issue 3D Computer Vision and 3D Reconstruction)
Show Figures

Figure 1

14 pages, 2603 KiB  
Article
Pulsed Electromagnetic Field (PEMF) Stimulation Increases Muscle Activity During Exercise in Sedentary People
by Aurelio Trofè, Alessandro Piras, Luca Breviglieri, Alessandra Laffi, Andrea Meoni and Milena Raffi
J. Funct. Morphol. Kinesiol. 2025, 10(2), 232; https://doi.org/10.3390/jfmk10020232 - 19 Jun 2025
Viewed by 1350
Abstract
Objectives: A pulsed electromagnetic field (PEMF) induces electric currents in biological tissue, enhancing muscle energy expenditure during heavy constant-load exercises. In this paper, we investigate the PEMF effect on muscular activation in male sedentary people. Methods: The surface electromyographic (EMG) activity of [...] Read more.
Objectives: A pulsed electromagnetic field (PEMF) induces electric currents in biological tissue, enhancing muscle energy expenditure during heavy constant-load exercises. In this paper, we investigate the PEMF effect on muscular activation in male sedentary people. Methods: The surface electromyographic (EMG) activity of the right leg’s vastus medialis (RVM) and biceps femoris (RBF) muscles was recorded and analyzed. The root mean square values were normalized to the peak amplitude observed during maximal voluntary contraction. Measurements were taken at baseline (stationary seated position), during warm-up (unloaded cycling), and throughout 15 min of constant-load exercise performed at moderate intensity. Subjects performed two experimental conditions, when PEMF was turned ON versus OFF. Results: No significant difference was found during the baseline. The analysis during warm-up showed significant differences between conditions (ON vs. OFF) for both muscles (RVM p = 0.019; RBF p < 0.001). The analysis during constant-load exercise showed significant differences between conditions (ON vs. OFF) for RVM only (p = 0.002). Conclusions: This study provides evidence that PEMF stimulation acutely enhances muscle activation, primarily in the vastus medialis, with a comparatively smaller effect on the biceps femoris during moderate-intensity cycling in sedentary young men. The observed increase in EMG activity suggests that PEMF may facilitate neuromuscular excitability and muscle recruitment, potentially through mechanisms related to calcium signaling and enhanced muscle perfusion. Full article
Show Figures

Figure 1

16 pages, 3028 KiB  
Article
Multi-Modal Joint Pulsed Eddy Current Sensor Signal Denoising Method Integrating Inductive Disturbance Mechanism
by Yun Zuo, Gebiao Hu, Fan Gan, Zhiwu Zeng, Zhichi Lin, Xinxun Wang, Ruiqing Xu, Liang Wen, Shubing Hu, Haihong Le, Runze Wu and Jingang Wang
Sensors 2025, 25(12), 3830; https://doi.org/10.3390/s25123830 - 19 Jun 2025
Viewed by 461
Abstract
Pulsed eddy current (PEC) testing technology has been widely used in the field of non-destructive testing of metal grounding structures due to its wide-band excitation and response characteristics. However, multi-source noise in industrial environments can significantly degrade the performance of PEC sensors, thereby [...] Read more.
Pulsed eddy current (PEC) testing technology has been widely used in the field of non-destructive testing of metal grounding structures due to its wide-band excitation and response characteristics. However, multi-source noise in industrial environments can significantly degrade the performance of PEC sensors, thereby limiting their detection accuracy. This study proposes a multi-modal joint pulsed eddy current signal sensor denoising method that integrates the inductive disturbance mechanism. This method constructs the Improved Whale Optimization -Variational Mode Decomposition-Singular Value Decomposition-Wavelet Threshold Denoising (IWOA-VMD-SVD-WTD) fourth-order processing architecture: IWOA adaptively optimizes the VMD essential variables (K, α) and employs the optimized VMD to decompose the perception coefficient (IMF) of the PEC signal. It utilizes the correlation coefficient criterion to filter and identify the primary noise components within the signal, and the SVD-WTD joint denoising model is established to reconstruct each component to remove the noise signal received by the PEC sensor. To ascertain the efficacy of this approach, we compared the IWOA-VMD-SVD-WTD method with other denoising methods under three different noise levels through experiments. The test results show that compared with other VMD-based denoising techniques, the average signal-to-noise ratio (SNR) of the PEC signal received by the receiving coil for 200 noise signals in different noise environments is 24.31 dB, 29.72 dB and 29.64 dB, respectively. The average SNR of the other two denoising techniques in different noise environments is 15.48 dB, 18.87 dB, 18.46 dB and 19.32 dB, 27.13 dB, 26.78 dB, respectively, which is significantly better than other denoising methods. In addition, in practical applications, this method is better than other technologies in denoising PEC signals and successfully achieves noise reduction and signal feature extraction. This study provides a new technical solution for extracting pure and impurity-free PEC signals in complex electromagnetic environments. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

18 pages, 4050 KiB  
Article
Novel Pulsed Electromagnetic Field Device for Rapid Structural Health Monitoring: Enhanced Joint Integrity Assessment in Steel Structures
by Viktors Mironovs, Yulia Usherenko, Vjaceslavs Zemcenkovs, Viktors Kurtenoks, Vjaceslavs Lapkovskis, Dmitrijs Serdjuks and Pavels Stankevics
Materials 2025, 18(12), 2831; https://doi.org/10.3390/ma18122831 - 16 Jun 2025
Viewed by 417
Abstract
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. [...] Read more.
This study investigates a novel pulsed electromagnetic field (PEMF) device for dynamic testing and structural health monitoring. The research utilises a PEMF generator CD-1501 with a maximum energy capacity of 0.5 kJ and a flat multifilament coil (IC-1) with a 100 mm diameter. Experiments were conducted on a model steel stand with two joint configurations, using steel plates of 4 mm and 8 mm thickness. The device’s efficacy was evaluated through oscillation pattern analysis and spectral characteristics. Results demonstrate the device’s ability to differentiate between joint states, with the 4 mm plate configuration showing a 15% reduction in high-frequency components compared to the 8 mm plate. Fundamental resonant frequencies of 3D-printed specimens were observed near 5100 Hz, with Q-factors ranging between 200 and 300. The study also found that a 10% increase in volumetric porosity led to a 7% downward shift in resonant frequencies. The developed PEMF device, operating at 50–230 V and delivering 1–5 pulses per minute, shows promise for rapid, non-destructive monitoring of structural joints. When combined with the coaxial correlation method, the system demonstrates enhanced sensitivity in detecting structural changes, utilising an electrodynamic actuator (10 Hz to 2000 Hz range). This integrated approach offers a 30% improvement in early-stage degradation detection compared to traditional methods. Full article
Show Figures

Figure 1

19 pages, 6101 KiB  
Article
Modern Capabilities of Semi-Airborne UAV-TEM Technology on the Example of Studying the Geological Structure of the Uranium Paleovalley
by Ayur Bashkeev, Alexander Parshin, Ilya Trofimov, Sergey Bukhalov, Danila Prokhorov and Nikolay Grebenkin
Minerals 2025, 15(6), 630; https://doi.org/10.3390/min15060630 - 10 Jun 2025
Cited by 1 | Viewed by 451
Abstract
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as [...] Read more.
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as minimizing problems in cases where the pedestrian walkability of the site is a challenge. Lightweight and cheap UAV systems with a take-off weight in the low tens of kilograms are unable to carry a powerful current source; therefore, semi-airborne systems with a ground transmitter (an ungrounded loop or grounded at the ends of the line) and a measuring system towed on a UAV are becoming more and more widespread. This paper presents the results for a new generation of semi-airborne technology SibGIS UAV-TEMs belonging to the “line-loop” type and capable of realizing the transient/time-domain (TEM) electromagnetics method used for studying a uranium object of the paleovalley type. Objects of this type are characterized by a low resistivity of the ore zone located in relatively high-resistivity host rocks and, from the position of the geoelectric structure, can be considered a good benchmark for assessing the capabilities of different electrical exploration technologies in general. The aeromobile part of the geophysical system created is implemented on the basis of a hexacopter carrying a measuring system with an inductive sensor, an analog of a 50 × 50 m loop, an 18-bit ADC with satellite synchronization, and a transmitter. The ground part consists of a galvanically grounded supply line and a current source with a transmitter creating multipolar pulses of quasi-DC current in the line. The survey is carried out with a terrain drape based on a satellite digital terrain model. The article presents the results obtained from the electromagnetic soundings in comparison with the reference (drilled) profile, convincingly proving the high efficiency of UAV-TEM. This approach to pre-processing UAV–electrospecting data is described with the aim of improving data quality by taking into account the movement and swaying of the measuring system’s sensor. On the basis of the real data obtained, the sensitivity of the created semi-airborne system was modeled by solving a direct problem in the class of 3D models, which allowed us to evaluate the effectiveness of the method in relation to other geological cases. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

28 pages, 6574 KiB  
Article
Design of Segmented Ultra-Wideband TEM Horn Antenna for Calibration of Wideband Electromagnetic Pulse Sensors
by Tianchi Zhang, Yongli Wei, Yuan Wang, Changjiao Duan, Lihua Wang, Zongxiang Li, Xiao Li, Xin Li and Baofeng Cao
Sensors 2025, 25(12), 3599; https://doi.org/10.3390/s25123599 - 7 Jun 2025
Viewed by 563
Abstract
Wideband electromagnetic pulse detection is a crucial method for lightning disaster monitoring. However, the random nature of lightning events presents challenges in fulfilling real-time calibration requirements for electromagnetic pulse sensors. This paper introduces a segmented ultra-wideband TEM horn antenna tailored for portable calibration [...] Read more.
Wideband electromagnetic pulse detection is a crucial method for lightning disaster monitoring. However, the random nature of lightning events presents challenges in fulfilling real-time calibration requirements for electromagnetic pulse sensors. This paper introduces a segmented ultra-wideband TEM horn antenna tailored for portable calibration experiments in electromagnetic pulse detection systems. The radiating plates feature a four-section polygonal design, and an end-loaded metal plate is integrated to reduce reflection signal interference. Rigorous simulation analyses were performed on three key factors impacting antenna radiation performance: aperture impedance, tapering profile, and end loading configuration. Experimental results show that the designed antenna achieves a peak field strength of 48.9 V/m at a 10 m distance, with a rise time of 0.87 ns and a full width at half maximum of 1.75 ns. The operating frequency ranges from 48 MHz to 150 MHz, with main lobe beamwidths of 43° and 83° in the E-plane and H-plane radiation patterns, respectively. These parameters meet the technical requirements for electromagnetic pulse sensor calibration experiments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

35 pages, 8927 KiB  
Article
Fecal Microbiota Transplantation from Mice Receiving Magnetic Mitohormesis Treatment Reverses High-Fat Diet-Induced Metabolic and Osteogenic Dysfunction
by Jun Kit Craig Wong, Bharati Kadamb Patel, Yee Kit Tai, Tuan Zea Tan, Wei Wei Thwe Khine, Way Cherng Chen, Marek Kukumberg, Jianhong Ching, Lye Siang Lee, Kee Voon Chua, Tsze Yin Tan, Kwan Yu Wu, Xizhe Bai, Jan Nikolas Iversen, Kristy Purnamawati, Rufaihah Abdul Jalil, Alan Prem Kumar, Yuan Kun Lee, Shabbir M. Moochhala and Alfredo Franco-Obregón
Int. J. Mol. Sci. 2025, 26(12), 5450; https://doi.org/10.3390/ijms26125450 - 6 Jun 2025
Viewed by 2289
Abstract
This study compared the metabolic consequences of fecal microbiota transplantation (FMT) from donor mice that had been either administered pulsed electromagnetic field (PEMF) therapy or exercised to recipient mice fed a high-fat diet (HFD). Eight weeks of PEMF treatment (10 min/week) enhanced PGC-1α-associated [...] Read more.
This study compared the metabolic consequences of fecal microbiota transplantation (FMT) from donor mice that had been either administered pulsed electromagnetic field (PEMF) therapy or exercised to recipient mice fed a high-fat diet (HFD). Eight weeks of PEMF treatment (10 min/week) enhanced PGC-1α-associated mitochondrial and metabolic gene expression in white and brown adipose to a greater degree than eight weeks of exercise (30–40 min/week). FMT from PEMF-treated donor mice recapitulated these adipogenic adaptations in HFD-fed recipient mice more faithfully than FMT from exercised donors. Direct PEMF treatment altered hepatic phospholipid composition, reducing long-chain ceramides (C16:0) and increasing very long-chain ceramides (C24:0), which could be transferred to PEMF-FMT recipient mice. FMT from PEMF-treated mice was also more effective at recovering glucose tolerance than FMT from exercised mice. PEMF treatment also enhanced bone density in both donor and HFD recipient mice. The gut Firmicutes/Bacteroidetes (F/B) ratio was lowest in both the directly PEMF-exposed and PEMF-FMT recipient mouse groups, consistent with a leaner phenotype. PEMF treatment, either directly applied or via FMT, enhanced adipose thermogenesis, ceramide levels, bone density, hepatic lipids, F/B ratio, and inflammatory blood biomarkers more than exercise. PEMF therapy may represent a non-invasive and non-strenuous method to ameliorate metabolic disorders. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Graphical abstract

14 pages, 1542 KiB  
Brief Report
Brief Weekly Magnetic Field Exposure Enhances Avian Oxidative Muscle Character During Embryonic Development
by Jasmine Lye Yee Yap, Kwan Yu Wu, Yee Kit Tai, Charlene Hui Hua Fong, Neha Manazir, Anisha Praiselin Paul, Olivia Yeo and Alfredo Franco-Obregón
Int. J. Mol. Sci. 2025, 26(11), 5423; https://doi.org/10.3390/ijms26115423 - 5 Jun 2025
Viewed by 888
Abstract
Maternal metabolic dysfunction adversely influences embryonic muscle oxidative capacity and mitochondrial biogenesis, increasing the child’s long-term risks of developing obesity and metabolic syndrome in later life. This pilot study explored the mechanistic basis of embryonic muscle metabolic programming, employing non-invasive magnetic field exposures. [...] Read more.
Maternal metabolic dysfunction adversely influences embryonic muscle oxidative capacity and mitochondrial biogenesis, increasing the child’s long-term risks of developing obesity and metabolic syndrome in later life. This pilot study explored the mechanistic basis of embryonic muscle metabolic programming, employing non-invasive magnetic field exposures. Brief (10 min) exposure to low-energy (1.5 milliTesla at 50 Hertz) pulsing electromagnetic fields (PEMFs) has been shown in mammals to promote oxidative muscle development, associated with enhanced muscular mitochondriogenesis, augmented lipid metabolism, and attenuated inflammatory status. In this study, quail eggs were used as a model system to investigate the potential of analogous PEMF therapy to modulate embryonic muscle oxidative capacity independently of maternal influence. Quail eggs were administered five 10-min PEMF exposures to either upward-directed or downward-directed magnetic fields over 13 days. Embryos receiving magnetic treatment exhibited increased embryo weight, size, and survival compared to non-exposed controls. Upward exposure was associated with larger embryos, redder breast musculature, and upregulated levels of PPAR-α and PGC-1α, transcriptional regulators promoting oxidative muscle development, mitochondriogenesis, and angiogenesis, whereas downward exposure augmented collagen levels and reduced angiogenesis. Exposure to upward PEMFs may hence serve as a method to promote embryonic growth and oxidative muscle development and improve embryonic mortality. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop