Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = pulse electrodeposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4083 KiB  
Article
Tribological and Corrosion Effects from Electrodeposited Ni-hBN over SS304 Substrate
by Suresh Velayudham, Elango Natarajan, Kalaimani Markandan, Kaviarasan Varadaraju, Santhosh Mozhuguan Sekar, Gérald Franz and Anil Chouhan
Lubricants 2025, 13(7), 318; https://doi.org/10.3390/lubricants13070318 - 21 Jul 2025
Viewed by 382
Abstract
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the [...] Read more.
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the SS304 substrate. The microhardness of the as-deposited (AD) sample and heat-treated (HT) sample were 49% and 83.8% higher compared to the control sample. The HT sample exhibited a grain size which was approximately 9.7% larger than the AD sample owing to the expansion–contraction mechanism of grains during heat treatment and sudden quenching. Surface roughness reduced after coating, where the Ni-hBN-coated sample measured a roughness of 0.43 µm compared to 0.48 µm for the bare surface. The average coefficient of friction for the AD sample was 42.4% lower than the bare surface owing to the self-lubricating properties of nano hBN. In particular, the corrosion rate of the AD sample was found to be 0.062 mm/year, which was lower than values reported in other studies. As such, findings from the present study can be particularly beneficial for applications in the automotive and aerospace industries, where enhanced wear resistance, reduced friction, and superior corrosion protection are critical for components such as engine parts, gears, bearings and shafts. Full article
Show Figures

Figure 1

15 pages, 3241 KiB  
Article
Cu@Pt Core–Shell Nanostructures for Ammonia Oxidation: Bridging Electrocatalysis and Electrochemical Sensing
by Bommireddy Naveen and Sang-Wha Lee
Inorganics 2025, 13(7), 241; https://doi.org/10.3390/inorganics13070241 - 11 Jul 2025
Viewed by 345
Abstract
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). [...] Read more.
Electro-oxidation of ammonia has emerged as a promising route for sustainable energy conversion and pollutant mitigation. In this study, we report the facile fabrication of dendritic Cu@Pt core–shell nanostructures electrodeposited on pencil graphite, forming an efficient electrocatalyst for the ammonia oxidation reaction (AOR). The designed electrocatalyst exhibited high catalytic activity towards AOR, achieving high current density at very low potentials (−0.3 V vs. Ag/AgCl), with a lower Tafel slope of 16.4 mV/dec. The catalyst also demonstrated high electrochemical stability over 1000 potential cycles with a regeneration efficiency of 78%. In addition to catalysis, Cu@Pt/PGE facilitated very sensitive and selective electrochemical detection of ammonia nitrogen by differential pulse voltammetry, providing an extensive linear range (1 μM to 1 mM) and a low detection limit of 0.78 μM. The dual functionality of Cu@Pt highlights its potential in enhancing ammonia-based fuel cells and monitoring ammonia pollution in aquatic environments, thereby contributing to the development of sustainable energy and environmental technologies. Full article
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Pulsed Current Electrodeposition of Gold–Copper Alloys Using a Low-Cyanide Electrolyte
by Mohamed Amazian, Teresa Andreu and Maria Sarret
Coatings 2025, 15(7), 778; https://doi.org/10.3390/coatings15070778 - 30 Jun 2025
Viewed by 569
Abstract
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling [...] Read more.
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling and environmental compatibility without compromising performance. Electrolyte compositions were optimized via cyclic voltammetry, and coatings were deposited using direct current, pulse current, and reverse pulse current methods. The novel low-cyanide electrolyte system achieved a 99.1% reduction in cyanide use compared with the commercial formulation. Coatings produced with pulse current and reverse pulse current deposition exhibited structural, morphological, and mechanical properties comparable to those obtained from cyanide-based electrolytes. Overall, the low-cyanide electrolyte represents a safer, high-performance alternative to traditional cyanide-based systems. Full article
Show Figures

Figure 1

17 pages, 5024 KiB  
Article
Optimization of Deposition Parameters for Ni-P-WC-BN(h) Composite Coatings via Orthogonal Experimentation and Wear Behavior of the Optimized Coating
by Yingyue Li, Zehao Liu, Yana Li and Jinran Lin
Metals 2025, 15(7), 714; https://doi.org/10.3390/met15070714 - 26 Jun 2025
Viewed by 328
Abstract
Ni–P–WC–BN(h) nanocomposite coatings were fabricated on 20CrMnTi substrates using ultrasonic-assisted pulsed electrodeposition. 20CrMnTi is a low-carbon steel that is commonly used in the manufacturing gears and shaft components. To enhance the wear resistance and extend the service life of such mechanical parts, ultrasonic-assisted [...] Read more.
Ni–P–WC–BN(h) nanocomposite coatings were fabricated on 20CrMnTi substrates using ultrasonic-assisted pulsed electrodeposition. 20CrMnTi is a low-carbon steel that is commonly used in the manufacturing gears and shaft components. To enhance the wear resistance and extend the service life of such mechanical parts, ultrasonic-assisted pulsed electrodeposition was employed as an effective surface modification technique. The microhardness, phase structure, surface morphology, and wear behavior of the coating were also characterized. An orthogonal experimental design was employed to examine the effects of current density, bath temperature, ultrasonic power, and pulse duty cycle on the microhardness and wear behavior of the coatings, aiming to optimize the deposition parameters. The optimal process combination was identified as a current density of 3 A·dm−2, a bath temperature of 55 °C, an ultrasonic power of 210 W, and a duty cycle of 0.7. Under these conditions, the coatings exhibited enhanced hardness and wear resistance. Based on the optimized parameters, additional tribological tests were conducted under various operating conditions to further evaluate wear performance. The results showed that the dominant wear mechanisms were chemical wear and adhesive wear. This study offers new insights into the fabrication of high-performance nanocomposite coatings and expands the application scope of ultrasonic-assisted pulsed electrodeposition in multiphase composite systems. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
by Xuli Li, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan and Shefeng Li
J. Funct. Biomater. 2025, 16(7), 235; https://doi.org/10.3390/jfb16070235 - 26 Jun 2025
Viewed by 654
Abstract
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), [...] Read more.
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), with the ethylenediaminetetraacetic acid calcium disodium salt hydrate (EDTA·Na2Ca) incorporated to provide a secondary ionic crosslinker (i.e., Ca2+) and modulate the cascade reaction diffusion process. The copper wire electrodes serve as templates for electrochemical oxidation and enable a copper ion (i.e., Cu2+)-induced tubular hydrogel coating formation, while pulsed electric fields regulate layer-by-layer deposition. The dual-cation-crosslinked interpenetrating hydrogels (CMC/SA-Cu/Ca) exhibit rapid growth rates and tailored mechanical strength, along with excellent antibacterial performance. By integrating the unique pulsed electro-fabrication with biomimetic self-assembly, this study addresses challenges in vessel-mimicking structural complexity and mechanical compatibility. The approach enables scalable production of customizable multilayered hydrogels for artificial vessel grafts, smart wound dressings, and bioengineered organ interfaces, demonstrating broad biomedical potential. Full article
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 560
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

18 pages, 15272 KiB  
Article
Nickel Electrocatalysts Obtained by Pulsed Current Electrodeposition from Watts and Citrate Baths for Enhanced Hydrogen Evolution Reaction in Alkaline Media
by Raluca Bojîncă, Roxana Muntean, Rebeca Crişan and Andrea Kellenberger
Materials 2025, 18(12), 2775; https://doi.org/10.3390/ma18122775 - 12 Jun 2025
Viewed by 568
Abstract
Efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) in alkaline media are essential for sustainable hydrogen production. In this study, Ni electrocatalysts were deposited on pencil graphite using a simple one-step pulsed current electrodeposition method, from both acidic Watts and alkaline [...] Read more.
Efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) in alkaline media are essential for sustainable hydrogen production. In this study, Ni electrocatalysts were deposited on pencil graphite using a simple one-step pulsed current electrodeposition method, from both acidic Watts and alkaline citrate baths. The influence of bath type and electrodeposition parameters—current density and temperature—on catalyst morphology and performance for HER was systematically investigated by scanning electron microscopy and electrochemical methods. Linear sweep voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy (EIS) were used to evaluate the electrocatalytic activity, stability, and HER mechanism. The best catalytic performance was achieved for the Ni electrocatalyst deposited from the citrate bath at 50 mA cm−2 and 40 °C, showing an exchange current density of 0.93 mA cm−2, a Tafel slope of −208 mV dec−1, and overpotentials of −210 mV and −386 mV at 10 and 100 mA cm−2, respectively, in 1 M KOH solution. Chronopotentiometry confirmed improved stability and an overpotential reduction of approximately 92 mV as compared to pure Ni, while EIS revealed the lowest charge transfer resistance. It was shown that the electrocatalysts deposited from the citrate bath outperform those from the Watts bath, and electrodeposition at 40 °C is optimal for achieving the highest electrocatalytic activity for HER. Full article
Show Figures

Graphical abstract

21 pages, 2922 KiB  
Article
Investigation of the Convective Mass Transfer Characteristics in a Parallel-Plate Channel Flow Disturbed by Using a Selenoid Pulse Generator
by Mehmet Emin Arzutuğ
Processes 2025, 13(6), 1700; https://doi.org/10.3390/pr13061700 - 29 May 2025
Viewed by 422
Abstract
The continuous change in the entrance cross-section of a parallel-plate flow channel generally affects the mass and heat transfer on the walls of the channel. In this paper, an electrochemical parallel-plate flow channel equipped with a selenoid pulse generator has been developed to [...] Read more.
The continuous change in the entrance cross-section of a parallel-plate flow channel generally affects the mass and heat transfer on the walls of the channel. In this paper, an electrochemical parallel-plate flow channel equipped with a selenoid pulse generator has been developed to enhance the convective mass transfer on the walls of a mass transfer flow system such as an electrodeposition cell, absorption column, flow reactor, etc. A number of experimental studies have been conducted to determine the distribution of the mass transfer coefficients on the bottom wall of a parallel-plate channel for the flow conditions with/without a pulse in the research. Here, the distribution of the convective mass transfer coefficients has been determined by the electrochemical limiting diffusion current technique (ELDCT) using nickel local cathodes arranged on the bottom surface of the flow channel. The experimental results show the effects of the parameters used, which are the flow Reynolds number, opened/closed (OP/CL) ratio, and pulse number, on the distribution of mass transfer coefficients. The results have revealed that the pulse generator altered the flow structure and increased the turbulent intensity at Re < 2860 flow conditions. Within the range of Reynolds number 950 < Re < 2860, the mass transfer correlation was given as Sh=67.02Re0.897OpCl0.059Sc1/3. According to the research findings, the highest kM values were obtained at Re = 2860 with an (OP/CL) ratio of 1/2. If a parallel-plate flow reactor with a pulse generator is designed using these flow conditions, it will yield a reactor that is both more efficient and more compact than a reactor without a pulse generator. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies, 2nd Edition)
Show Figures

Figure 1

14 pages, 3946 KiB  
Article
Effect of TiC Addition on Microstructure and Performances of Double Pulse Electrodeposited Ni-TiC Coatings
by Haijun Liu, Hui Wang and Fafeng Xia
Coatings 2025, 15(5), 598; https://doi.org/10.3390/coatings15050598 - 17 May 2025
Cited by 1 | Viewed by 411
Abstract
Nickel–titanium carbide (Ni-TiC) coatings were synthesized on Q235 steel via double-pulse electrodeposition to enhance surface properties. The influence of TiC concentration on surface morphology, microstructure, and performance was systematically studied using SEM, TEM, XRD, microhardness testing, wear analysis, and electrochemical methods. At low [...] Read more.
Nickel–titanium carbide (Ni-TiC) coatings were synthesized on Q235 steel via double-pulse electrodeposition to enhance surface properties. The influence of TiC concentration on surface morphology, microstructure, and performance was systematically studied using SEM, TEM, XRD, microhardness testing, wear analysis, and electrochemical methods. At low TiC concentrations (2–4 g/L), the coatings exhibited typical cell-like morphology. At 8 g/L, the coating showed a dense structure, refined grains, and broad Ni diffraction peaks. TEM analysis revealed nickel and TiC grain sizes of 97.82 nm and 34.75 nm, respectively. The plating rate remained stable (~36.94 mg·cm−2·h−1), while surface roughness increased with TiC content. The 8 g/L TiC coating achieved the highest microhardness (743.13 HV), lowest wear loss (5.43%), and superior corrosion resistance, with a self-corrosion current density of 5.27 × 10−6 A·cm−2 and polarization resistance of 7705.62 Ω·cm2. These enhancements are attributed to uniform TiC dispersion and grain boundary pinning. Thus, 8 g/L TiC is optimal for fabricating Ni-TiC coatings with improved mechanical and electrochemical performance. This work demonstrates a practical strategy for developing high-performance Ni-based composite coatings via double-pulse electrodeposition. Full article
Show Figures

Figure 1

16 pages, 9789 KiB  
Article
Regulation of Microstructure and Mechanical Properties of DC Electrodeposited Copper Foils by Electrolyte Parameters
by Wenwen Ma, Yuehong Zheng, Chong Luo, Tao Feng, Gang Dong, Haoyang Gao and Peiqing La
Coatings 2025, 15(5), 521; https://doi.org/10.3390/coatings15050521 - 27 Apr 2025
Viewed by 641
Abstract
Introducing nano-twins into electrolytic copper foil is an effective method to enhance strength and toughness. While pulse electrodeposition enables the easier preparation of high-density nano-twin copper, large-scale industrial production mainly relies on direct current electrodeposition. Therefore, systematically studying the effects of electroplating parameters [...] Read more.
Introducing nano-twins into electrolytic copper foil is an effective method to enhance strength and toughness. While pulse electrodeposition enables the easier preparation of high-density nano-twin copper, large-scale industrial production mainly relies on direct current electrodeposition. Therefore, systematically studying the effects of electroplating parameters on the microstructure and mechanical properties of direct current electrodeposited copper foil is crucial. In this paper, we discuss the effects of pH value, CCuSO4, and Jk on the microstructure and mechanical properties of electroplated copper foils at room temperature. The results show that copper foils exhibit stronger (220)Cu preferred orientation on the M surface than on the S surface with changes in pH value, CCuSO4, and Jk. When the pH value is 2.5, the CCuSO4 is between 70 and 90 g/L, and the Jk is within the range of 70–90 mA/cm2, the prepared copper foil has better compactness and no obvious pinhole-like defects. Particularly, the copper foil electroplated with a pH value of 2.5, a CCuSO4 of 80 g/L, and a Jk of 80 mA/cm2 consists of equiaxed and columnar grains, featuring small grain size, uniform distribution, and a dense structure, resulting in excellent mechanical properties. Full article
Show Figures

Figure 1

12 pages, 8658 KiB  
Article
Atomistic Simulation and Micro-Pillar Compression Studies on the Influence of Glass–Glass Interfaces on Plastic Deformation in Co-P Metallic Nano-Glasses
by Yongwei Wang, Jiashu Chen, Mo Li and Guangping Zheng
Materials 2025, 18(8), 1853; https://doi.org/10.3390/ma18081853 - 17 Apr 2025
Viewed by 502
Abstract
The glass–glass interfaces (GGIs) play an important role during the plastic deformation of metallic nano-glasses (NGs) such as Sc-Fe NGs. In this work, Co-P nano-glasses are synthesized by pulse electrodeposition. Their mechanical properties are characterized by micro-pillar compression and compared to those obtained [...] Read more.
The glass–glass interfaces (GGIs) play an important role during the plastic deformation of metallic nano-glasses (NGs) such as Sc-Fe NGs. In this work, Co-P nano-glasses are synthesized by pulse electrodeposition. Their mechanical properties are characterized by micro-pillar compression and compared to those obtained by molecular dynamics (MD) simulation. The MD simulation reveals that the GGIs with a particular incline angle (about 50.0°) in the direction of applied uniaxial strain is preferable for the accommodation of localized plastic deformation in NGs. The results are consistent with those obtained by spherical aberration-corrected transmission electron microscopy, which reveals that most of shear bands form an angle of about 58.7° to the direction of compressive strain applied on the Co-P micro-pillar. The phenomena are explained with the differences in chemical composition and atom diffusion in the glassy grain interiors and in the GGI regions. This work sheds some light on the deformation mechanisms of NGs and provides guidelines for designing NGs with improved mechanical properties. Full article
Show Figures

Figure 1

9 pages, 3927 KiB  
Article
Electrodeposition of Metallic Tungsten Coating on 9Cr-ODS Steel Substrate from Binary Oxide Molten Salt
by Xiaoxu Dong, Yusha Li, Yajie You, Zeyu Gao and Yingchun Zhang
Coatings 2025, 15(3), 257; https://doi.org/10.3390/coatings15030257 - 21 Feb 2025
Viewed by 659
Abstract
Characteristics of electrodeposited tungsten coatings prepared at 1193 K and varying current density were investigated. The crystal structure and microstructure of tungsten coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoelectron spectroscopy (XPS). The results indicated that pulsed current [...] Read more.
Characteristics of electrodeposited tungsten coatings prepared at 1193 K and varying current density were investigated. The crystal structure and microstructure of tungsten coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoelectron spectroscopy (XPS). The results indicated that pulsed current density significantly influence the tungsten nucleation and electro-crystallization phenomena. The average grain size of the coating becomes larger with increasing current density, which demonstrates that appropriate high cathodic current density can accelerate the growth of grains on the surface of the substrate. The micro-hardness of tungsten coatings increases with increasing thickness and then slightly decreases; the maximum micro-hardness is 589.55 HV, with the oxygen content remaining below 0.03 wt%. Full article
Show Figures

Figure 1

15 pages, 13367 KiB  
Article
Effect of Alloying and Reinforcing Nanocomposites on the Mechanical, Tribological, and Wettability Properties of Pulse-Electrodeposited Ni Coatings
by Aashish John, Adil Saeed and Zulfiqar Ahmad Khan
Micromachines 2025, 16(2), 175; https://doi.org/10.3390/mi16020175 - 31 Jan 2025
Viewed by 995
Abstract
Research into the introduction of alloying and reinforcing nanocomposites into nickel (Ni) coatings has been motivated by the need for tribologically superior coatings that will improve energy efficiency. Using pulse electrodeposition, this work investigates the effects of adding cobalt (Co) as the alloying [...] Read more.
Research into the introduction of alloying and reinforcing nanocomposites into nickel (Ni) coatings has been motivated by the need for tribologically superior coatings that will improve energy efficiency. Using pulse electrodeposition, this work investigates the effects of adding cobalt (Co) as the alloying nanoparticle and silicon carbide (SiC), zirconium oxide (ZrO2), and aluminium oxide (Al2O3) as reinforcing nanocomposites to Ni coatings. The surface properties, mechanical strength, nanotribological behaviour, and wettability of these coatings were analysed. Surface characteristics were evaluated by the use of a Scanning Electron Microscope, revealing a grain dimension reduction of approximately ~7–43% compared to pristine Ni coatings. When alloying and reinforcing nanocomposites were added to Ni coatings, nanoindentation research showed that there was an increase in nanohardness of ~12% to ~69%. This resulted in an improvement in the tribological performance from approximately 2% to 65%.The hydrophilic nature of Ni coatings was observed with wettability analysis. This study demonstrates that nanocomposite reinforcement can be used to customise Ni coatings for applications that require exceptional tribological performance. The results point to the use of Ni-Co coatings for electronics and aerospace sectors, with more improvements possible with the addition of reinforcing nanoparticles. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

19 pages, 26125 KiB  
Article
Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces
by Irene Lau, Adam I. O. Campbell, Debasis Ghosh and Michael A. Pope
Nanomaterials 2025, 15(1), 35; https://doi.org/10.3390/nano15010035 - 29 Dec 2024
Viewed by 1488
Abstract
Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO2 lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries—in particular, full [...] Read more.
Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO2 lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries—in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery. We show that sulfur can be deposited by selective nucleation and growth on the LIG cathode fingers in a supersaturated sulfur solution. Melt imbibition then leads to loadings as high as 3.9 mg/cm2 and 75 wt% sulfur. Lithium metal anodes are electrodeposited onto the LIG anode fingers by a silver-seeded, pulse-reverse-pulse method that enables loadings up to 10.5 mAh/cm2 to be deposited without short-circuiting the interdigitated structure. The resulting binder/separator-free flexible battery achieves a capacity of over 1 mAh/cm2 and an energy density of 200 mWh/cm3. Unfortunately, due to the use of near stoichiometric lithium, the cycle-life is sensitive to lithium degradation. While future work will be necessary to make this a practical, flexible battery, the interdigitated structure is well-suited to future operando and ex situ studies of Li-S and related battery chemistries. Full article
Show Figures

Figure 1

24 pages, 4709 KiB  
Article
Nanoporous Carbon Coatings Direct Li Electrodeposition Morphology and Performance in Li Metal Anode Batteries
by Katharine L. Harrison, Subrahmanyam Goriparti, Daniel M. Long, Rachel I. Martin, Benjamin Warren, Laura C. Merrill, Matthaeus A. Wolak, Alexander Sananes and Michael P. Siegal
Batteries 2025, 11(1), 10; https://doi.org/10.3390/batteries11010010 - 27 Dec 2024
Viewed by 1020
Abstract
Li metal anodes could significantly improve battery energy density. However, Li generally electrodeposits in poorly controlled morphology, leading to safety and performance problems. One factor that controls Li anode performance and electrodeposition morphology is the nature of the electrolyte–current collector interface. Herein, we [...] Read more.
Li metal anodes could significantly improve battery energy density. However, Li generally electrodeposits in poorly controlled morphology, leading to safety and performance problems. One factor that controls Li anode performance and electrodeposition morphology is the nature of the electrolyte–current collector interface. Herein, we modify the Cu current collector interface by depositing precisely controlled nanoporous carbon (NPC) coatings using pulsed laser deposition to develop an understanding of how NPC coating density and thickness impact Li electrodeposition. We find that NPC density and thickness guide Li morphological evolution differently and dictate whether Li deposits at the NPC-Cu or NPC-electrolyte interface. NPC coatings generally lower overpotential for Li electrodeposition, though thicker NPC coatings limit kinetics when cycling at a high rate. Lower-density NPC enables the highest Coulombic efficiency (CE) during calendar aging tests, and higher-density NPC enables the highest CE during cycling tests. Full article
Show Figures

Graphical abstract

Back to TopTop