Nickel Electrocatalysts Obtained by Pulsed Current Electrodeposition from Watts and Citrate Baths for Enhanced Hydrogen Evolution Reaction in Alkaline Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Ni-PGE by Pulsed Current Electrodeposition
2.2. Physico-Chemical Characterization of Ni-PGE
2.3. Performance of Ni-PGE for Hydrogen Evolution Reaction
3. Results and Discussion
3.1. Pulsed Current Electrodeposition of Ni-PGE
3.2. Characterization of Ni-PGE
3.3. Electrocatalytic Activity of Ni-PGE Towards Hydrogen Evolution Reaction
4. Conclusions
- (1)
- The morphology of the Ni deposit strongly depends on the type of bath used for electrodeposition, revealing a heterogeneous, layered structure with dendritic and filament-like growths for the Watts bath and a homogeneous globular morphology, with structures approximately 1 µm in size for the citrate bath;
- (2)
- Linear polarization curves for HER in 1 M KOH solution indicate that increasing the electrodeposition temperature from 25 to 40 °C improves the performance of Ni-PGE obtained from both the Watts and citrate baths at both applied pulsed current densities. Further increasing the electrodeposition temperature to 60 °C has a negative effect, resulting in Ni electrocatalysts with lower HER performance;
- (3)
- Kinetic parameters extracted from the Tafel plots demonstrate higher exchange current density values for all Ni-PGE electrocatalysts as compared to metallic Ni, which is attributed to an increased active surface area;
- (4)
- Chronopotentiometric measurements of HER overpotentials indicate that Ni-PGE-C5 electrocatalyst obtained from the citrate bath at 40 °C and 50 mA cm−2 achieves the best HER performance over time, showing an important overpotential reduction compared to metallic Ni;
- (5)
- EIS analysis revealed the lowest charge transfer resistance for Ni-PGE-C5, indicating enhanced HER kinetics and better electrocatalytic properties.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cdl | Double-layer capacitance |
io | Exchange current density |
Rct | Charge transfer resistance |
Rs | Solution resistance |
AC | Alternating current |
CP | Chronopotentiometry |
CPE | Constant phase element |
EDAX | Energy dispersive X-ray analysis |
EEC | Equivalent electric circuits |
EIS | Electrochemical impedance spectroscopy |
FE-SEM | Field emission scanning electron microscopy |
HER | Hydrogen evolution reaction |
LSV | Linear sweep voltammetry |
OER | Oxygen evolution reaction |
PC | Pulsed current |
PGE | Pencil graphite electrode |
RHE | Reversible hydrogen electrode |
References
- McCrory, C.C.L.; Jung, S.; Ferrer, I.M.; Chatman, S.M.; Peters, J.C.; Jaramillo, T.F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. J. Am. Chem. Soc. 2015, 137, 4347–4357. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Vijayapradeep, S.; Selvaraj, S.C.; Huang, J.; Karthikeyan, S.; Gutru, R.; Logeshwaran, N.; Miyazaki, T.; Mamlouk, M.; Yoo, D.J. An efficient cathode electrocatalyst for anion exchange membrane water electrolyzer. Carbon 2024, 220, 118816. [Google Scholar] [CrossRef]
- Gebremariam, G.K.; Jovanović, A.Z.; Pašti, I.A. Kinetics of Hydrogen Evolution Reaction on Monometallic Bulk Electrodes in Various Electrolytic Solutions. Catalysts 2023, 13, 1373. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, T.; Li, L.; Song, S.; Ding, R. Nickel-based electrodes as catalysts for hydrogen evolution reaction in alkaline media. Ionics 2018, 24, 1121–1127. [Google Scholar] [CrossRef]
- Harada, Y.; Hua, Q.; Harris, L.C.; Yoshida, T.; Gewirth, A.A. Electrodeposition of Fractal Structured Nickel for Hydrogen Evolution Reaction in Alkaline. ChemElectroChem 2024, 11, e202400005. [Google Scholar] [CrossRef]
- Jawhari, A.H.; Hasan, N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy—Future Prospects. Materials 2023, 16, 3760. [Google Scholar] [CrossRef]
- Cieluch, M.; Kazamer, N.; Böhm, L.; Sanden, S.; Zerebecki, S.; Wirkert, F.; Apfel, U.; Brodmann, M. Effect of Electrolyte pH in Additive-Free NiFe Catalyst Electrodeposition for Electro-Catalytic OER Applications. ChemElectroChem 2025, 12, e202400492. [Google Scholar] [CrossRef]
- Raja, M.A.; Arumainathana, S. Comparative study of hydrogen evolution behavior of Nickel Cobalt and Nickel Cobalt Magnesium alloy film prepared by pulsed electrodeposition. Vacuum 2019, 160, 461–466. [Google Scholar] [CrossRef]
- Feng, Y.; Guan, Y.; Zhou, E.; Zhang, X.; Wang, Y. Nanoscale Double-Heterojunctional Electrocatalyst for Hydrogen Evolution. Adv. Sci. 2022, 9, 2201339. [Google Scholar] [CrossRef]
- Li, J.; Chu, D.; Poland, C.; Smith, C.; Nagelli, E.A.; Jaffett, V. XPS Depth Profiling of Surface Restructuring Responsible for Hydrogen Evolution Reaction Activity of Nickel Sulfides in Alkaline Electrolyte. Materials 2025, 18, 549. [Google Scholar] [CrossRef]
- Bhat, K.S.; Nagaraja, H. Nickel selenide nanostructures as an electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 19851–19863. [Google Scholar] [CrossRef]
- Liu, G.; Hou, F.; Peng, S.; Wang, X.; Fang, B. Synthesis, Physical Properties and Electrocatalytic Performance of Nickel Phosphides for Hydrogen Evolution Reaction of Water Electrolysis. Nanomaterials 2022, 12, 2935. [Google Scholar] [CrossRef]
- Danish, M.S.S. Exploring metal oxides for the hydrogen evolution reaction (HER) in the field of nanotechnology. RSC Sustain. 2023, 1, 2180. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Q.; Zhong, Y.; Tahini, H.A.; Shao, Z.; Wang, H. Metal Oxide-Based Materials as an Emerging Family of Hydrogen Evolution Electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392. [Google Scholar] [CrossRef]
- Huo, L.; Jin, C.; Jiang, K.; Bao, Q.; Hu, Z.; Chu, J. Applications of Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Energy Sustain. Res. 2022, 3, 2100189. [Google Scholar] [CrossRef]
- Sadhanala, H.K.; Perelshtein, I.; Gedanken, P.A. Boosting Electrocatalytic Hydrogen Evolution of Nickel foam Supported Nickel Hydroxide by Ruthenium Doping. Chem. Sel. 2020, 5, 9626–9634. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, J.; Cheng, X.; Fritz, M.; Ispas, A.; Bund, A.; Chen, G.; Wang, D.; Schaaf, P. Ni3N-Coated Ni Nanorod Arrays for Hydrogen and Oxygen Evolution in Electrochemical Water Splitting. ACS Appl. Nano Mater. 2020, 3, 10986–10995. [Google Scholar] [CrossRef]
- Faid, A.Y.; Barnett, A.O.; Seland, F.; Sunde, S. Highly Active Nickel-Based Catalyst for Hydrogen Evolution in Anion Exchange Membrane Electrolysis. Catalysts 2018, 8, 614. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, P.; Wang, C.; Yuan, W.; Yang, W.; Shang, X. Electrodeposition of amorphous Ni-Fe-Mo composite as a binder-free and high-performance electrocatalyst for hydrogen generation from alkaline water electrolysis. Int. J. Hydrogen Energy 2023, 48, 33130–33138. [Google Scholar] [CrossRef]
- Fernández-Valverde, S.; Ordóñez-Regil, E.; Cabañas-Moreno, J.G.; Solorza-Feria, O. Electrochemical Behavior of Ni-Mo Electrocatalyst for Water Electrolysis. J. Mex. Chem. Soc. 2019, 54, 169–174. [Google Scholar] [CrossRef]
- Deng, Y.; Lai, W.; Xu, B. A Mini Review on Doped Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction. Energies 2020, 13, 4651. [Google Scholar] [CrossRef]
- Wang, X.; Tian, H.; Zhu, L.; Li, S.; Cui, X. Synergetic Catalytic Effect between Ni and Co in Bimetallic Phosphide Boosting Hydrogen Evolution Reaction. Nanomaterials 2024, 14, 853. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zang, P.J.; Li, P.W.; Li, J.; Zou, Q.; Zhou, S.; Su, J.; Wang, P.Y. Three-Dimensional Transition Metal Phosphide Heteronanorods for Efficient Overall Water Splitting. ChemSusChem 2020, 13, 3718–3725. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, J.; Qi, Y.; Wang, X.; Wang, H.; Li, M.; Liu, S.; Li, C. Quasi-Amorphous Metallic Nickel Nanopowder as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution. Adv. Sci. 2018, 5, 1801216. [Google Scholar] [CrossRef] [PubMed]
- Arcas, R.; Koshino, Y.; Mas-Marza, E.; Tsuji, R.; Masutani, H.; Miura-Fujiwara, E.; Haruyama, Y.; Nakashima, S.; Ito, S.; Fabregat-Santiago, F. Pencil graphite rods decorated with nickel and nickel–iron as low-cost oxygen evolution reaction electrodes. Sustain. Energy Fuels 2021, 5, 3929. [Google Scholar] [CrossRef]
- Poimenidis, I.A.; Moustaizis, S.D.; Papakosta, N.; Tsanakas, M.D.; Klini, A.; Loukakos, P.A. Electrodeposition of Ni particles on laser nanostructured electrodes for enhanced hydrogen evolution reaction. Mater. Today Proc. 2022, 67, 953–958. [Google Scholar] [CrossRef]
- Xu, C.; Chen, P.; Hu, B.; Xiang, Q.; Cen, Y.; Hu, B.; Liu, L.; Liu, Y.; Yu, D.; Chen, C. Porous nickel electrodes with controlled texture for the hydrogen evolution reaction and sodium borohydride electrooxidation. CrystEngComm 2020, 22, 4228–4237. [Google Scholar] [CrossRef]
- Elsharkawy, S.; Kutyła, D.; Zabinski, P. The Influence of the Magnetic Field on Ni Thin Film Preparation by Electrodeposition Method and Its Electrocatalytic Activity towards Hydrogen Evolution Reaction. Coatings 2023, 13, 1816. [Google Scholar] [CrossRef]
- Boubatra, M.; Azizi, A.; Schmerber, G.; Dinia, A. The influence of pH electrolyte on the electrochemical deposition and properties of nickel thin films. Ionics 2012, 18, 425–432. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Yang, P.; Zhou, H.; Xi, W.; Duan, J.; Ratova, M.; Wu, D.; Jiang, X. Recent advances in pulsed electrochemical techniques: Synthesis of electrode materials and electrocatalytic reactions. Surf. Interfaces 2024, 50, 104519. [Google Scholar] [CrossRef]
- Boukhouiete, A.; Boumendjel, S.; Sobhi, N.E.H.; Creus, J. Microstructural investigation of nickel deposits obtained by pulsed current. J. Ind. Chem. Soc. 2022, 99, 100331. [Google Scholar] [CrossRef]
- Balint, L.-C.; Hulka, I.; Kellenberger, A. Pencil Graphite Electrodes Decorated with Platinum Nanoparticles as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Materials 2022, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Torrinha, A.; Amorim, C.G.; Montenegro, M.C.; Araújo, A.N. Biosensing based on pencil graphite electrodes. Talanta 2018, 190, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Habibi, B.; Farhadi, K.; Minaie, E. Electrodeposited pectin/reduced carbon dots scaffold on the pencil graphite electrode as a support of electroloaded nickel nanoparticles for electrocatalytic purpose. Int. J. Hydrogen Energy 2024, 91, 1452–1462. [Google Scholar] [CrossRef]
- Kayan, D.B.; Koçak, D.; İlhan, M.; Koca, A. Electrocatalytic hydrogen production on a modified pencil graphite electrode. Int. J. Hydrogen Energy 2017, 42, 2457–2463. [Google Scholar] [CrossRef]
- Melo, L.C.; de Lima-Neto, P.; Correia, A.N. The influence of citrate and tartrate on the electrodeposition and surface morphology of Cu–Ni layers. J. Appl. Electrochem. 2011, 41, 415–422. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Wang, Z.; Guo, H. Nickel electrodeposition from novel citrate bath. Trans. Nonferrous Met. Soc. China 2017, 17, 1300–1306. [Google Scholar] [CrossRef]
- Bigos, A.; Wolowicz, M.; Janusz-Skuza, M.; Starowicz, Z.; Szczerba, M.J.; Bogucki, R.; Beltowska-Lehman, E. Citrate-based baths for electrodeposition of nanocrystalline nickel coatings with enhanced hardness. J. Alloys Compd. 2021, 805, 156857. [Google Scholar] [CrossRef]
- Lasia, A.; Rami, A. Kinetics of hydrogen evolution on nickel electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1990, 294, 123–141. [Google Scholar] [CrossRef]
- Krstajič, N.; Popovič, M.; Grgur, B.; Vojnovič, M.; Sepa, D. On the kinetics of hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J. Electroanal. Chem. 2001, 512, 16–26. [Google Scholar] [CrossRef]
- Franceschini, E.A.; Lacconi, G.I.; Corti, H.R. Kinetics of the hydrogen evolution on nickel in alkaline solution: New insight from rotating disk electrode and impedance spectroscopy analysis. Electrochim. Acta 2015, 159, 210–218. [Google Scholar] [CrossRef]
- Kellenberger, A.; Vaszilcsin, N.; Brandl, W.; Duteanu, N. Kinetics of hydrogen evolution reaction on skeleton nickel and nickel–titanium electrodes obtained by thermal arc spraying technique. Int. J. Hydrogen Energy 2007, 32, 3258–3265. [Google Scholar] [CrossRef]
- Nikolic, V.M.; Maslovara, S.L.J.; Tasic, G.S.; Brdaric, T.P.; Lausevic, P.Z.; Radak, B.B.; Kaninski, M.P.M. Kinetics of hydrogen evolution reaction in alkaline electrolysis on a Ni cathode in the presence of Ni–Co–Mo based ionic activators. Appl. Catal. B 2015, 179, 88–94. [Google Scholar] [CrossRef]
- Horvat-Radošević, V.; Kvastek, K. Impedance Spectra of the Hydrogen Evolution Reaction at Low Cathodic Overpotentials. Croat. Chem. Acta 2003, 76, 313–322. [Google Scholar]
- Crețu, R.; Kellenberger, A.; Vaszilcsin, N. Enhancement of hydrogen evolution reaction on platinum cathode by proton carriers. Int. J. Hydrogen Energy 2013, 38, 11685–11694. [Google Scholar] [CrossRef]
- Choquette, Y.; Brossard, L.; Lasia, A.; Menard, H. Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite-Coated Electrode by AC Impedance Technique. J. Electrochem. Soc. 1990, 137, 1723. [Google Scholar] [CrossRef]
- Brug, G.J.; van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element. J. Electroanal. Chem. Interfacial Electrochem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Gateman, S.M.; Gharbi, O.; Gomes de Melo, H.; Ngo, K.; Turmine, M.; Vivier, V. On the use of a constant phase element (CPE) in electrochemistry. Curr. Opin. Electrochem. 2022, 36, 101133. [Google Scholar] [CrossRef]
- Perović, I.; Marčeta Kaninski, M.; Tasić, G.; Maslovara, S.; Laušević, P.; Seović, M.; Nikolić, V. Enhanced Catalytic Activity and Energy Savings with Ni-Zn-Mo Ionic Activators for Hydrogen Evolution in Alkaline Electrolysis. Materials 2023, 16, 5268. [Google Scholar] [CrossRef]
- Manazoğlu, M.; Hapçı, G.; Orhan, G. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Al-kaline Water Electrolysis. J. Mater. Eng. Perform. 2016, 25, 130–137. [Google Scholar] [CrossRef]
- Llorente, V.B.; Diaz, L.A.; Lacconi, G.I.; Abuin, G.C.; Franceschini, E.A. Effect of duty cycle on NiMo alloys prepared by pulsed electrodeposition for hydrogen evolution reaction. J. Alloys Compd. 2022, 897, 163161. [Google Scholar] [CrossRef]
- Bao, F.; Kemppainen, E.; Dorbandt, I.; Bors, R.; Xi, F.; Schlatmann, R.; van de Krol, R.; Calnan, S. Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel-Molybdenum in Acidic, Near-Neutral, and Alkaline Conditions. ChemElectroChem 2020, 8, 195–208. [Google Scholar] [CrossRef]
- Tao, S.; Yang, F.; Schuch, J.; Jaegermann, W.; Kaiser, B. Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition. ChemSusChem 2018, 11, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.N.; Oshchepkov, A.G.; Cherstiouk, O.V.; Simonov, P.A.; Nazmutdinov, R.R.; Savinova, E.R.; Bonnefont, A. Influence of the NaOH Concentration on the Hydrogen Electrode Reaction Kinetics of Ni and NiCu Electrodes. ChemElectroChem 2020, 7, 1438–1447. [Google Scholar] [CrossRef]
- Solmaz, R.; Kardas, G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta 2009, 54, 3726–3734. [Google Scholar] [CrossRef]
Bath Type | Composition | Concentration | pH |
---|---|---|---|
Citrate | Na3C6H5O7·5H2O NiSO4·6 H2O | 0.3 mol L−1 0.2 mol L−1 | 8 |
Watts | NiSO4·6 H2O NiCl2·6 H2O H3BO3 | 300 g L−1 45 g L−1 30 g L−1 | 2 |
Electrode | Pulsed Current Density (mA cm−2) | Temperature (°C) | Electrodeposition Conditions |
---|---|---|---|
Ni-PGE-W1 | 50 | 25 | Watts bath pH = 2 |
Ni-PGE-W2 | 50 | 40 | |
Ni-PGE-C1 | 25 | 25 | Citrate bath pH = 8 |
Ni-PGE-C2 | 25 | 40 | |
Ni-PGE-C3 | 25 | 60 | |
Ni-PGE-C4 | 50 | 25 | |
Ni-PGE-C5 | 50 | 40 | |
Ni-PGE-C6 | 50 | 60 |
Electrode | io (mA cm−2) | b (mV dec−1) | η @ 10 mA cm−2 | η @ 50 mA cm−2 | η @ 100 mA cm−2 |
---|---|---|---|---|---|
Ni | 0.28 | −133 | −200 | −301 | −380 |
Ni-PGE-W1 | 0.63 | −176 | −269 | −384 | – |
Ni-PGE-W2 | 0.67 | −122 | −213 | −327 | −396 |
Ni-PGE-C1 | 0.60 | −218 | −230 | −336 | −420 |
Ni-PGE-C2 | 0.61 | −175 | −226 | −326 | −396 |
Ni-PGE-C3 | 0.48 | −204 | −251 | −370 | – |
Ni-PGE-C4 | 0.60 | −218 | −219 | −335 | −422 |
Ni-PGE-C5 | 0.93 | −208 | −210 | −314 | −386 |
Ni-PGE-C6 | 0.53 | −243 | −247 | −356 | – |
Electrode | RS (Ω cm2) | CPE-T (F cm−2 sn−1) | n | Rct (Ω cm2) | Cdl (µF cm−2) | Chi2 |
---|---|---|---|---|---|---|
Ni | 1.3 (0.7%) | 1.49 × 10−4 (6.2%) | 0.95 (0.8%) | 5.0 (0.8%) | 99.8 | 3.36 × 10−3 |
Ni-PGE-C2 | 1.1 (0.7%) | 2.99 × 10−4 (6.1%) | 0.90 (0.8%) | 4.7 (0.9%) | 131.4 | 3.39 × 10−3 |
Ni-PGE-C3 | 1.0 (0.7%) | 3.77 × 10−4 (4.6%) | 0.84 (0.7%) | 6.9 (0.8%) | 85.4 | 1.97 × 10−3 |
Ni-PGE-C4 | 1.0 (0.8%) | 7.36 × 10−5 (4.9%) | 0.95 (0.6%) | 8.8 (0.8%) | 43.5 | 2.00 × 10−3 |
Ni-PGE-C5 | 1.1 (0.6%) | 2.47 × 10−4 (6.2%) | 0.91 (0.8%) | 3.5 (0.9%) | 113.9 | 1.96 × 10−3 |
Ni-PGE-C6 | 0.9 (0.9%) | 3.82 × 10−4 (5.2%) | 0.85 (0.7%) | 8.0 (1.0%) | 100.1 | 2.95 × 10−3 |
Ni-PGE-W1 | 1.1 (0.8%) | 8.63 × 10−5 (4.0%) | 0.93 (0.5%) | 16.7 (0.7%) | 44.8 | 2.50 × 10−3 |
Ni-PGE-W2 | 0.9 (0.8%) | 3.74 × 10−4 (4.9%) | 0.85 (0.7%) | 6.3 (0.8%) | 76.7 | 2.12 × 10−3 |
Electrode | Deposition Bath/pH | Testing Solution | io (mA cm−2) | b (mV) | η @ 10 mA cm −2 | η @ 100 mA cm −2 | Reference |
---|---|---|---|---|---|---|---|
Ni-PGE-C5 | Citrate/pH = 8 | 1 M KOH | 0.93 | −208 | −210 | −392 | This work |
Ni-PGE-W2 | Watts/pH = 2 | 1 M KOH | 0.67 | −122 | −213 | −432 | This work |
Ni thin film | Citrate/pH = 1.47 | 1 M NaOH | 1.98 | −118 | −231 | over −400 * | [28] |
NiMo-1 | Citrate/pH = 10.5 | 1 M NaOH | 1.0 | −192 | −185 * | −384 | [50] |
NiMo30% | Citrate/pH = 9 | 1 M KOH | 0.487 | −124 | −180 | n/a | [51] |
NiMo | Citrate/pH = 10 | 1 M KOH | 0.93 | −152 | −154 | n/a | [52] |
Ni/NiO/Ni(OH)2 | NiCl2/acid | 0.1 M KOH | 0.16 | −118 | −210 | n/a | [53] |
Ni/NiO/Ni(OH)2 | NiCl2/acid | 1 M KOH | 0.057 | −88 | −197 | n/a | [53] |
Ni/NiOx | Ni oxidation | 1 M NaOH | 0.0365 | n/a | n/a | n/a | [54] |
Ni | Watts/pH = 3.5 | 1 M NaOH | 0.012 | −93 | −263 | −350 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojîncă, R.; Muntean, R.; Crişan, R.; Kellenberger, A. Nickel Electrocatalysts Obtained by Pulsed Current Electrodeposition from Watts and Citrate Baths for Enhanced Hydrogen Evolution Reaction in Alkaline Media. Materials 2025, 18, 2775. https://doi.org/10.3390/ma18122775
Bojîncă R, Muntean R, Crişan R, Kellenberger A. Nickel Electrocatalysts Obtained by Pulsed Current Electrodeposition from Watts and Citrate Baths for Enhanced Hydrogen Evolution Reaction in Alkaline Media. Materials. 2025; 18(12):2775. https://doi.org/10.3390/ma18122775
Chicago/Turabian StyleBojîncă, Raluca, Roxana Muntean, Rebeca Crişan, and Andrea Kellenberger. 2025. "Nickel Electrocatalysts Obtained by Pulsed Current Electrodeposition from Watts and Citrate Baths for Enhanced Hydrogen Evolution Reaction in Alkaline Media" Materials 18, no. 12: 2775. https://doi.org/10.3390/ma18122775
APA StyleBojîncă, R., Muntean, R., Crişan, R., & Kellenberger, A. (2025). Nickel Electrocatalysts Obtained by Pulsed Current Electrodeposition from Watts and Citrate Baths for Enhanced Hydrogen Evolution Reaction in Alkaline Media. Materials, 18(12), 2775. https://doi.org/10.3390/ma18122775