Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = pseudo-allergic reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2116 KiB  
Review
Mast Cells at the Crossroads of Hypersensitivity Reactions and Neurogenic Inflammation
by Ernesto Aitella, Ciro Romano, Lia Ginaldi and Domenico Cozzolino
Int. J. Mol. Sci. 2025, 26(3), 927; https://doi.org/10.3390/ijms26030927 - 23 Jan 2025
Cited by 3 | Viewed by 4820
Abstract
Although mast cells have long been known, they are not yet fully understood. They are traditionally recognized for their role in allergic reactions through the IgE/FcεRI axis, but different groups of surface receptors have since been characterized, which appear to be involved in [...] Read more.
Although mast cells have long been known, they are not yet fully understood. They are traditionally recognized for their role in allergic reactions through the IgE/FcεRI axis, but different groups of surface receptors have since been characterized, which appear to be involved in the manifestation of peculiar clinical features. In particular, MRGPRX2 has emerged as a crucial receptor involved in degranulating human skin mast cells. Because of mast cells’ close proximity to peripheral nerve endings, it may play a key role in neuroimmune interactions. This paper provides an overview of mast cell contributions to hypersensitivity and so-called “pseudoallergic” reactions, as well as an update on neuroinflammatory implications in the main models of airway and skin allergic diseases. In particular, the main cellular characteristics and the most relevant surface receptors involved in MC pathophysiology have been reappraised in light of recent advancements in MC research. Molecular and clinical aspects related to MC degranulation induced by IgE or MRGPRX2 have been analyzed and compared, along with their possible repercussions and limitations on future therapeutic perspectives. Full article
(This article belongs to the Special Issue Roles of Mast Cells in Immune-Induced Diseases)
Show Figures

Figure 1

13 pages, 1351 KiB  
Review
The Human Health Impacts of the Red Imported Fire Ant in the Western Pacific Region Context: A Narrative Review
by Diego J. Lopez, Kenneth D. Winkel, Troy Wanandy, Sheryl van Nunen, Kirsten P. Perrett and Adrian J. Lowe
Trop. Med. Infect. Dis. 2024, 9(4), 69; https://doi.org/10.3390/tropicalmed9040069 - 26 Mar 2024
Cited by 8 | Viewed by 5699
Abstract
Background: The red imported fire ant (RIFA) is one of the world’s most destructive invasive species. RIFA stings are painful and can lead to allergic reactions, including life-threatening anaphylaxis, yet health impacts remain inadequately defined. Methods: We searched MEDLINE (Ovid) and Google Scholar [...] Read more.
Background: The red imported fire ant (RIFA) is one of the world’s most destructive invasive species. RIFA stings are painful and can lead to allergic reactions, including life-threatening anaphylaxis, yet health impacts remain inadequately defined. Methods: We searched MEDLINE (Ovid) and Google Scholar (grey literature) from inception until 20 September 2023 for articles in English using search terms related to red imported fire ants and allergies, including anaphylaxis. Results: Approximately a third of the population in RIFA-infested areas are stung each year. The most frequent reaction is a sterile 1–2 mm pseudo pustule on the skin. Approximately 20% of stings cause a large local reaction and between about 0.5% and 2% stings cause a systemic allergic reaction which can range from skin symptoms to life-threatening anaphylaxis. Local biodiversity is also significantly disrupted by invading RIFA and may lead to complex adverse effects on human health, from agriculture losses to expanded ranges for pathogen vectors. Conclusions: The potential for red imported fire ants to establish themselves as an invasive species in the Western Pacific presents a substantial and costly health issue. Successful eradication and surveillance programs, to identify and eradicate new incursions, would avoid substantial health impacts and costs. Full article
Show Figures

Figure 1

24 pages, 1899 KiB  
Review
Modulation of the Mas-Related G Protein-Coupled Receptor X2 (MRGPRX2) by Xenobiotic Compounds and Its Relevance to Human Diseases
by Alicja Dziadowiec, Iwona Popiolek, Mateusz Kwitniewski and Grzegorz Porebski
J. Xenobiot. 2024, 14(1), 380-403; https://doi.org/10.3390/jox14010024 - 13 Mar 2024
Cited by 4 | Viewed by 4534
Abstract
Mast cells (MCs) are immune cells that reside in tissues; particularly in the skin, and in the gastrointestinal and respiratory tracts. In recent years, there has been considerable interest in the Mas-Related G Protein-Coupled Receptor X2 (MRGPRX2), which is present on the surface [...] Read more.
Mast cells (MCs) are immune cells that reside in tissues; particularly in the skin, and in the gastrointestinal and respiratory tracts. In recent years, there has been considerable interest in the Mas-Related G Protein-Coupled Receptor X2 (MRGPRX2), which is present on the surface of MCs and can be targeted by multiple exogenous and endogenous ligands. It is potentially implicated in non-IgE-mediated pseudoallergic reactions and inflammatory conditions such as asthma or atopic dermatitis. In this paper, we review natural products and herbal medicines that may potentially interact with MRGPRX2. They mainly belong to the classes of polyphenols, flavonoids, coumarins, and alkaloids. Representative compounds include rosmarinic acid, liquiritin from licorice extract, osthole, and sinomenine, respectively. While evidence-based medicine studies are still required, these compounds have shown diverse effects, such as antioxidant, analgesic, anti-inflammatory, or neuroprotective. However, despite potential beneficial effects, their use is also burdened with risks of fatal reactions such as anaphylaxis. The role of MRGPRX2 in these reactions is a subject of debate. This review explores the literature on xenobiotic compounds from herbal medicines that have been shown to act as MRGPRX2 ligands, and their potential clinical significance. Full article
(This article belongs to the Section Natural Products/Herbal Medicines)
Show Figures

Figure 1

21 pages, 5863 KiB  
Article
Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments
by Nada S. Al-Kadhi, Ghadah M. Al-Senani, Faisal K. Algethami, Reem K. Shah, Fawaz A. Saad, Alaa M. Munshi, Khalil ur Rehman, Lotfi Khezami and Ehab A. Abdelrahman
Inorganics 2024, 12(3), 69; https://doi.org/10.3390/inorganics12030069 - 24 Feb 2024
Cited by 9 | Viewed by 3233
Abstract
Congo red dye is classified as a toxic chemical and can be harmful if ingested, inhaled, or in contact with the skin or eyes. It can cause irritation, allergic reactions, and skin sensitization in some individuals. Thus, in this paper, CaFe2O [...] Read more.
Congo red dye is classified as a toxic chemical and can be harmful if ingested, inhaled, or in contact with the skin or eyes. It can cause irritation, allergic reactions, and skin sensitization in some individuals. Thus, in this paper, CaFe2O4 nanoparticles were produced by a simple Pechini sol-gel approach and used as an adsorbent material for the efficient disposal of Congo red dye from aqueous solutions. The maximum adsorption capacity of the CaFe2O4 towards Congo red dye is 318.47 mg/g. Furthermore, the synthesized CaFe2O4 nanoparticles exhibit an average crystal size of 24.34 nm. Scanning electron microscopy (SEM) examination showed that the CaFe2O4 nanoparticles are basically ball-like particles with a mean grain size of 540.54 nm. Moreover, transmission electron microscopy (TEM) examination showed that the CaFe2O4 sample revealed aggregated spherical particles with a mean diameter of 27.48 nm. The Energy-dispersive X-ray spectroscopy (EDS) pattern reveals that the produced CaFe2O4 nanoparticles are composed of Ca, Fe, and O elements, with an atomic ratio of 1:2:4 of these elements, respectively. The disposal of Congo red dye by the synthesized CaFe2O4 nanoparticles is chemical, spontaneous, exothermic, perfectly aligned with the pseudo-second-order kinetic model, and exhibited excellent conformity with the Langmuir equilibrium isotherm. Full article
Show Figures

Figure 1

12 pages, 1102 KiB  
Commentary
Beyond Allergies—Updates on The Role of Mas-Related G-Protein-Coupled Receptor X2 in Chronic Urticaria and Atopic Dermatitis
by Liron Lerner, Magda Babina, Torsten Zuberbier and Katarina Stevanovic
Cells 2024, 13(3), 220; https://doi.org/10.3390/cells13030220 - 25 Jan 2024
Cited by 11 | Viewed by 3153
Abstract
Mast cells (MCs) are an important part of the immune system, responding both to pathogens and toxins, but they also play an important role in allergic diseases, where recent data show that non-IgE-mediated activation is also of relevance, especially in chronic urticaria (CU) [...] Read more.
Mast cells (MCs) are an important part of the immune system, responding both to pathogens and toxins, but they also play an important role in allergic diseases, where recent data show that non-IgE-mediated activation is also of relevance, especially in chronic urticaria (CU) and atopic dermatitis (AD). Skin MCs express Mas-related G-protein-coupled receptor X2 (MRGPRX2), a key protein in non-IgE-dependent MC degranulation, and its overactivity is one of the triggering factors for the above-mentioned diseases, making MRGPRX2 a potential therapeutic target. Reviewing the latest literature revealed our need to focus on the discovery of MRGPRX2 activators as well as the ongoing vast research towards finding specific MRGPRX2 inhibitors for potential therapeutic approaches. Most of these studies are in their preliminary stages, with one drug currently being investigated in a clinical trial. Future studies and improved model systems are needed to verify whether any of these inhibitors may have the potential to be the next therapeutic treatment for CU, AD, and other pseudo-allergic reactions. Full article
(This article belongs to the Special Issue New Insights into Mast Cells Biology)
Show Figures

Figure 1

19 pages, 5153 KiB  
Article
Simple Synthesis and Characterization of Cobalt Ferrite Nanoparticles for the Successful Adsorption of Indigo Carmine Dye from Aqueous Media
by Asma S. Al-Wasidi and Ehab A. Abdelrahman
Inorganics 2023, 11(12), 453; https://doi.org/10.3390/inorganics11120453 - 24 Nov 2023
Cited by 12 | Viewed by 2435
Abstract
Indigo carmine dye falls into the category of toxic chemicals, potentially leading to irritation and allergic reactions in certain individuals. Thus, this study employed the Pechini sol–gel strategy to easily produce CoFe2O4 nanoparticles, which serve as an effective adsorbent for [...] Read more.
Indigo carmine dye falls into the category of toxic chemicals, potentially leading to irritation and allergic reactions in certain individuals. Thus, this study employed the Pechini sol–gel strategy to easily produce CoFe2O4 nanoparticles, which serve as an effective adsorbent for the disposal of indigo carmine dye from aqueous solutions. The maximum adsorption capacity of CoFe2O4 for indigo carmine dye was determined to be 421.94 mg/g. The synthesized CoFe2O4 nanoparticles exhibited an average crystallite size of 18.75 nm. SEM analysis revealed that these nanoparticles were nearly spherical, with an average grain size of 198.32 nm. Additionally, TEM analysis indicated a fully agglomerated spherical morphology for the CoFe2O4 sample, with an average diameter of 15.37 nm. The EDS spectrum confirmed that the synthesized CoFe2O4 nanoparticles consisted of Co, Fe, and O elements, with respective weight percentages of 17.82%, 49.46%, and 32.72%. The removal of indigo carmine dye by the synthesized CoFe2O4 is spontaneous, chemical, exothermic, closely fitting the pseudo-second-order kinetic model, and demonstrating a strong concordance with the Langmuir equilibrium isotherm. Full article
Show Figures

Graphical abstract

11 pages, 520 KiB  
Article
Experimental Evaluation of the Hypersensitivity Reactions of a New Glycopeptide Antibiotic Flavancin in Animal Models
by Michael I. Treshchalin, Vasilisa A. Polozkova, Elena I. Moiseenko, Andrey E. Shchekotikhin, Svetlana A. Dovzhenko, Mikhail B. Kobrin and Eleonora R. Pereverzeva
Pharmaceuticals 2023, 16(11), 1569; https://doi.org/10.3390/ph16111569 - 7 Nov 2023
Cited by 1 | Viewed by 1694
Abstract
Glycopeptide antibiotics are still in demand in clinical practice for treating infections caused by resistant gram-positive pathogens; however, their use is limited due to severe adverse reactions. Their predominant types of side effects are immunoglobulin E-mediated or nonmediated hypersensitivity reactions. Therefore, the development [...] Read more.
Glycopeptide antibiotics are still in demand in clinical practice for treating infections caused by resistant gram-positive pathogens; however, their use is limited due to severe adverse reactions. Their predominant types of side effects are immunoglobulin E-mediated or nonmediated hypersensitivity reactions. Therefore, the development of new glycopeptide antibiotics with improved toxicity profiles remains an important objective in advancing modern antimicrobial agents. We investigated a new eremomycin aminoalkylamide flavancin, its anaphylactogenic properties, influence on histamine levels in blood plasma, pseudoallergic inflammatory reaction on concanavalin A and the change in the amount of flavancin in the blood plasma after administration. It has been shown that flavancin does not demonstrate anaphylactogenic properties. The injection of flavancin resulted in a level of histamine in the blood three times lower than that caused by vancomycin. The therapeutic dose of vancomycin led to a statistically significant increase in the concanavalin A response index compared to flavancin (54% versus 3.7%). Thus, flavancin does not cause a pseudo-allergic reaction. The rapid decrease in flavancin concentration in the blood and the low levels of histamine in the plasma lead us to assume that any pseudoallergic reactions resulting from flavancin application, if they do occur in clinical practice, will be significantly less compared to the use of vancomycin. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 9747 KiB  
Article
Formononetin Inhibits Mast Cell Degranulation to Ameliorate Compound 48/80-Induced Pseudoallergic Reactions
by Zi-Wen Zhou, Xue-Yan Zhu, Shu-Ying Li, Si-En Lin, Yu-Han Zhu, Kunmei Ji and Jia-Jie Chen
Molecules 2023, 28(13), 5271; https://doi.org/10.3390/molecules28135271 - 7 Jul 2023
Cited by 12 | Viewed by 3231
Abstract
Formononetin (FNT) is a plant-derived isoflavone natural product with anti-inflammatory, antioxidant, and anti-allergic properties. We showed previously that FNT inhibits immunoglobulin E (IgE)-dependent mast cell (MC) activation, but the effect of FNT on IgE-independent MC activation is yet unknown. Our aim was to [...] Read more.
Formononetin (FNT) is a plant-derived isoflavone natural product with anti-inflammatory, antioxidant, and anti-allergic properties. We showed previously that FNT inhibits immunoglobulin E (IgE)-dependent mast cell (MC) activation, but the effect of FNT on IgE-independent MC activation is yet unknown. Our aim was to investigate the effects and possible mechanisms of action of FNT on IgE-independent MC activation and pseudoallergic inflammation. We studied the effects of FNT on MC degranulation in vitro with a cell culture model using compound C48/80 to stimulate either mouse bone marrow-derived mast cells (BMMCs) or RBL-2H3 cells. We subsequently measured β-hexosaminase and histamine release, the expression of inflammatory factors, cell morphological changes, and changes in NF-κB signaling. We also studied the effects of FNT in several in vivo murine models of allergic reaction: C48/80-mediated passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and 2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD). The results showed that FNT inhibited IgE-independent degranulation of MCs, evaluated by a decrease in the release of β-hexosaminase and histamine and a decreased expression of inflammatory factors. Additionally, FNT reduced cytomorphological elongation and F-actin reorganization and attenuated NF-κB p65 phosphorylation and NF-κB-dependent promoter activity. Moreover, the administration of FNT alleviated pseudoallergic responses in vivo in mouse models of C48/80-stimulated PCA and ASA, and DNCB-induced AD. In conclusion, we suggest that FNT may be a novel anti-allergic drug with great potential to alleviate pseudoallergic responses via the inhibition of IgE-independent MC degranulation and NF-κB signaling. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 926 KiB  
Article
Anaphylatoxin Complement 5a in Pfizer BNT162b2-Induced Immediate-Type Vaccine Hypersensitivity Reactions
by Xin Rong Lim, Grace Yin Lai Chan, Justina Wei Lynn Tan, Carol Yee Leng Ng, Choon Guan Chua, Guat Bee Tan, Stephrene Seok Wei Chan, Kiat Hoe Ong, Ying Zhi Tan, Sarah Hui Zhen Tan, Claire Min Li Teo, Samuel Shang Ming Lee, Bernard Yu Hor Thong and Bernard Pui Lam Leung
Vaccines 2023, 11(6), 1020; https://doi.org/10.3390/vaccines11061020 - 23 May 2023
Cited by 6 | Viewed by 2845
Abstract
The underlying immunological mechanisms of immediate-type hypersensitivity reactions (HSR) to COVID-19 vaccines are poorly understood. We investigate the mechanisms of immediate-type hypersensitivity reactions to the Pfizer BNT162b2 vaccine and the response of antibodies to the polyethylene glycol (PEG)ylated lipid nanoparticle after two doses [...] Read more.
The underlying immunological mechanisms of immediate-type hypersensitivity reactions (HSR) to COVID-19 vaccines are poorly understood. We investigate the mechanisms of immediate-type hypersensitivity reactions to the Pfizer BNT162b2 vaccine and the response of antibodies to the polyethylene glycol (PEG)ylated lipid nanoparticle after two doses of vaccination. Sixty-seven participants, median age 35 and 77.3% females who tolerated two doses of the BNT162b2 vaccine (non-reactors), were subjected to various blood-sampling time points. A separate group of vaccine reactors (10 anaphylaxis and 37 anonymised tryptase samples) were recruited for blood sampling. Immunoglobulin (Ig)G, IgM and IgE antibodies to the BNT162b2 vaccine, biomarkers associated with allergic reaction, including tryptase for anaphylaxis, complement 5a(C5a), intercellular adhesion molecule 1 (ICAM-1) for endothelial activation and Interleukin (IL)-4, IL-10, IL-33, tumour necrosis factor (TNF) and monocyte chemoattractant protein (MCP-1), were measured. Basophil activation test (BAT) was performed in BNT162b2-induced anaphylaxis patients by flow cytometry. The majority of patients with immediate-type BNT162b2 vaccine HSR demonstrated raised C5a and Th2-related cytokines but normal tryptase levels during the acute reaction, together with significantly higher levels of IgM antibodies to the BNT162b2 vaccine (IgM 67.2 (median) vs. 23.9 AU/mL, p < 0.001) and ICAM-1 when compared to non-reactor controls. No detectable IgE antibodies to the BNT162b2 vaccine were found in these patients. The basophil activation tests by flow cytometry to the Pfizer vaccine, 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol (DMG-PEG) and PEG-2000 were negative in four anaphylaxis patients. Acute hypersensitivity reactions post BNT162b2 vaccination suggest pseudo-allergic reactions via the activation of anaphylatoxins C5a and are independent of IgE-mechanisms. Vaccine reactors have significantly higher levels of anti-BNT162b2 IgM although its precise role remains unclear. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

25 pages, 4954 KiB  
Review
Molecular Mechanisms of Scombroid Food Poisoning
by Yury V. Zhernov, Mark Y. Simanduyev, Olga K. Zaostrovtseva, Ekaterina E. Semeniako, Kseniia I. Kolykhalova, Inna A. Fadeeva, Maria I. Kashutina, Sonya O. Vysochanskaya, Elena V. Belova, Denis V. Shcherbakov, Vitaly A. Sukhov, Ekaterina A. Sidorova and Oleg V. Mitrokhin
Int. J. Mol. Sci. 2023, 24(1), 809; https://doi.org/10.3390/ijms24010809 - 3 Jan 2023
Cited by 18 | Viewed by 11042
Abstract
Scombroid food poisoning (SFP) is a foodborne disease that develops after consumption of fresh fish and, rarely, seafood that has fine organoleptic characteristics but contains a large amount of exogenous histamine. SFP, like other food pseudo-allergic reactions (FPA), is a disorder that is [...] Read more.
Scombroid food poisoning (SFP) is a foodborne disease that develops after consumption of fresh fish and, rarely, seafood that has fine organoleptic characteristics but contains a large amount of exogenous histamine. SFP, like other food pseudo-allergic reactions (FPA), is a disorder that is clinically identical to allergic reactions type I, but there are many differences in their pathogenesis. To date, SFP has been widespread throughout the world and is an urgent problem, although exact epidemiological data on incidence varies greatly. The need to distinguish SFP from true IgE-associated allergy to fish and seafood is one of the most difficult examples of the differential diagnosis of allergic conditions. The most important difference is the absence of an IgE response in SFP. The pathogenesis of SFP includes a complex system of interactions between the body and chemical triggers such as exogenous histamine, other biogenic amines, cis-urocanic acid, salicylates, and other histamine liberators. Because of the wide range of molecular pathways involved in this process, it is critical to understand their differences. This may help predict and prevent poor outcomes in patients and contribute to the development of adequate hygienic rules and regulations for seafood product safety. Despite the vast and lengthy history of research on SFP mechanisms, there are still many blank spots in our understanding of this condition. The goals of this review are to differentiate various molecular mechanisms of SFP and describe methods of hygienic regulation of some biogenic amines that influence the concentration of histamine in the human body and play an important role in the mechanism of SFP. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Allergy and Asthma 2.0)
Show Figures

Figure 1

11 pages, 3703 KiB  
Article
Allantoin Inhibits Compound 48/80-Induced Pseudoallergic Reactions In Vitro and In Vivo
by Ping Zhang, Yanjie Wang, Jingyu Zhang and Tie Hong
Molecules 2022, 27(11), 3473; https://doi.org/10.3390/molecules27113473 - 27 May 2022
Cited by 10 | Viewed by 3745
Abstract
Pseudoallergic reactions are hypersensitivity reactions mediated by an IgE-independent mechanism. Since allantoin (AT)-mediated pseudoallergy has not been studied, in this study, our objective is to investigate the anti-pseudoallergy effect of AT and its underlying mechanism. In vitro, β-hexosaminidase (β-Hex) and histamine (HIS) release [...] Read more.
Pseudoallergic reactions are hypersensitivity reactions mediated by an IgE-independent mechanism. Since allantoin (AT)-mediated pseudoallergy has not been studied, in this study, our objective is to investigate the anti-pseudoallergy effect of AT and its underlying mechanism. In vitro, β-hexosaminidase (β-Hex) and histamine (HIS) release assays, inflammatory cytokine assays, toluidine blue staining, and F-actin microfilament staining were used to evaluate the inhibitory effect of AT in RBL-2H3 cells stimulated with Compound 48/80 (C48/80). Western blot analysis is further performed to investigate intracellular calcium fluctuation-related signaling pathways. In vivo, Evans Blue extraction, paw swelling, and the diameter of Evans Blue extravasation were evaluated, and skin tissues are examined for histopathological examination in mice with passive cutaneous anaphylaxis (PCA) induced by C48/80. Body temperature is measured, and the levels of cytokines are further determined by ELISA kits in mice with active systemic anaphylaxis (ASA) induced by C48/80. The results show that AT dose-dependently inhibited degranulation in C48/80-stimulated RBL-2H3 cells by inhibiting β-Hex and HIS release, reducing the levels of TNF-α, IL-8, and MCP-1, inhibiting shape changes due to degranulation and disassembling the F-actin cytoskeleton. Furthermore, AT dose-dependently inhibits the phosphorylation of PLCγ and IP3R. In vivo, AT decreased Evans Blue extravasation, paw swelling, and the diameter of Evans Blue extravasation and significantly ameliorate pathological changes and mast cell degranulation in C48/80-induced PCA. Furthermore, AT help the mice recover from the C48/80-induced decrease in body temperature and decreased the levels of cytokines in C48/80-treated ASA mice. Our results indicate that allantoin inhibits compound 48/80-induced pseudoallergic reactions. AT has the potential to be used in IgE-independent anti-allergic and anti-inflammatory therapies. Full article
Show Figures

Figure 1

18 pages, 2418 KiB  
Review
Histamine Intolerance—A Kind of Pseudoallergic Reaction
by Ying Zhao, Xiaoyan Zhang, Hengxi Jin, Lu Chen, Jiang Ji and Zhongwei Zhang
Biomolecules 2022, 12(3), 454; https://doi.org/10.3390/biom12030454 - 15 Mar 2022
Cited by 31 | Viewed by 19179
Abstract
Histamine intolerance (HIT) is a common disorder associated with impaired histamine metabolism. Notwithstanding, it is often misdiagnosed as other diseases because of its lack of specific clinical manifestations. HIT did not gain traction until the early 21st century. In this review, we will [...] Read more.
Histamine intolerance (HIT) is a common disorder associated with impaired histamine metabolism. Notwithstanding, it is often misdiagnosed as other diseases because of its lack of specific clinical manifestations. HIT did not gain traction until the early 21st century. In this review, we will focus on the latest research and elaborate on the clinical manifestations of HIT, including its manifestations in special populations such as atopic dermatitis (AD) and chronic urticaria (CU), as well as the latest understanding of its etiology and pathogenesis. In addition, we will explore the latest treatment strategies for HIT and the treatment of specific cases. Full article
Show Figures

Figure 1

17 pages, 2153 KiB  
Article
Constitutive, Basal, and β-Alanine-Mediated Activation of the Human Mas-Related G Protein-Coupled Receptor D Induces Release of the Inflammatory Cytokine IL-6 and Is Dependent on NF-κB Signaling
by Rohit Arora, Kenny M. Van Theemsche, Samuel Van Remoortel, Dirk J. Snyders, Alain J. Labro and Jean-Pierre Timmermans
Int. J. Mol. Sci. 2021, 22(24), 13254; https://doi.org/10.3390/ijms222413254 - 9 Dec 2021
Cited by 20 | Viewed by 3817
Abstract
G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members [...] Read more.
G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members of MRGPRs are also expressed in mast cells, macrophages, and in cardiovascular tissue, linking them to pseudo-allergic drug reactions and suggesting a pivotal role in the cardiovascular system. However, involvement of the human Mas-related G-protein coupled receptor D (MRGPRD) in the regulation of the inflammatory mediator interleukin 6 (IL-6) has not been demonstrated to date. By stimulating human MRGPRD-expressing HeLa cells with the agonist β-alanine, we observed a release of IL-6. β-alanine-induced signaling through MRGPRD was investigated further by probing downstream signaling effectors along the Gαq/Phospholipase C (PLC) pathway, which results in an IkB kinases (IKK)-mediated canonical activation of nuclear factor kappa-B (NF-κB) and stimulation of IL-6 release. This IL-6 release could be blocked by a Gαq inhibitor (YM-254890), an IKK complex inhibitor (IKK-16), and partly by a PLC inhibitor (U-73122). Additionally, we investigated the constitutive (ligand-independent) and basal activity of MRGPRD and concluded that the observed basal activity of MRGPRD is dependent on the presence of fetal bovine serum (FBS) in the culture medium. Consequently, the dynamic range for IL-6 detection as an assay for β-alanine-mediated activation of MRGPRD is substantially increased by culturing the cells in FBS free medium before treatment. Overall, the observation that MRGPRD mediates the release of IL-6 in an in vitro system, hints at a role as an inflammatory mediator and supports the notion that IL-6 can be used as a marker for MRGPRD activation in an in vitro drug screening assay. Full article
(This article belongs to the Collection G Protein-Coupled Receptor Signaling and Regulation)
Show Figures

Figure 1

20 pages, 2222 KiB  
Review
Molecular Mechanisms of Eosinophilic Esophagitis
by Yury V. Zhernov, Sonya O. Vysochanskaya, Vitaly A. Sukhov, Olga K. Zaostrovtseva, Denis S. Gorshenin, Ekaterina A. Sidorova and Oleg V. Mitrokhin
Int. J. Mol. Sci. 2021, 22(24), 13183; https://doi.org/10.3390/ijms222413183 - 7 Dec 2021
Cited by 18 | Viewed by 8662
Abstract
Food hypersensitivity is a group of diseases arising from a specific immune response that reproduces on exposure to a given food. The current understanding of molecular mechanisms and immunopathology of non-IgE-mediated/mixed food hypersensitivity, e.g., eosinophilic esophagitis, contains many gaps in knowledge. This review [...] Read more.
Food hypersensitivity is a group of diseases arising from a specific immune response that reproduces on exposure to a given food. The current understanding of molecular mechanisms and immunopathology of non-IgE-mediated/mixed food hypersensitivity, e.g., eosinophilic esophagitis, contains many gaps in knowledge. This review aims to provide a modern classification and identify the primary diseases of non-IgE-mediated/mixed food hypersensitivity reactions, delineate the distinctive molecular features, and discuss recent findings in the immunopathology of eosinophilic esophagitis that may become a basis to develop valid biomarkers and novel therapies for this disease. Eosinophilic esophagitis is a recently recognized allergic-mediated disease with eosinophil-predominant esophagus inflammation. Its pathogenesis is a complicated network of interactions and signaling between epithelial, mesenchymal, and immune cells on molecular and intercellular levels. Alterations produced by overactivation of some cytokine signaling pathways, e.g., IL-13 or thymic stromal lymphopoietin (TSLP), were evolved and observed in this review from the viewpoints of molecular, genetic, epigenetic, and transcriptomic changes. Despite substantial experimental data, the reliable and representative mechanism of eosinophilic esophagitis pathogenesis has yet to show itself. So, the place of esophagitis between mixed and non-IgE-mediated allergic disorders and between eosinophilic gastrointestinal disorders currently seems vague and unclear. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Allergy and Asthma 2.0)
Show Figures

Figure 1

20 pages, 701 KiB  
Review
Heme Peroxidases at Unperturbed and Inflamed Mucous Surfaces
by Jürgen Arnhold
Antioxidants 2021, 10(11), 1805; https://doi.org/10.3390/antiox10111805 - 12 Nov 2021
Cited by 14 | Viewed by 4768
Abstract
In our organism, mucous surfaces are important boundaries against the environmental milieu with defined fluxes of metabolites through these surfaces and specific rules for defense reactions. Major mucous surfaces are formed by epithelia of the respiratory system and the digestive tract. The heme [...] Read more.
In our organism, mucous surfaces are important boundaries against the environmental milieu with defined fluxes of metabolites through these surfaces and specific rules for defense reactions. Major mucous surfaces are formed by epithelia of the respiratory system and the digestive tract. The heme peroxidases lactoperoxidase (LPO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO) contribute to immune protection at epithelial surfaces and in secretions. Whereas LPO is secreted from epithelial cells and maintains microbes in surface linings on low level, MPO and EPO are released from recruited neutrophils and eosinophils, respectively, at inflamed mucous surfaces. Activated heme peroxidases are able to oxidize (pseudo)halides to hypohalous acids and hypothiocyanite. These products are involved in the defense against pathogens, but can also contribute to cell and tissue damage under pathological conditions. This review highlights the beneficial and harmful functions of LPO, MPO, and EPO at unperturbed and inflamed mucous surfaces. Among the disorders, special attention is directed to cystic fibrosis and allergic reactions. Full article
Show Figures

Figure 1

Back to TopTop