Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (286)

Search Parameters:
Keywords = proximal chemical analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2554 KiB  
Article
Modeling the Higher Heating Value of Spanish Biomass via Neural Networks and Analytical Equations
by Anbarasan Jayapal, Fernando Ordonez Morales, Muhammad Ishtiaq, Se Yun Kim and Nagireddy Gari Subba Reddy
Energies 2025, 18(15), 4067; https://doi.org/10.3390/en18154067 (registering DOI) - 31 Jul 2025
Viewed by 108
Abstract
Accurate estimation of biomass higher heating value (HHV) is crucial for designing efficient bioenergy systems. In this study, we developed a Backpropagation artificial neural network (ANN) that predicts HHV from routine proximate/ultimate composition data. The network (9-6-6-1 architecture, trained for 15,000 epochs with [...] Read more.
Accurate estimation of biomass higher heating value (HHV) is crucial for designing efficient bioenergy systems. In this study, we developed a Backpropagation artificial neural network (ANN) that predicts HHV from routine proximate/ultimate composition data. The network (9-6-6-1 architecture, trained for 15,000 epochs with learning rate 0.3 and momentum 0.4) was calibrated on 99 diverse Spanish biomass samples (inputs: moisture, ash, volatile matter, fixed carbon, C, H, O, N, S). The optimized ANN achieved strong predictive accuracy (validation R2 ≈ 0.81; mean squared error ≈ 1.33 MJ/kg; MAE ≈ 0.77 MJ/kg), representing a substantial improvement over 54 analytical models despite the known complexity and variability of biomass composition. Importantly, in direct comparisons it significantly outperformed 54 published analytical HHV correlations—the ANN achieved substantially higher R2 and lower prediction error than any fixed-form formula in the literature. A sensitivity analysis confirmed chemically intuitive trends (higher C/H/FC increase HHV; higher moisture/ash/O reduce it), indicating the model learned meaningful fuel-property relationships. The ANN thus provided a computationally efficient and robust tool for rapid, accurate HHV estimation from compositional data. Future work will expand the dataset, incorporate thermal pretreatment effects, and integrate the model into a user-friendly decision-support platform for bioenergy applications. Full article
Show Figures

Figure 1

14 pages, 731 KiB  
Article
Mesquite Pods (Prosopis velutina) as a Functional Ingredient: Characterization and Application in a Meat Product
by Karla Joanna Aispuro-Sainz, Rey David Vargas-Sánchez, Gastón Ramón Torrescano-Urrutia, Brisa del Mar Torres-Martínez and Armida Sánchez-Escalante
Processes 2025, 13(7), 2286; https://doi.org/10.3390/pr13072286 - 17 Jul 2025
Viewed by 245
Abstract
The present study aimed to characterize the total phenolic content and antioxidant activity of mesquite pods (Prosopis velutina) and evaluate the effect on meat qualities in a meat product, with a view to their application as a natural functional ingredient. Mesquite [...] Read more.
The present study aimed to characterize the total phenolic content and antioxidant activity of mesquite pods (Prosopis velutina) and evaluate the effect on meat qualities in a meat product, with a view to their application as a natural functional ingredient. Mesquite pods were subjected to chemical characterization, revealing the presence of polyphenol contents with antioxidant activity (reducing power and antiradical effect). In addition, pork patties were formulated with different levels of mesquite pods powder (MPP, 2% and 5%) and mesquite pods extract (MPE, 0.1% and 0.3%), and were compared with control (CN) samples. The proximate composition of mesquite pod powder revealed a high proportion of carbohydrates and a low fat content. Additionally, the presence of polyphenols with antioxidant activity, including antiradical and reducing power, was evident. No significant differences were observed in the pork patties’ proximate composition. During 9 days of storage at 2 °C, patties treated with MPP and MPE exhibited higher pH values and lower TBARS values compared to the CN, with MPE-0.3% being the most effective in retarding lipid oxidation. Color parameters (L*, a*, b*, C*, and h*) were positively influenced by MPP and MPE, and both treatments improved water-holding capacity and reduced cooking weight loss, especially at 5% MPP. Fracture texture analysis showed that 5% MPP enhances firmness. Sensory attributes did not differ significantly from the CN. These results indicate that MPP and MPE are promising natural ingredients for extending the shelf life and maintaining the quality of pork patties without compromising sensory acceptability. Full article
Show Figures

Figure 1

17 pages, 1651 KiB  
Article
Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies
by Khanyisile Lepota, Kasturie Premlall and Major Mabuza
Waste 2025, 3(3), 22; https://doi.org/10.3390/waste3030022 - 15 Jul 2025
Viewed by 362
Abstract
The modern world has brought extensive socioeconomic and ecological changes. Urbanization in developing nations has significantly increased municipal solid waste, necessitating in-depth understanding of waste composition particularly in developing nations for sustainable management practices. This study aimed to classify and characterize waste while [...] Read more.
The modern world has brought extensive socioeconomic and ecological changes. Urbanization in developing nations has significantly increased municipal solid waste, necessitating in-depth understanding of waste composition particularly in developing nations for sustainable management practices. This study aimed to classify and characterize waste while evaluating potential waste management methods. Mixed methods were used to examine landfilled waste from Soshanguve and Hatherley sites in Tshwane Metropolitan, South Africa, using techniques such as Fourier transform infrared spectroscopy, X-ray fluorescence, proximate, and ultimate analysis. Seasonal variations in waste components were analysed over two seasons. The study identified that both sites are predominantly composed of organic waste, accounting for over 42 wt.%, with moisture content of ~50 wt.%, and minimal recyclables (<5 wt.%). Seasonal variations in MSW were significant for glass (<4% increase), organic waste (<5% increase), while plastic decreased by ~7% during spring. The biodegradable waste showed high carbon (>50%) and oxygen (>40%) levels, low ash content (<18%), and calorific values of 15–19 MJ/kg. Biodegradables mainly contained oxides of calcium, silicon, iron (III), and potassium with chemical composition indicating functional groups that emphasize composting and energy recovery benefits. The research provides insights into sustainable waste management, revealing waste composition at Tshwane landfills, aiding informed decision-making for resource usage and environmental conservation. Full article
Show Figures

Figure 1

22 pages, 5644 KiB  
Article
Analysis of the Impact of the Drying Process and the Effects of Corn Race on the Physicochemical Characteristics, Fingerprint, and Cognitive-Sensory Characteristics of Mexican Consumers of Artisanal Tostadas
by Oliver Salas-Valdez, Emmanuel de Jesús Ramírez-Rivera, Adán Cabal-Prieto, Jesús Rodríguez-Miranda, José Manuel Juárez-Barrientos, Gregorio Hernández-Salinas, José Andrés Herrera-Corredor, Jesús Sebastián Rodríguez-Girón, Humberto Marín-Vega, Susana Isabel Castillo-Martínez, Jasiel Valdivia-Sánchez, Fernando Uribe-Cuauhtzihua and Víctor Hugo Montané-Jiménez
Processes 2025, 13(7), 2243; https://doi.org/10.3390/pr13072243 - 14 Jul 2025
Viewed by 712
Abstract
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated [...] Read more.
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated with solar and hybrid (solar-photovoltaic solar panels) dehydration methods. Proximal chemical quantification, instrumental analysis (color, texture), fingerprint by Fourier transform infrared spectroscopy (FTIR), and sensory-cognitive profile (emotions and memories) and its relationship with the level of pleasure were carried out. The data were evaluated using analysis of variance models, Cochran Q, and an external preference map (PREFMAP). The results showed that the drying method and corn race significantly (p < 0.05) affected only moisture content, lipids, carbohydrates, and water activity. Instrumental color was influenced by the corn race effect, and the dehydration type influenced the fracturability effect. FTIR fingerprinting results revealed that hybrid samples exhibited higher intensities, particularly associated with higher lime concentrations, indicating a greater exposure of glycosidic or protein structures. Race and dehydration type effects impacted the intensity of sensory attributes, emotions, and memories. PREFMAP vector model results revealed that consumers preferred tostadas from the Solar-Chiquito, Hybrid-Pepitilla, Hybrid-Cónico, and Hybrid-Chiquito races for their higher protein content, moisture, high fracturability, crunchiness, porousness, sweetness, doughy flavor, corn flavor, and burnt flavor, while images of these tostadas evoked positive emotions (tame, adventurous, free). In contrast, the Solar-Pepitilla tostada had a lower preference because it was perceived as sour and lime-flavored, and its tostada images evoked more negative emotions and memories (worried, accident, hurt, pain, wild) and fewer positive cognitive aspects (joyful, warm, rainy weather, summer, and interested). However, the tostadas of the Solar-Cónico race were the ones that were most rejected due to their high hardness and yellow to blue tones and for evoking negative emotions (nostalgic and bored). Full article
(This article belongs to the Special Issue Applications of Ultrasound and Other Technologies in Food Processing)
Show Figures

Figure 1

18 pages, 2140 KiB  
Article
Additive Manufacturing of Thermoset Elastomer–Thermoplastic Composites Using Dual-Extrusion Printing
by Nathalia Diaz Armas, Geet Bhandari, Stiven Kodra, Jinde Zhang, David Kazmer and Joey Mead
Polymers 2025, 17(13), 1800; https://doi.org/10.3390/polym17131800 - 28 Jun 2025
Viewed by 635
Abstract
This work investigated the 3D printing of fully compounded thermoset elastomers using a custom-designed printer capable of processing both thermoplastics and elastomers containing fillers and specific cure packages. The adhesion strength between selected thermoset elastomers and thermoplastic combinations was studied, and the influence [...] Read more.
This work investigated the 3D printing of fully compounded thermoset elastomers using a custom-designed printer capable of processing both thermoplastics and elastomers containing fillers and specific cure packages. The adhesion strength between selected thermoset elastomers and thermoplastic combinations was studied, and the influence of key process parameters on adhesion was evaluated. The results showed that interfacial bonding was favored by the proximity of solubility parameters, the amorphous morphology of the thermoplastic, and increased chain mobility at the processing temperature. Rubber processing parameters significantly influenced adhesion, showing that curing at a lower temperature for a longer duration yielded better results than shorter, higher-temperature cures. Elemental analysis revealed the presence of rubber-specific components on the thermoplastic surface, suggesting interfacial migration. These findings contribute to advancing multi-material 3D printing by enabling the integration of rubber-like materials with thermoplastics, expanding opportunities for applications in high-temperature and chemically demanding environments. Full article
(This article belongs to the Special Issue Research on Additive Manufacturing of Polymer Composites)
Show Figures

Figure 1

15 pages, 367 KiB  
Article
The Effects of Solid-State Fermentation by Aspergillus spp. on the Nutritional Profile of Selected Agro-Industrial by-Products as Potential Feedstuffs for Weaner Rabbits
by Adedoyin Titi Amos, Damilola Uthman Kareem, Tolulope Modupe Adeleye, Emmanuel Abiodun Adeyeye, Munirat Olaide Abatan, Olusola Sarah Ayorinde, Esther Oluwasayo Adeboye, Maicon Sbardella, Adeboye Olusesan Fafiolu, Abimbola Oladele Oso and Olusegun Mark Obafemi Idowu
Fermentation 2025, 11(6), 356; https://doi.org/10.3390/fermentation11060356 - 19 Jun 2025
Viewed by 633
Abstract
This study evaluates the effects of solid-state fermentation inoculated with Aspergillus spp. on the nutritional profile of selected agro-industrial by-products (AIBPs: cowpea shell, groundnut shell, soybean hull, and maize shaft). These AIBPs were assessed as potential feedstuffs in weaner rabbit diets, which often [...] Read more.
This study evaluates the effects of solid-state fermentation inoculated with Aspergillus spp. on the nutritional profile of selected agro-industrial by-products (AIBPs: cowpea shell, groundnut shell, soybean hull, and maize shaft). These AIBPs were assessed as potential feedstuffs in weaner rabbit diets, which often exhibit digestive disorders when introduced to highly lignified feed ingredients. The AIBPs were milled to a particle size of 2 mm, sterilized, and subjected to fermentation with Aspergillus spp. under microaerophilic conditions at 28 ± 2 °C for 10 days. Samples (four replicates per treatment) were analyzed for chemical constituents (mineral and proximate composition, anti-nutritional factors, and fibre fractions) before and after fermentation. Digestible energy and digestibility coefficient of gross energy were calculated. Data were subjected to two-way analysis of variance (ANOVA). There was an increase (p < 0.05) in mineral profile, proximate composition, digestible energy, digestibility coefficient of gross energy, and dry matter, with a reduction (p < 0.05) in crude fibre, fibre fractions, and anti-nutritional factors. It was concluded that fermentation with Aspergillus spp. improved the nutritional value of the selected agro-industrial by-products. Therefore, fermented materials possess a better nutritional profile to be used in feeding programs for weaner rabbits. This will ensure sustainable animal production and add value to agricultural waste, which would otherwise constitute an environmental nuisance. Full article
Show Figures

Figure 1

16 pages, 1940 KiB  
Article
Optimization of Activated Carbon Synthesis from Spent Coffee Grounds for Enhanced Adsorption Performance
by Geon-Woong Hyeon, Gi Bbum Lee, Da Jung Kang, Sang Eun Lee, Kwang Mo Seong and Jung-Eun Park
Molecules 2025, 30(12), 2557; https://doi.org/10.3390/molecules30122557 - 12 Jun 2025
Viewed by 767
Abstract
As an adsorbent, biomass activated carbon is effective at the removal of a wide range of organic and inorganic pollutants; however, its synthesis remains complex. Although spent coffee grounds (SCG) could be an effective material for the production of activated carbon, achieving a [...] Read more.
As an adsorbent, biomass activated carbon is effective at the removal of a wide range of organic and inorganic pollutants; however, its synthesis remains complex. Although spent coffee grounds (SCG) could be an effective material for the production of activated carbon, achieving a sufficient surface area has proven to be difficult. Here, this study presents a preliminary investigation into the optimal manufacturing conditions of activated-carbon adsorbents derived from SCG. SCG samples were characterized according to proximate analysis, elementary analysis, surface area, and pore volumes, then subjected to various processes (i.e., drying, carbonization, and chemical activation) with different operating parameters (temperature and time). The samples were optimized as follows: (1) Stable drying of SCG with a high moisture content of approximately 65% required consumption energy of 49 kWh/kg and drying at 105 °C for 20 h. (2) By comparing changes in the consumption energy and product yield with an increasing amount of carbon fraction, it was found that drying carbonization was more suitable than hydrothermal carbonization for SCG. The optimum drying carbonization temperature for achieving attractive biochar was 500 °C for 1 h. (3) Activated carbon with the optimum surface area (3687 m2/g) and mesopore volume fraction (approximately 70%) was achieved with a chemical activator agent ratio of approximately 3 and heating at 850 °C for 1 h. Furthermore, the butane working capacity of the activated carbon was related to the mesopore volume/surface area and reached 74.5% at a mesopore volume/surface area of 0.0004, indicating its suitability for activated carbon canisters. These findings can be used to optimize the synthesis of industrial-grade activated carbon from SCG. Full article
Show Figures

Figure 1

19 pages, 1032 KiB  
Article
Red Beetroot Skin Powder Addition as a Multifunctional Ingredient in Nougat
by Oana Emilia Constantin, Silvia Lazăr (Mistrianu), Florina Stoica, Roxana Nicoleta Rațu, Doina Georgeta Andronoiu, Nicoleta Stănciuc, Marija Banožić, Nada Ćujić Nikolić, Zorana Mutavski and Gabriela Râpeanu
Antioxidants 2025, 14(6), 676; https://doi.org/10.3390/antiox14060676 - 1 Jun 2025
Viewed by 949
Abstract
Beetroot (Beta vulgaris L.) is a plant grown for its roots, which are used to obtain sugar, feed animals, and for human use. Beetroot skin, a by-product of food processing, is a significant source of bioactive compounds, including dietary fiber and antioxidants. [...] Read more.
Beetroot (Beta vulgaris L.) is a plant grown for its roots, which are used to obtain sugar, feed animals, and for human use. Beetroot skin, a by-product of food processing, is a significant source of bioactive compounds, including dietary fiber and antioxidants. The primary objective of this work was to utilize beetroot skin powder to produce value-added nougat. Analytical methods, like antioxidant activity tests, proximate analysis, and sensory assessments, are used to determine the impact of beetroot skin powder on the final product. The beetroot skin powder extract had a remarkable content of phytochemicals and antioxidant activity. The inhibitory effect of the extract was tested on enzymes linked to metabolic syndrome, oxidative stress, and inflammation. The beetroot skin powder extract inhibited α-glucosidase, α-amylase, lipase, and lipoxygenase enzymes. The characterization of value-added nougat illustrates the multifunctionality of beetroot peel powder within its composition, serving as a significant source of natural compounds with antioxidant, coloring, and flavoring properties. This enhances sensory attributes, including color, aroma, and texture, augmenting product diversity and consumer appeal. This is evidenced by the increase in the total content of betalains (3.77 ± 0.09 mg/g DW.) and polyphenols (69.48 ± 2.88 mg GAE/100 g DW.), which lead to high antioxidant activity (73.89 ± 3.65 mM Trolox/100 g DW.) for the nougat sample with 6% added beetroot powder. Thus, beetroot skin powder replaced chemically synthesized additives with antioxidants and natural pigments, improving life quality and implicitly capitalizing on beetroot processing by-products, supporting circular economy principles at the global level. Full article
(This article belongs to the Special Issue Valorization of the Antioxidant Power of Natural Compounds)
Show Figures

Figure 1

18 pages, 1173 KiB  
Article
Valorization Pathway for Grape Pruning and Pomace Waste from the Wine Industry: Energy and Non-Energy Applications
by José R. Ayala, Benjamín A. Rojano, Marcos A. Coronado, Andrés Felipe Alzate-Arbeláez, Carlos A. Sagaste, Angie D. Vélez and Daniela G. Montes
Molecules 2025, 30(11), 2332; https://doi.org/10.3390/molecules30112332 - 27 May 2025
Viewed by 626
Abstract
Wine is a popular beverage worldwide, and its consumption continues to rise, leading to waste, particularly from vine prunings and grape pomace. The aim of this study was to create a valorization pathway utilizing these waste materials. To achieve this, proximate analysis, chemical [...] Read more.
Wine is a popular beverage worldwide, and its consumption continues to rise, leading to waste, particularly from vine prunings and grape pomace. The aim of this study was to create a valorization pathway utilizing these waste materials. To achieve this, proximate analysis, chemical composition, ultimate analysis, thermogravimetric analysis (TGA), and other physicochemical parameters for both vine prunings and grape pomace were assessed. Based on the results, vine prunings were identified as suitable for direct combustion in energy applications, and grape pomace was found to be suitable as an antioxidant in vegetable oil. Grape pomace extract showed the following results through UV-vis spectroscopy: total phenolic content of 1688.10 mg GAE/100 g, total flavonoids of 1330.39 mg catechin/100 g, and total anthocyanins of 12.61 mg cyanidin-3-glucoside/100 mg. The antioxidant capacity was measured through various assays: FRAP yielded 2179.19 mg ascorbic acid/100 g; DPPH measured 1704.41 µmol Trolox/100 g; and ABTS showed 48,271.31 µmol Trolox/100 g. The ORAC results, as determined by fluorescence spectroscopy, were 53,694.93 µmol Trolox/100 g. HPLC profiling revealed cyanidin as the main anthocyanin (26.52 mg/L) and epicatechin as the most abundant flavonoid (214.29 mg/L). Finally, the antioxidant capacity of grape pomace in sunflower oil was evaluated using OSI. It increased the oil’s stability by up to 42.5%, positioning grape pomace extracts as a source of natural antioxidants in vegetable oils. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Figure 1

20 pages, 3713 KiB  
Article
Tertiary Treatment of Pulp Industry Effluents Using Activated Biochar Derived from Biological Sludge Within a Circular Economy Framework
by Antonio Machado Netto, Marília Christian Gomes Morais Nascimento, Leonardo Souza de Caux, Marcela de Oliveira Brahim Cortez, José Pedro Rodrigues Ferreira, Keivison Almeida Monteiro and Renata Pereira Lopes Moreira
Processes 2025, 13(6), 1647; https://doi.org/10.3390/pr13061647 - 23 May 2025
Viewed by 1243
Abstract
The application of circular economy principles to the sustainable management of waste from the pulp industry presents significant environmental challenges. In this context, using biological sludge as a raw material for producing activated biochar (BC) emerges as a promising and sustainable alternative. This [...] Read more.
The application of circular economy principles to the sustainable management of waste from the pulp industry presents significant environmental challenges. In this context, using biological sludge as a raw material for producing activated biochar (BC) emerges as a promising and sustainable alternative. This study evaluated the valorization of biological sludge through the synthesis of activated BC for the removal of color, chemical oxygen demand (COD), and conductivity from the industry’s effluent. BC was produced using chemical activation with phosphoric acid (H3PO4) and potassium hydroxide (KOH), followed by pyrolysis at 500 °C and 450 °C, respectively. A central composite rotational design (CCRD) was applied to optimize the process. The optimized BCs were characterized by proximate analysis, FTIR, BET surface area, higher heating value (HHV), and SEM. Adsorption assays showed that H3PO4-activated BC achieved removal efficiencies of 52.2% for color, 23.9% for COD, and 46.2% for conductivity at a dosage of 5 g L⁻1. Conversely, KOH-activated BC did not perform effectively. The results highlight the influence of activation and pyrolysis on BC properties and confirm the potential of this approach for the tertiary treatment of industrial effluents, contributing to waste valorization and environmental sustainability. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Graphical abstract

17 pages, 2108 KiB  
Article
Looking into New Sources of Bioactives: Seasonal Variation in Bioactive Compounds and Dietary Fiber of Agave Bagasse from Mezcal Production
by Jimena Álvarez-Chávez, Elisa Dufoo-Hurtado, Liliana Santos-Zea and Aurea K. Ramírez-Jiménez
Foods 2025, 14(9), 1632; https://doi.org/10.3390/foods14091632 - 6 May 2025
Cited by 1 | Viewed by 555
Abstract
The production of mezcal from agave is one of the main beverage industries worldwide, generating large amounts of waste, such as agave bagasse. Improper management of this waste often causes environmental contamination. Some studies have begun to demonstrate that agave bagasse has the [...] Read more.
The production of mezcal from agave is one of the main beverage industries worldwide, generating large amounts of waste, such as agave bagasse. Improper management of this waste often causes environmental contamination. Some studies have begun to demonstrate that agave bagasse has the potential to be recycled as a source of functional ingredients due to its dietary fiber and bioactive compound content. However, the greatest disadvantage of using these wastes is the significant variation in compound content and bioactivity in response to seasonal climatic variations. This study aimed to analyze the chemical and bioactive content of agave bagasse from three mezcal factories in Mexico. We conducted proximate composition analysis, phenolic compound measurement, dietary fiber assessment, antioxidant capacity evaluation, and structural analysis using FTIR- Fourier Transform Infrared Spectroscopy. The study found significantly higher ash content (17.75%), carbohydrates (86.71%), and soluble fiber (30.91%) in the spring compared to other seasons. The summer showed a higher lipid content (10.25%), while the highest concentration of sugars (47.77%) was observed during the winter. The highest antioxidant capacity (106.15 mM eq Trolox/mg) was recorded in autumn. The FTIR analysis revealed that the greatest abundance of bioactive compounds was observed in the spring and summer, while structural carbohydrates were more prominent in autumn and winter. This study is the first to thoroughly analyze the seasonal variation in phytochemicals and macromolecules in agave residues, crucial for exploring new ingredient sources to expand our food supply and recycling agri-food wastes. Full article
(This article belongs to the Special Issue Bioactive Phenolic Compounds from Agri-Food and Its Wastes)
Show Figures

Figure 1

15 pages, 519 KiB  
Article
Ripening-Associated Changes in Fatty Acid Composition and Nutritional Indices in Caciocavallo Silano PDO Cheese
by Giuseppe Tardiolo, Eleonora Di Salvo, Simona Tringali, Giovanni Bartolomeo, Claudia Genovese, Maria Elena Furfaro, Anna Maria Sutera, Antonino Nazareno Virga, Nicola Cicero and Alessandro Zumbo
Foods 2025, 14(9), 1566; https://doi.org/10.3390/foods14091566 - 29 Apr 2025
Viewed by 626
Abstract
Caciocavallo Silano PDO is a traditional Italian stretched-curd cheese produced in southern Italy, subjected to a minimum ripening period of 30 days. The present study aimed to characterize the chemical composition and fatty acid (FA) profile at three ripening stages (up to 120 [...] Read more.
Caciocavallo Silano PDO is a traditional Italian stretched-curd cheese produced in southern Italy, subjected to a minimum ripening period of 30 days. The present study aimed to characterize the chemical composition and fatty acid (FA) profile at three ripening stages (up to 120 days). The proximate composition, FAs profile, and lactose content of cheese samples from three production batches, all made with Friesian cow milk, were analyzed. The results showed significant compositional changes during maturation. Moisture content decreased from 46.5% in 30 days to 33.0% in 120 days, with a corresponding increase in protein and fat content. Lactose content was below the limit of quantification (LOQ) at all ripening stages, confirming its natural depletion over time. The FA analysis revealed thirty-five different FAs, including fourteen saturated fatty acids (SFAs), nine monounsaturated fatty acids (MUFAs), and twelve polyunsaturated fatty acids (PUFAs). Among SFAs, palmitic and stearic acids were the most abundant, while lauric and myristic acids significantly increased with ripening. The sum of MUFAs showed a slight decrease, mainly due to the reduction in oleic acid, which dropped from 22.6% to 21.3% over maturation. Conversely, PUFAs exhibited a significant increase, particularly linoleic and α-linolenic acids, which are associated with positive health effects. In particular, an increase in PUFA composition and an optimal omega-6/omega-3 ratio could have a positive effect on health, with a consequent enhancement of cardiovascular function. The findings suggest that cheese maturation influences its nutritional and lipid profile, with potential implications for consumer health. Future research should assess how feeding strategies and production methods impact the FA composition of Caciocavallo Silano PDO. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 274 KiB  
Article
Nutritional and Antioxidant Enhancement of Pasta Enriched with Parota Flour (Enterolobium cyclocarpum): A Functional Food Approach
by Víctor Manuel Moo-Huchin, Jorge Carlos Canto-Pinto, Cindialy Yuliet Ku-Canul, Raciel Javier Estrada-León, Alejandro Ortiz-Fernández, Carlos Rolando Ríos-Soberanis, Enrique Sauri-Duch, Félix José Aguilar-Vázquez and Emilio Pérez-Pacheco
Foods 2025, 14(9), 1521; https://doi.org/10.3390/foods14091521 - 26 Apr 2025
Viewed by 1007
Abstract
The objective of this research was to evaluate the physicochemical quality, bioactive compound content, and antioxidant capacity of pasta made with durum wheat semolina and partial substitutions of parota flour (Enterolobium cyclocarpum). Fettuccine pasta formulations were prepared with different percentages of [...] Read more.
The objective of this research was to evaluate the physicochemical quality, bioactive compound content, and antioxidant capacity of pasta made with durum wheat semolina and partial substitutions of parota flour (Enterolobium cyclocarpum). Fettuccine pasta formulations were prepared with different percentages of parota flour (0%, 10%, 30%, and 50%). The methodologies included proximate chemical composition analysis, dietary fiber determination, total phenolic content, antioxidant capacity (ABTS assay), and reducing power, as well as cooking quality tests and color analysis. The results showed that the incorporation of parota flour significantly increased protein content (up to 22.06 g/100 g), total dietary fiber (up to 22.1 g/100 g), and total phenolic compounds (up to 23.35 mg/100 g). Additionally, higher antioxidant capacity and reducing power were observed in the pastas with higher parota flour content. In terms of cooking quality, the parota flour-enriched pastas exhibited reduced cooking time and higher cooking loss, but lower water absorption and weight of cooked pasta. The values for cooking loss and water absorption in cooked pasta suggest the need to optimize formulations in order to improve pasta quality. Color analysis revealed more reddish and yellowish tones with greater saturation. Parota flour enhances the nutritional and functional profile of the pasta, providing a healthier and more visually appealing product. These pastas enriched with parota flour show promise as functional foods by contributing to a balanced diet and encouraging the use of regional, sustainable ingredients. Full article
(This article belongs to the Section Grain)
18 pages, 3170 KiB  
Article
Optimized Torrefaction of Corn Straw in a Screw Reactor: Energy Balance Analysis and Biochar Production Enhancement
by Yulu Wang, Jiyou Mu, Xin Zhang, Xueqiang Ding, Mingmin Zheng and Tiankuo Guo
Processes 2025, 13(5), 1302; https://doi.org/10.3390/pr13051302 - 24 Apr 2025
Cited by 1 | Viewed by 597
Abstract
Torrefaction is a promising pretreatment method to enhance the physical and chemical properties of corn straw for bioenergy applications. In this study, torrefaction experiments were conducted in a continuous screw reactor under varying temperatures and feed rates. The quality of the resulting biochar [...] Read more.
Torrefaction is a promising pretreatment method to enhance the physical and chemical properties of corn straw for bioenergy applications. In this study, torrefaction experiments were conducted in a continuous screw reactor under varying temperatures and feed rates. The quality of the resulting biochar was assessed using color difference analysis, with a defined threshold to determine product qualification (i.e., compliance rate). Results showed that the compliance rate dropped from 78% to 61% as the feed rate increased from 0.5 kg/h to 1.5 kg/h. To address this, process parameters were optimized. Increasing the flow of the hot carrier gas significantly improved product quality: at a carrier gas temperature of 550 °C, a flow rate of 9.4 kg/h, and a feed rate of 1 kg/h, the compliance rate reached 81%. An energy balance was established through proximate and ultimate analyses and measurements of the higher heating value (HHV). Under optimized conditions, the mass yield (MY) and energy yield (EY) were 58.84% and 66.48%, respectively. Maintaining the carrier gas temperature above 550 °C ensured a stable and self-sustaining torrefaction process. These findings provide practical insights for the design and operation of energy-efficient, continuous biomass torrefaction systems, contributing to the advancement of sustainable biochar production at industrial scales. Full article
Show Figures

Figure 1

30 pages, 20213 KiB  
Article
hTERT and SV40LgT Renal Cell Lines Adjust Their Transcriptional Responses After Copy Number Changes from the Parent Proximal Tubule Cells
by Bruce Alex Merrick, Ashley M. Brooks, Julie F. Foley, Negin P. Martin, Rick D. Fannin, Wesley Gladwell and Kevin E. Gerrish
Int. J. Mol. Sci. 2025, 26(8), 3607; https://doi.org/10.3390/ijms26083607 - 11 Apr 2025
Viewed by 538
Abstract
Primary mouse renal proximal tubule epithelial cells (moRPTECs) were immortalized by lentivirus transduction to create hTERT or SV40LgT (LgT) cell lines. Prior work showed a more pronounced injury and repair response in LgT versus hTERT cells after chemical challenge. We hypothesized that unique [...] Read more.
Primary mouse renal proximal tubule epithelial cells (moRPTECs) were immortalized by lentivirus transduction to create hTERT or SV40LgT (LgT) cell lines. Prior work showed a more pronounced injury and repair response in LgT versus hTERT cells after chemical challenge. We hypothesized that unique genomic changes occurred after immortalization, altering critical genes and pathways. RNA-seq profiling and whole-genome sequencing (WGS) of parent, hTERT, and LgT cells showed that 92.5% of the annotated transcripts were shared, suggesting a conserved proximal tubule expression pattern. However, the cell lines exhibited unique transcriptomic and genomic profiles different from the parent cells. Three transcript classes were quite relevant for chemical challenge response—Cyps, ion channels, and metabolic transporters—each important for renal function. A pathway analysis of the hTERT cells suggested alterations in intermediary and energy metabolism. LgT cells exhibited pathway activation in cell cycle and DNA repair that was consistent with replication stress. Genomic karyotyping by combining WGS and RNA-seq data showed increased gene copy numbers in chromosome 5 for LgT cells, while hTERT cells displayed gene copy losses in chromosomes 4 and 9. These data suggest that the exaggerated transcriptional responses of LgT cells versus hTERT cells result from differences in gene copy numbers, replication stress, and the unique selection processes underlying LgT or hTERT immortalization. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

Back to TopTop