Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,243)

Search Parameters:
Keywords = protein-membrane interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1518 KB  
Article
Biophysical Features of Outer Membrane Vesicles (OMVs) from Pathogenic Escherichia coli: Methodological Implications for Reproducible OMV Characterization
by Giorgia Barbieri, Linda Maurizi, Maurizio Zini, Federica Fratini, Agostina Pietrantoni, Ilaria Bellini, Serena Cavallero, Eleonora D’Intino, Federica Rinaldi, Paola Chiani, Valeria Michelacci, Stefano Morabito, Barbara Chirullo and Catia Longhi
Antibiotics 2026, 15(2), 117; https://doi.org/10.3390/antibiotics15020117 - 26 Jan 2026
Abstract
Background/Objectives: Bacterial outer membrane vesicles (OMVs) play a role in bacterial communication, virulence, antimicrobial resistance, and host–pathogen interaction. OMV isolation is a key step for studying these particles’ functions; nevertheless, isolation procedures can greatly influence the yield, purity, and structural integrity of [...] Read more.
Background/Objectives: Bacterial outer membrane vesicles (OMVs) play a role in bacterial communication, virulence, antimicrobial resistance, and host–pathogen interaction. OMV isolation is a key step for studying these particles’ functions; nevertheless, isolation procedures can greatly influence the yield, purity, and structural integrity of OMVs, thereby affecting downstream biological analyses and functional interpretation. Methods: In this study, we compared the efficacy of two OMV isolation techniques, differential ultracentrifugation (dUC) and size-exclusion chromatography (SEC), in separating and concentrating vesicles produced by two Escherichia coli strains belonging to uropathogenic (UPEC) and Shiga toxin-producing (STEC) pathotypes. The isolated OMVs were characterized using a multi-analytical approach including transmission and scanning electron microscopy (TEM, SEM), nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), ζ-potential measurement, and protein quantification to assess the purity of the preparations. Results: Samples obtained by dUC exhibited higher total protein content, broader particle size distributions, and more pronounced contamination by non-vesicular material. In contrast, SEC yielded morphologically homogeneous and structurally well-preserved vesicles, higher particle-to-protein ratios, and lower total protein content, reflecting reduced co-isolation of protein aggregates. NTA and DLS analyses revealed polydisperse populations in samples obtained with both isolation methods, with DLS measurements highlighting the contribution of larger or transient aggregates. ζ-potential values were close to neutrality for all samples, consistent with limited electrostatic repulsion and with the aggregation tendencies observed in some preparations. Conclusions: This study describes features of OMV produced by two relevant E. coli strains considering two isolation strategies which exert method- and strain-dependent effects on vesicle properties, including size distribution and surface charge, and emphasizes the trade-offs between yield, purity, and vesicle integrity. Full article
Show Figures

Figure 1

19 pages, 2553 KB  
Article
A QCM-D Study of the Interaction of Early Endosomal Antigen 1 (EEA1) Protein with Supported Lipid Bilayers Mimicking the Early Endosomal Lipid Composition
by Fotini Papagavriil, Pablo Mateos-Gil, Janelle Lauer, Marino Zerial and Electra Gizeli
Membranes 2026, 16(2), 49; https://doi.org/10.3390/membranes16020049 - 26 Jan 2026
Abstract
The combination of supported lipid bilayers (SLBs) with the Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) has been proven to be a powerful tool to simultaneously monitor mass and viscoelastic changes related to membrane binding-events. In this work, the above methodology is employed [...] Read more.
The combination of supported lipid bilayers (SLBs) with the Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) has been proven to be a powerful tool to simultaneously monitor mass and viscoelastic changes related to membrane binding-events. In this work, the above methodology is employed for the study of the interaction of the Early Endosomal Antigen 1 (EEA1) to a model lipid bilayer that mimics the early endosome (EE) membrane, focusing on the membrane composition. Starting with the formation of a lipid bilayer through the vesicles fusion technique, we investigated the formation of SLBs that incorporate phosphatidylinositol 3-phosphate (PI(3)P), a key component for EEA1 binding, in combination with other lipids, e.g., (1,2-dioleoyl-sn-glycero-3)-phosphocholine (DOPC), -phosphoserine (DOPS), -phosphoethanolamine (DOPE), and cholesterol (Chol). The interaction of the full-length coiled-coil EEA1 to the formed SLBs was further studied in real time with the QCM-D and characterized with respect to the lipid composition and pH. Our findings confirm that PI(3)P is essential for the EEA1–membrane interaction, while it was shown that Chol and phosphatidylserine greatly influence the binding event. In fact, including 30% Chol in a PI(3)P (3%):PS (6%) SLB resulted in almost double EEA1 binding than in the absence of Chol. Moreover, we employed the QCM-viscoelastic model available to analyze the QCM-D data with emphasis on the study of the protein conformation. Our results showed that, in our in vitro system, EEA1 is not fully extended and/or highly packed, but is mainly in a bent, distorted conformation with an average size close to 100 nm. This study complements previous works employing in vitro assays, also demonstrating the ability to reconstitute more complex biomimetic EE membranes containing inositol phospholipids on a QCM surface for the study of EEA1 binding. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

36 pages, 12414 KB  
Article
A Replication-Competent Flavivirus Genome with a Stable GFP Insertion at the NS1-NS2A Junction
by Pavel Tarlykov, Bakytkali Ingirbay, Dana Auganova, Tolganay Kulatay, Viktoriya Keyer, Sabina Atavliyeva, Maral Zhumabekova, Arman Abeev and Alexandr V. Shustov
Biology 2026, 15(3), 220; https://doi.org/10.3390/biology15030220 - 24 Jan 2026
Viewed by 43
Abstract
The flavivirus NS1 protein is a component of the viral replication complex and plays diverse, yet poorly understood, roles in the viral life cycle. To enable real-time visualization of the developing replication organelle and biochemical analysis of tagged NS1 and its interacting partners, [...] Read more.
The flavivirus NS1 protein is a component of the viral replication complex and plays diverse, yet poorly understood, roles in the viral life cycle. To enable real-time visualization of the developing replication organelle and biochemical analysis of tagged NS1 and its interacting partners, we engineered a replication-competent yellow fever virus (YFV) replicon encoding a C-terminal fusion of NS1 with green fluorescent protein (NS1–GFP). The initial variant was non-viable in the absence of trans-complementation with wild-type NS1; however, viability was partially restored through the introduction of co-adaptive mutations in GFP (Q204R/A206V) and NS4A (M108L). Subsequent cell culture adaptation generated a 17-nucleotide frameshift within the NS1–GFP linker, resulting in a more flexible and less hydrophobic linker sequence. The optimized genome, in the form of a replicon, replicates in packaging cells that produce YFV structural proteins, as well as in naive BHK-21 cells. In the packaging cells, the adapted NS1–GFP replicon produces titers of infectious particles of approximately 10^6 FFU/mL and is genetically stable over five passages. The expressed NS1–GFP fusion protein localizes to the endoplasmic reticulum and co-fractionates with detergent-resistant heavy membranes, a hallmark of flavivirus replication organelles. This NS1–GFP replicon provides a novel platform for studying NS1 functions and can be further adapted for proximity-labeling strategies aimed at identifying the still-unknown protease responsible for NS1–NS2A cleavage. Full article
36 pages, 6350 KB  
Review
Nanoparticle Applications in Plant Biotechnology: A Comprehensive Review
by Viktor Husak, Milos Faltus, Alois Bilavcik, Stanislav Narozhnyi and Olena Bobrova
Plants 2026, 15(3), 364; https://doi.org/10.3390/plants15030364 - 24 Jan 2026
Viewed by 74
Abstract
Nanotechnology is becoming a key tool in plant biotechnology, enabling nanoparticles (NPs) to deliver biomolecules with high precision and to enhance plant and tissue resilience under stress. However, the literature remains fragmented across genetic delivery, in vitro regeneration, stress mitigation, and germplasm cryopreservation, [...] Read more.
Nanotechnology is becoming a key tool in plant biotechnology, enabling nanoparticles (NPs) to deliver biomolecules with high precision and to enhance plant and tissue resilience under stress. However, the literature remains fragmented across genetic delivery, in vitro regeneration, stress mitigation, and germplasm cryopreservation, and it still lacks standardized, comparable protocols and robust long-term safety assessments—particularly for NP use in cryogenic workflows. This review critically integrates recent advances in NP-enabled (i) genetic engineering and transformation, (ii) tissue culture and regeneration, (iii) nanofertilization and abiotic stress mitigation, and (iv) cryopreservation of plant germplasm. Across these areas, the most consistent findings indicate that NPs can facilitate targeted transport of DNA, RNA, proteins, and regulatory complexes; modulate oxidative and osmotic stress responses; and improve regeneration performance in recalcitrant species. In cryopreservation, selected nanomaterials act as multifunctional cryoprotective adjuvants by suppressing oxidative injury, stabilizing cellular membranes, and improving post-thaw viability and regrowth of sensitive tissues. At the same time, NP outcomes are highly context-dependent, with efficacy governed by dose, size, and surface chemistry; formulation; plant genotype; and interactions with culture media or vitrification solutions. Evidence of potential phytotoxicity, persistence, and biosafety risks highlights the need for harmonized reporting, mechanistic studies on NP–cell interfaces, and evaluation of environmental fate. Expected outcomes of this review include a consolidated framework linking NP properties to biological endpoints, identification of design principles for application-specific NP selection, and a set of research priorities to accelerate the safe and reproducible translation of nanotechnology into sustainable plant biotechnology and long-term germplasm preservation. Full article
Show Figures

Figure 1

22 pages, 1864 KB  
Review
Chimeric Approach to Identify Molecular Determinants of Nicotinic Acetylcholine Receptors
by Pooja Sapkota, Seyedeh Melika Akaberi, Biwash Ghimire and Kavita Sharma
Int. J. Mol. Sci. 2026, 27(2), 1091; https://doi.org/10.3390/ijms27021091 - 22 Jan 2026
Viewed by 36
Abstract
Nicotinic acetylcholine receptors (nAChRs) are membrane-bound proteins that mediate fast synaptic transmission throughout the nervous system. A functional nAChR subtype is formed by the combination of multiple subunits arranged as homomeric or heteromeric pentamers, each with a distinct pharmacological profile. Disruption of their [...] Read more.
Nicotinic acetylcholine receptors (nAChRs) are membrane-bound proteins that mediate fast synaptic transmission throughout the nervous system. A functional nAChR subtype is formed by the combination of multiple subunits arranged as homomeric or heteromeric pentamers, each with a distinct pharmacological profile. Disruption of their neurotransmission contributes to various neuropathologies, emphasizing the need for detailed knowledge of receptor structure, function, subunit composition, dynamics, and potential ligand-binding sites. However, their structural complexity as integral membrane proteins has hindered expression in mammalian cell lines and proven even more challenging to crystallize, limiting insights into ligand interactions. Understanding the molecular determinants governing nAChRs function is essential for the rational design of selective therapeutics targeting neurological disorders. The emergence of a chimeric receptor approach has dramatically improved the ability to study these important proteins and opened new avenues for high-throughput screening in drug discovery efforts. This review explains how the design of chimera constructs using soluble homologs, such as AChBP, provides researchers with an immense opportunity to investigate receptor structure–function relationships and subtype-specific properties, thereby facilitating the development of more effective treatments. Full article
Show Figures

Graphical abstract

21 pages, 3151 KB  
Article
Genomic Insights into Candidozyma auris Clade II: Comparative Phylogenomics and Structural Validation of Fluconazole Resistance Mechanisms
by Sanghak Lee, Kei-Anne Garcia Baritugo, Han-Soo Kim, Hyeyoung Lee, Sook Won Ryu, Soo-Young Kim, Chae Hoon Lee, Young Ree Kim, Jeong Hwan Shin, Jayoung Kim and Gi-Ho Sung
J. Fungi 2026, 12(1), 76; https://doi.org/10.3390/jof12010076 - 20 Jan 2026
Viewed by 277
Abstract
Candidozyma auris (formerly Candida auris) is an emerging multidrug-resistant fungal pathogen with confirmed cases in over 30 countries. Although whole-genome sequencing (WGS) analysis defined distinct clades during characterization of underlying genetic mechanism behind multidrug resistance, Clade II remains under-evaluated. In this study, [...] Read more.
Candidozyma auris (formerly Candida auris) is an emerging multidrug-resistant fungal pathogen with confirmed cases in over 30 countries. Although whole-genome sequencing (WGS) analysis defined distinct clades during characterization of underlying genetic mechanism behind multidrug resistance, Clade II remains under-evaluated. In this study, a three-level comparative genomic strategy (Global, Clade, Phenotype) was employed by integration of unbiased genome-wide comparative SNP screening (GATK v4.1.9.0), targeted BLAST profiling (BLAST+ v2.17.0), and in silico protein analysis (ColabFold v1.5.5; DynaMut2 v2.0) for systematic evaluation of mechanisms of antifungal resistance in thirty-nine Clade II C. auris clinical isolates and fourteen reference strains. Global and clade-level analyses confirmed that all the clinical isolates belong to Clade II, according to phylogenetic clustering and mating type locus (MTL) conservation. At the phenotype level, a distinct subclade of fluconazole-resistant mutants was identified to have a heterogenous network of mutations in seven key enzymes associated with cell membrane dynamics and the metabolic stress response. Among these, four core mutations (TAC1B, CAN2, NIC96, PMA1) were confirmed as functional drivers based on strict criteria during multitier in silico protein analysis: cross-species conservation, surface exposure, active site proximity, thermodynamic stability, and protein interface interaction. On the other hand, three high-level fluconazole-resistant clinical isolates (≥128 μg/mL) that lacked these functional drivers were subjected to comprehensive subtractive genomic profiling analysis. The absence of coding mutations in validated resistance drivers, yeast orthologs, and convergent variants suggests that there is an alternative novel non-coding or regulatory mechanism behind fluconazole resistance. These findings highlight Clade II’s evolutionary divergence into two distinct trajectories towards the development of a high level of fluconazole resistance: canonical protein alteration versus regulatory modulation. Full article
(This article belongs to the Special Issue Mycological Research in South Korea)
Show Figures

Figure 1

16 pages, 1874 KB  
Review
LEM-Domain-Containing Inner Nuclear Membrane Proteins: Emerging Regulators of Intranuclear Signaling
by Byongsun Lee, Hyunggeun Lee and Jaekyung Shim
Int. J. Mol. Sci. 2026, 27(2), 942; https://doi.org/10.3390/ijms27020942 - 17 Jan 2026
Viewed by 163
Abstract
The LAP2–emerin–MAN1-domain (LEM-D) proteins constitute a family of inner nuclear membrane proteins that play essential roles in the spatial regulation of intranuclear signaling. Defined by the conserved LEM domain, these proteins interact with chromatin, nuclear lamins, and barrier-to-autointegration factor (BAF), thereby linking nuclear [...] Read more.
The LAP2–emerin–MAN1-domain (LEM-D) proteins constitute a family of inner nuclear membrane proteins that play essential roles in the spatial regulation of intranuclear signaling. Defined by the conserved LEM domain, these proteins interact with chromatin, nuclear lamins, and barrier-to-autointegration factor (BAF), thereby linking nuclear architecture to signal-dependent transcriptional control. This review summarizes current knowledge on the structural features and molecular functions of representative LEM-D proteins, including LAP2, emerin, and MAN1, with a particular focus on their emerging roles as regulators of intranuclear signaling pathways. We discuss how these proteins modulate the activity of transcription factors involved in Hedgehog, Wnt/β-catenin, STAT3, Notch, and transforming growth factor-β (TGF-β) signaling by temporally retaining them at the inner nuclear membrane and controlling their access to chromatin. Furthermore, this review highlights the physiological and pathological relevance of LEM-D-mediated signaling regulation, especially in the context of muscle development, regeneration, and nuclear envelope-associated diseases such as muscular dystrophies. By integrating structural, signaling, and disease-related perspectives, this review proposes a conceptual framework in which LEM-D proteins function as critical intranuclear signaling hubs. Understanding these mechanisms provides new insights into nuclear signal transduction and suggests potential therapeutic targets for diseases associated with nuclear envelope dysfunction. Full article
(This article belongs to the Special Issue Protein Signal Transduction in the Nucleus)
Show Figures

Graphical abstract

19 pages, 785 KB  
Article
Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis
by Biljana Stankovic, Mihajlo Stasuk, Vladimir Gasic, Bojan Ristivojevic, Ivana Grubisa, Branka Zukic, Aleksandar Toplicanin, Olgica Latinovic Bosnjak, Brigita Smolovic, Srdjan Markovic, Aleksandra Sokic Milutinovic and Sonja Pavlovic
Biomedicines 2026, 14(1), 203; https://doi.org/10.3390/biomedicines14010203 - 17 Jan 2026
Viewed by 312
Abstract
Background/Objectives: Vedolizumab (VDZ), a monoclonal antibody targeting α4β7 integrin, is used in Crohn’s disease (CD) management, yet patients’ responses vary, underscoring the need for pharmacogenomic (PGx) markers. This study aimed to identify PGx pathways associated with suboptimal VDZ response using a rare-variant analytical [...] Read more.
Background/Objectives: Vedolizumab (VDZ), a monoclonal antibody targeting α4β7 integrin, is used in Crohn’s disease (CD) management, yet patients’ responses vary, underscoring the need for pharmacogenomic (PGx) markers. This study aimed to identify PGx pathways associated with suboptimal VDZ response using a rare-variant analytical framework. Methods: DNA from 63 CD patients treated with VDZ as first-line advanced therapy underwent whole-exome sequencing. Clinical response at week 14 classified patients as optimal responders (ORs) or suboptimal responders (SRs). Sequencing data were processed using GATK Best Practices, annotated with variant effect predictors, and filtered for rare damaging variants (damaging missense and high-confidence loss-of-function; minor allele frequency < 0.05). Variants were mapped to genes specific for SRs and ORs, and analyzed for pathway enrichment using the Reactome database. Rare-variant burden and composition differences were assessed with Fisher’s exact test and SKAT-O gene-set association analysis. Results: Suboptimal VDZ response was associated with pathways related to membrane transport (ABC-family proteins, ion channels), L1–ankyrin interactions, and bile acid recycling, while optimal response was associated with pathways involving MET signaling. SKAT-O identified lipid metabolism-related pathways as significantly different—SRs harbored variants in pro-inflammatory lipid signaling and immune cell trafficking genes (e.g., PIK3CG, CYP4F2, PLA2R1), whereas ORs carried variants in fatty acid oxidation and detoxification genes (e.g., ACADM, CYP1A1, ALDH3A2, DECR1, MMUT). Conclusions: This study underscores the potential of exome-based rare-variant analysis to stratify CD patients and guide precision medicine approaches. The identified genes and pathways are potential PGx markers for CD patients treated with VDZ. Full article
Show Figures

Figure 1

25 pages, 3112 KB  
Review
The Emerging Promise of Pentacyclic Triterpenoid Derivatives as Novel Antiviral Agents Against SARS-CoV-2 Variants
by Xin Wan, Xiaoxuan Cui, Ke Liang, Junran Huang, Kangan Chen, Wen Chen and Gaopeng Song
Molecules 2026, 31(2), 325; https://doi.org/10.3390/molecules31020325 - 17 Jan 2026
Viewed by 280
Abstract
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids [...] Read more.
The continuous emergence of SARS-CoV-2 variants, especially the Omicron strain with its heightened transmissibility, has posed ongoing challenges to the efficacy of existing vaccine and drug regimens. This situation highlights the pressing demand for antiviral drugs employing novel mechanisms of action. Pentacyclic triterpenoids (PTs), a structurally varied group of compounds derived from plants, exhibit both antiviral and anti-inflammatory activities, making them attractive candidates for further therapeutic development. These natural products, along with their saponin derivatives, show broad-spectrum inhibitory effects against multiple SARS-CoV-2 variants (from Alpha to Omicron) via interactions with multiple targets, such as the spike protein, main protease (Mpro), RNA-dependent RNA polymerase (RdRp), and inflammatory signaling pathways. This review consolidates recent findings on PTs and their saponins, emphasizing their influence on the key structural features required for inhibiting viral attachment, membrane fusion, reverse transcription, and protease function. We systematically summarized the structure–activity relationships and their antiviral results of PTs based on different target proteins in existing studies. Furthermore, this work points toward new strategies for designing multi-target PT-based inhibitors with improved efficacy against Omicron and future variants. Full article
(This article belongs to the Special Issue New Strategies for Drug Development)
Show Figures

Figure 1

17 pages, 5457 KB  
Article
Bioactive Compounds of Momordica charantia L. Downregulate the Protein Expression of ACE2 and TMPRSS2 In Vivo and In Vitro
by Che-Yi Chao, Woei-Cheang Shyu, Chih-Lung Lin, Wen-Ping Jiang, Atsushi Inose, Song-Jie Chiang, Wen-Liang Wu, Jaung-Geng Lin and Guan-Jhong Huang
Int. J. Mol. Sci. 2026, 27(2), 868; https://doi.org/10.3390/ijms27020868 - 15 Jan 2026
Viewed by 113
Abstract
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation [...] Read more.
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation that facilitates membrane fusion. Bitter melon (Momordica charantia L., MC), a traditional medicinal and edible plant widely used in tropical Asia, possesses notable anti-inflammatory, antioxidant, antitumor, and hypoglycemic properties. In this study, the ethanol extract of bitter melon (EMC) markedly downregulated ACE2 and TMPRSS2 expression in both in vitro and in vivo models without inducing cytotoxicity. Furthermore, phytochemicals isolated from EMC—including p-coumaric acid, rutin, and quercetin—exhibited comparable inhibitory effects. These results indicate that EMC and its bioactive constituents may interfere with SARS-CoV-2 entry by modulating the ACE2/TMPRSS2 axis, highlighting their potential as natural adjuncts for COVID-19 prevention or management. Full article
Show Figures

Figure 1

21 pages, 11122 KB  
Article
Cell Surface Vimentin Is an Attachment Factor That Facilitates Equine Arteritis Virus Infection In Vitro
by Côme J. Thieulent, Sanjay Sarkar, Mariano Carossino, Mouli Bhowmik, Haining Zhu and Udeni B. R. Balasuriya
Viruses 2026, 18(1), 113; https://doi.org/10.3390/v18010113 - 15 Jan 2026
Viewed by 293
Abstract
Our laboratory identified the susceptible allelic variant of equine CXCL16 protein (EqCXCL16S) as an entry receptor for equine arteritis virus (EAV). However, EAV has a broad host cell tropism and infects cells that lack EqCXCL16S. Thus, we hypothesized that EAV interacts with other [...] Read more.
Our laboratory identified the susceptible allelic variant of equine CXCL16 protein (EqCXCL16S) as an entry receptor for equine arteritis virus (EAV). However, EAV has a broad host cell tropism and infects cells that lack EqCXCL16S. Thus, we hypothesized that EAV interacts with other host cell protein(s) that facilitate EAV infection. A virus overlay protein-binding assay in combination with a Far-Western blot from EAV-susceptible equine pulmonary artery endothelial cells (EECs) and equine dermal fibroblasts (E. Derm) identified a 57 kDa protein, present in the membrane fraction of the protein lysate, as a possible EAV-binding protein. Subsequent LC-MS/MS analysis identified this 57 kDa protein as vimentin. Screening of different mammalian cell lines has shown that only cells expressing vimentin are susceptible to EAV infection. Pre-treatment of EECs with an anti-vimentin polyclonal antibody and Withaferin A partially inhibit EAV infection. Finally, the overexpression of equine vimentin (EqVim) in HEK-293 cells increases their susceptibility to EAV infection. Overall, our data strongly indicate that EAV binds to the host cell protein equine vimentin, which actively participates in EAV infection, potentially serving as an attachment factor. The data suggest that EAV interacts with various host cell proteins to achieve its diverse cell tropism. Full article
(This article belongs to the Special Issue The Entry and Fusion of Enveloped Virus)
Show Figures

Figure 1

35 pages, 3152 KB  
Review
AI-Resolved Protein Energy Landscapes, Electrodynamics, and Fluidic Microcircuits as a Unified Framework for Predicting Neurodegeneration
by Cosmin Pantu, Alexandru Breazu, Stefan Oprea, Matei Serban, Razvan-Adrian Covache-Busuioc, Octavian Munteanu, Nicolaie Dobrin, Daniel Costea and Lucian Eva
Int. J. Mol. Sci. 2026, 27(2), 676; https://doi.org/10.3390/ijms27020676 - 9 Jan 2026
Viewed by 279
Abstract
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of [...] Read more.
Research shows that neurodegenerative processes do not develop from a single “broken” biochemistry process; rather, they develop when a complex multi-physics environment gradually loses its ability to stabilize the neuron via a collective action between the protein, ion, field and fluid dynamics of the neuron. The use of new technologies such as quantum-informed molecular simulation (QIMS), dielectric nanoscale mapping, fluid dynamics of the cell, and imaging of perivascular flow are allowing researchers to understand how the collective interactions among proteins, membranes and their electrical properties, along with fluid dynamics within the cell, form a highly interconnected dynamic system. These systems require fine control over the energetic, mechanical and electrical interactions that maintain their coherence. When there is even a small change in the protein conformations, the electric properties of the membrane, or the viscosity of the cell’s interior, it can cause changes in the high dimensional space in which the system operates to lose some of its stabilizing curvature and become prone to instability well before structural pathologies become apparent. AI has allowed researchers to create digital twin models using combined physical data from multiple scales and to predict the trajectory of the neural system toward instability by identifying signs of early deformation. Preliminary studies suggest that deviations in the ergodicity of metabolic–mechanical systems, contraction of dissipative bandwidth, and fragmentation of attractor basins could be indicators of vulnerability. This study will attempt to combine all of the current research into a cohesive view of the role of progressive loss of multi-physics coherence in neurodegenerative disease. Through integration of protein energetics, electrodynamic drift, and hydrodynamic irregularities, as well as predictive modeling utilizing AI, the authors will provide mechanistic insights and discuss potential approaches to early detection, targeted stabilization, and precision-guided interventions based on neurophysics. Full article
Show Figures

Figure 1

15 pages, 1064 KB  
Review
Hepatocyte Autophagy in Malaria: Current Concepts, Emerging Mechanisms, and Future Therapeutic Directions
by Afiat Berbudi, Shafia Khairani, Endang Yuni Setyowati and Alexander Kwarteng
Pathogens 2026, 15(1), 70; https://doi.org/10.3390/pathogens15010070 - 9 Jan 2026
Viewed by 238
Abstract
The liver stage of Plasmodium infection represents a critical bottleneck in malaria pathogenesis and a unique interface between parasite development and hepatocyte-intrinsic immunity. Recent evidence suggests that hepatocytes do not eliminate liver-stage parasites through canonical xenophagy, as previously assumed, but instead employ a [...] Read more.
The liver stage of Plasmodium infection represents a critical bottleneck in malaria pathogenesis and a unique interface between parasite development and hepatocyte-intrinsic immunity. Recent evidence suggests that hepatocytes do not eliminate liver-stage parasites through canonical xenophagy, as previously assumed, but instead employ a noncanonical autophagy response known as the conjugation of ATG8 to single membranes (CASM). CASM drives rapid lipidation of LC3 onto the parasitophorous vacuole membrane (PVM) via a V-ATPase-ATG16L1-dependent mechanism, thereby activating the Plasmodium-associated autophagy-related (PAAR) response. This process represents a major hepatocyte-intrinsic mechanism that limits early liver-stage parasite development. Plasmodium liver-stage parasites have evolved specialized strategies to counteract this host defense. The PVM proteins UIS3 and UIS4 enable parasite evasion by sequestering LC3 and remodeling perivacuolar actin, thereby preventing endolysosomal fusion and inhibiting PAAR execution. In parallel, parasites selectively exploit host autophagy components—particularly GABARAP paralogs—to activate TFEB, promoting lysosomal biogenesis and improving access to host-derived nutrients. These interactions highlight autophagy as both a protective and parasite-supportive pathway, depending on the molecular context. Understanding how CASM, PAAR, and parasite evasion mechanisms intersect is crucial for designing pathway-selective interventions that amplify hepatocyte-intrinsic clearance while avoiding the inadvertent enhancement of parasite-supportive autophagy programs. Selective modulation of noncanonical autophagy offers a promising avenue for host-directed therapies that restrict liver-stage development while limiting the emergence of antimalarial resistance. This review synthesizes recent advances in the mechanistic interplay between Plasmodium liver stages and hepatocyte autophagy, identifies major knowledge gaps, and outlines future directions for translating these discoveries into therapeutic innovation. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

21 pages, 5199 KB  
Review
The Enigmatic Conserved Q134-F135-N137 Triad in SARS-CoV-2 Spike Protein: A Conformational Transducer?
by Marine Lefebvre, Henri Chahinian, Nouara Yahi and Jacques Fantini
Biomolecules 2026, 16(1), 111; https://doi.org/10.3390/biom16010111 - 8 Jan 2026
Viewed by 412
Abstract
Lipid raft-associated gangliosides facilitate the early stages of SARS-CoV-2 entry by triggering the exposure of the receptor-binding domain (RBD) within the trimeric spike protein, which is initially sequestered. A broad range of in silico, cryoelectron microscopy and physicochemical approaches indicate that the RBD [...] Read more.
Lipid raft-associated gangliosides facilitate the early stages of SARS-CoV-2 entry by triggering the exposure of the receptor-binding domain (RBD) within the trimeric spike protein, which is initially sequestered. A broad range of in silico, cryoelectron microscopy and physicochemical approaches indicate that the RBD becomes accessible after a ganglioside-induced conformational rearrangement originating in the N-terminal domain (NTD) of one protomer and propagating to the neighboring RBD. We previously identified a triad of amino acids, Q134-F135-N137, as a strictly conserved element on the NTD. In the present review, we integrate a series of structural and experimental data revealing that this triad may act as a conformational transducer connected to a chain of residues that are capable of transmitting an internal conformational wave within the NTD. This wave is generated at the triad level after physical interactions with lipid raft gangliosides of the host cell membrane. It propagates inside the NTD and collides with the RBD of a neighboring protomer, triggering its unmasking. We also identify a chain of aromatic residues that are capable of controlling electron transfer through the NTD, leading us to hypothesize the existence of a dual conformational/quantum wave. In conclusion, the complete conservation of the Q134-F135-N137 triad despite six years of extensive NTD remodeling underscores its critical role in the viral life cycle. This triad represents a potential Achilles’ heel within the hyper-variable NTD, offering a stable target for therapeutic or vaccinal interventions to disrupt the conformational wave and prevent infection. These possibilities are discussed. Full article
Show Figures

Figure 1

18 pages, 1383 KB  
Review
Intrinsic Asymmetry in Weak Acid Transmembrane Transporters
by Emmi Jaeger, Sebastian Buss and Eric Beitz
Biomolecules 2026, 16(1), 91; https://doi.org/10.3390/biom16010091 - 6 Jan 2026
Viewed by 359
Abstract
Transmembrane facilitation of substrates by channels and secondary active transporters results in a defined steady-state concentration ratio across the membrane. Evidence is accumulating that asymmetry in the structural build of the transporters, or interaction with asymmetric partner proteins, can shift the position of [...] Read more.
Transmembrane facilitation of substrates by channels and secondary active transporters results in a defined steady-state concentration ratio across the membrane. Evidence is accumulating that asymmetry in the structural build of the transporters, or interaction with asymmetric partner proteins, can shift the position of the transmembrane equilibrium by biased transport directionality. For instance, the bacterial lactose transporter, LacY, and two amino acid transporters, i.e., the human excitatory amino acid carrier, EAAC1, and the yeast lysine permease, Lyp1, were reported to exhibit distinct transport kinetics in the inward and outward direction by protein-intrinsic properties. A recent example is transport modulation of human monocarboxylate transporters, MCT, by shedding of the extracellular domain of an ancillary protein, basigin. Loss of the domain selectively increases export of lactate from lung cancer cells by a factor of four, contributing to the Warburg effect and malignancy. Further, intrinsic properties of monocarboxylate transporters involving asymmetric affinities of substrate binding, or biased open probabilities were shown to generate preference for one transport direction. Here, we discuss molecular mechanisms and physiological contexts of asymmetric secondary active transmembrane transport. Focus is laid on experimentally established cases, and examples are given in which putative bias in transport directionality may have been overlooked. Full article
Show Figures

Figure 1

Back to TopTop