Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (356)

Search Parameters:
Keywords = protein-adducts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 540 KiB  
Case Report
Simultaneous Central Nervous System and Cutaneous Relapse in Acute Myeloid Leukemia
by Eros Cerantola, Laura Forlani, Marco Pizzi, Renzo Manara, Mauro Alaibac, Federica Lessi, Angelo Paolo Dei Tos, Chiara Briani and Carmela Gurrieri
Hemato 2025, 6(3), 25; https://doi.org/10.3390/hemato6030025 - 23 Jul 2025
Viewed by 169
Abstract
Introduction: Acute Myeloid Leukemia (AML) is a hematologic malignancy characterized by the clonal expansion of myeloid progenitors. While it primarily affects the bone marrow, extramedullary relapse occurs in 3–5% of cases, and it is linked to poor prognosis. Central nervous system (CNS) involvement [...] Read more.
Introduction: Acute Myeloid Leukemia (AML) is a hematologic malignancy characterized by the clonal expansion of myeloid progenitors. While it primarily affects the bone marrow, extramedullary relapse occurs in 3–5% of cases, and it is linked to poor prognosis. Central nervous system (CNS) involvement presents diagnostic challenges due to nonspecific symptoms. CNS manifestations include leptomeningeal dissemination, nerve infiltration, parenchymal lesions, and myeloid sarcoma, occurring at any disease stage and frequently asymptomatic. Methods: A 62-year-old man with a recent history of AML in remission presented with diplopia and aching paresthesias in the left periorbital region spreading to the left frontal area. The diagnostic workup included neurological and hematological evaluation, lumbar puncture, brain CT, brain magnetic resonance imaging (MRI) with contrast, and dermatological evaluation with skin biopsy due to the appearance of nodular skin lesions on the abdomen and thorax. Results: Neurological evaluation showed hypoesthesia in the left mandibular region, consistent with left trigeminal nerve involvement, extending to the periorbital and frontal areas, and impaired adduction of the left eye with divergent strabismus in the primary position due to left oculomotor nerve palsy. Brain MRI showed an equivocal thickening of the left oculomotor nerve without enhancement. Cerebrospinal fluid (CSF) analysis initially showed elevated protein (47 mg/dL) with negative cytology; a repeat lumbar puncture one week later detected leukemic cells. Skin biopsy revealed cutaneous AML localization. A diagnosis of AML relapse with CNS and cutaneous localization was made. Salvage therapy with FLAG-IDA-VEN (fludarabine, cytarabine, idarubicin, venetoclax) and intrathecal methotrexate, cytarabine, and dexamethasone was started. Subsequent lumbar punctures were negative for leukemic cells. Due to high-risk status and extramedullary disease, the patient underwent allogeneic hematopoietic stem cell transplantation. Post-transplant aplasia was complicated by septic shock; the patient succumbed to an invasive fungal infection. Conclusions: This case illustrates the diagnostic complexity and poor prognosis of extramedullary AML relapse involving the CNS. Early recognition of neurological signs, including cranial nerve dysfunction, is crucial for timely diagnosis and management. Although initial investigations were negative, further analyses—including repeated CSF examinations and skin biopsy—led to the identification of leukemic involvement. Although neuroleukemiosis cannot be confirmed without nerve biopsy, the combination of clinical presentation, neuroimaging, and CSF data strongly supports the diagnosis of extramedullary relapse of AML. Multidisciplinary evaluation remains essential for detecting extramedullary relapse. Despite treatment achieving CSF clearance, the prognosis remains unfavorable, underscoring the need for vigilant clinical suspicion in hematologic patients presenting with neurological symptoms. Full article
Show Figures

Figure 1

11 pages, 1987 KiB  
Article
Dirhodium Tetraacetate Binding to Lysozyme at Body Temperature
by Gabriella Tito, Giarita Ferraro and Antonello Merlino
Int. J. Mol. Sci. 2025, 26(14), 6582; https://doi.org/10.3390/ijms26146582 - 9 Jul 2025
Viewed by 182
Abstract
Paddlewheel dirhodium complexes are cytotoxic compounds that are also used as catalysts and in the formation of Rh-based artificial metalloenzymes. Low-temperature structures of adducts formed by the model protein hen egg white lysozyme (HEWL) with dirhodium tetraacetate ([Rh2(μ-O2CCH3 [...] Read more.
Paddlewheel dirhodium complexes are cytotoxic compounds that are also used as catalysts and in the formation of Rh-based artificial metalloenzymes. Low-temperature structures of adducts formed by the model protein hen egg white lysozyme (HEWL) with dirhodium tetraacetate ([Rh2(μ-O2CCH3)4]) when crystals of the protein were treated with the metal compound at 20 °C demonstrated that [Rh2(μ-O2CCH3)4] in part breaks down upon reaction with HEWL; dimeric Rh-Rh units bind the side chains of Asp18 and the C-terminal carboxylate, and monometallic fragments coordinate the side chains of Arg14 and His15 in 20% ethylene glycol, 0.100 M sodium acetate at pH 4.5 and 0.600 M sodium nitrate, while dimeric Rh-Rh units bind the side chains of Asn93 and Lys96, the C-terminal carboxylate and Asp101, with monometallic fragments that bind the side chains of Lys33 and His15 in 0.010 M HEPES pH 7.5 and 2.00 M sodium formate. To verify whether the binding of this metallodrug to proteins also occurs at body temperature, crystals of HEWL were grown in 0.010 M HEPES pH 7.5 and 2.00 M sodium formate at 37 °C and soaked with [Rh2(μ-O2CCH3)4] at the same temperature. X-ray diffraction data collected on these crystals at 37 °C demonstrate that [Rh2(μ-O2CCH3)4] reacts with proteins at body temperature. The structures of the Rh/HEWL adduct formed at 20 °C (obtained from data collected at 100 K) and at 37 °C under the same experimental conditions are very similar, with metal binding sites that are conserved. However, metal-containing fragment occupancy is higher in the structure obtained at 37 °C, suggesting a role of temperature in defining the protein metalation process. Full article
(This article belongs to the Special Issue Peptide and Protein Metalation)
Show Figures

Figure 1

21 pages, 3424 KiB  
Article
SDS Depletion from Intact Membrane Proteins by KCl Precipitation Ahead of Mass Spectrometry Analysis
by Tania Iranpour, Mapenzi Mirimba, Chloe Shenouda, Adam Lynch and Alan A. Doucette
Proteomes 2025, 13(3), 30; https://doi.org/10.3390/proteomes13030030 - 2 Jul 2025
Viewed by 565
Abstract
Background: Membrane proteins are preferentially solubilized with sodium dodecyl sulfate (SDS), which necessitates a purification protocol to deplete the surfactant prior to mass spectrometry analysis. However, maintaining solubility of intact membrane proteins is challenged in an SDS-free environment. SDS precipitation with potassium salts [...] Read more.
Background: Membrane proteins are preferentially solubilized with sodium dodecyl sulfate (SDS), which necessitates a purification protocol to deplete the surfactant prior to mass spectrometry analysis. However, maintaining solubility of intact membrane proteins is challenged in an SDS-free environment. SDS precipitation with potassium salts (KCl) offers a potentially viable workflow to deplete SDS and permit proteoform analysis. The purpose of this study is to devise a robust detergent-based protocol applicable for processing and analysis of intact membrane-associated proteoforms. Methods: The precipitation conditions impacting SDS removal from spinach chloroplasts and liver membrane proteome preparations were evaluated, capitalizing on optimization of pH (highly basic), addition of MS-compatible solubilizing additives (urea) and adjustment of the KCl to SDS ratio to maximize recovery and purity. Results: Characterization of the SDS-solubilized, KCl-precipitated spinach membrane preparation revealed multiple charge envelope MS spectra displaying high signal to noise, free of SDS adducts. Precipitation at pH 12 or with urea improved protein recovery and purity. Bottom-up analysis identified 1826 distinct liver protein groups from four independent SDS precipitation conditions. While precipitation at pH 8 without urea revealed a greater number of protein identifications by mass spectrometry, precipitation under highly basic conditions (pH 12) with urea provided higher membrane protein recovery and achieved the greatest number (732 of 1056) and largest percentage (69.3%) of membrane proteins identified in the SDS removal workflow. Conclusion: This workflow provides new opportunities for MS-based proteoform analysis by capitalizing on the benefits of SDS for protein extraction while maintaining high solubility and purity of intact proteins though KCl precipitation of the surfactant. Full article
Show Figures

Graphical abstract

11 pages, 775 KiB  
Review
Cooperation Between Aflatoxin-Induced p53 Aberrations and Hepatitis B Virus in Hepatocellular Carcinoma
by Carolina Moreno-León and Francisco Aguayo
J. Xenobiot. 2025, 15(4), 96; https://doi.org/10.3390/jox15040096 - 20 Jun 2025
Viewed by 599
Abstract
Hepatocellular carcinoma (HCC) imposes a significant burden on global public health. Exposure to aflatoxins, potent mycotoxins produced by Aspergillus fungi contaminating staple foods, and chronic hepatitis B virus (HBV) infection are major etiological factors, especially where they co-exist. This review examines the critical [...] Read more.
Hepatocellular carcinoma (HCC) imposes a significant burden on global public health. Exposure to aflatoxins, potent mycotoxins produced by Aspergillus fungi contaminating staple foods, and chronic hepatitis B virus (HBV) infection are major etiological factors, especially where they co-exist. This review examines the critical role of the p53 tumor suppressor pathway as a primary target and convergence point for the carcinogenic actions of aflatoxins and HBV. Aflatoxin B1 (AFB1), a Group 1 carcinogen, exerts significant genotoxicity, characteristically inducing a specific hotspot mutation (R249S) in the TP53 gene via DNA adduct formation, thereby compromising p53’s critical tumor suppressor functions. This R249S mutation is considered a molecular fingerprint of aflatoxin exposure. Concurrently, the HBV X protein (HBx) functionally inactivates wild-type p53 through direct binding and by promoting its degradation. The synergistic disruption of the p53 pathway, driven by AFB1-induced mutation and amplified by HBV-mediated functional inhibition, significantly enhances the risk of HCC development. This review addresses how aflatoxin exposure alters key aspects of p53 and how this damage interacts with HBV-mediated p53 suppression, providing crucial insights into hepatocarcinogenesis. The knowledge synthesized here underscores the importance of mitigating aflatoxin exposure alongside HBV control for effective HCC prevention and treatment strategies. Full article
Show Figures

Figure 1

22 pages, 2854 KiB  
Perspective
The Hepatic Axis Fructose-Methylglyoxal-AMPK: Starring or Secondary Role in Chronic Metabolic Disease?
by Alejandro Gugliucci
J. Clin. Med. 2025, 14(10), 3559; https://doi.org/10.3390/jcm14103559 - 19 May 2025
Viewed by 581
Abstract
Biochemical alterations linked to metabolic syndrome (MetS), type 2 diabetes (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) may be brought on by the Western diet. Based on research conducted over the past decade, fructose is one of the main culprits. Over 80% [...] Read more.
Biochemical alterations linked to metabolic syndrome (MetS), type 2 diabetes (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) may be brought on by the Western diet. Based on research conducted over the past decade, fructose is one of the main culprits. Over 80% of ingested fructose is metabolized by the liver at first pass, where it stimulates de novo lipogenesis (DNL) to drive hepatic triglyceride (TG) synthesis, which contributes to MASLD, hepatic insulin resistance (IR), and dyslipidemia. Fructose reduction produces quick and significant amelioration in these metabolic disturbances. We hereby propose potential overarching processes that can link these pathways to signaling disruption by the critical metabolic sensor AMP-activated protein kinase (AMPK). We proffer that when large amounts of fructose and glucose enter the liver, triose fluxes may be sufficient to produce transient increases in methylglyoxal (MG), allowing steady-state concentrations between its production and catabolism by glyoxalases to be high enough to modify AMPK-sensitive functional amino acid residues. These reactions would transiently interfere with AMPK activation by both AMP and aldolase. Such a sequence of events would boost the well-documented lipogenic impact of fructose. Given that MG adducts are irreversible, modified AMPK molecules would be less effective in metabolite sensing until they were replaced by synthesis. If proven, this mechanism provides another avenue of possibilities to tackle the problem of fructose in our diet. We additionally discuss potential multimodal treatments and future research avenues for this apparent hepatic AMPK malfunction. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Graphical abstract

17 pages, 3268 KiB  
Article
Gold(III) Complexes with 2-(1-Ethylbenzyl)pyridine as Promising Antimicrobial and Antitumor Agents
by Antonio Zucca, Bruna Canu, Maria I. Pilo, Sergio Stoccoro, Giacomo Senzacqua, Sara Fais, Giuseppina Pichiri and Alessandra Scano
Molecules 2025, 30(7), 1611; https://doi.org/10.3390/molecules30071611 - 4 Apr 2025
Viewed by 847
Abstract
Antimicrobial resistance (AMR) is one of the most urgent public health problems worldwide; multidrug resistance (MDR) is also of concern. In an effort to find new classes of antibiotics, recent studies have found that coordination compounds of noble metals show promising biological effects [...] Read more.
Antimicrobial resistance (AMR) is one of the most urgent public health problems worldwide; multidrug resistance (MDR) is also of concern. In an effort to find new classes of antibiotics, recent studies have found that coordination compounds of noble metals show promising biological effects both in vitro and in vivo, deserving attention as a new class of possible antimicrobial agents. Metal ions in biological systems can essentially have two roles: structural or functional. In the former, the metal ion serves to stabilize structures, especially proteins, while in the latter, the metal is involved in bio-site reactivity (essentially in metallo-enzymes). Two new complexes with 2-(1-ethyl-benzyl)pyridine (pyeb), one monodentate adduct and one cyclometalated ([Au(pyeb)Cl3] and [Au(pyeb-H)Cl2], respectively), have been synthesized, characterized, and tested against Gram-positive and Gram-negative bacteria, as well as yeasts, revealing promising antibacterial and antibiofilm properties. The two complexes have been thoroughly characterized by means of 1D and 2D NMR spectroscopy, as well as by cyclic voltammetry, conductivity measurements, FT-IR, and elemental analysis. The study showed that the two derivatives are structurally and chemically different, with the cyclometalated complex being chemically and electrochemically more stable. Antimicrobial assays demonstrated that solutions of the monodentate adduct and of the cyclometalated complex have inhibitory and antibiofilm effects against the pathogenic bacteria E. coli, K. pneumoniae, S. aureus, and S. pyogenes but were unable to reveal a fungicidal effect on C. albicans. A preliminary study was conducted to assess the anti-cancer activity of the compounds, and treatments with the gold compounds also resulted in a significant reduction in the metabolic activity of HT29 colon cancer cells. Full article
(This article belongs to the Special Issue Featured Papers in Organometallic Chemistry—2nd Edition)
Show Figures

Figure 1

17 pages, 18261 KiB  
Article
Reactive Dicarbonyl Scavenging with 2-Hydroxybenzylamine Improves MASH
by Joyce Cheung-Flynn, John A. Rathmacher, Lisa M. Pitchford, Yanhua Xiong and Charles Robert Flynn
Nutrients 2025, 17(4), 610; https://doi.org/10.3390/nu17040610 - 7 Feb 2025
Cited by 1 | Viewed by 3506
Abstract
Background: Products of lipid peroxidation include a number of reactive lipid aldehydes including reactive dicarbonyl electrophiles (DEs) and contribute to disease processes. DEs play a significant role in the development and progression of metabolic-associated steatotic liver disease (MASLD) by contributing to oxidative stress, [...] Read more.
Background: Products of lipid peroxidation include a number of reactive lipid aldehydes including reactive dicarbonyl electrophiles (DEs) and contribute to disease processes. DEs play a significant role in the development and progression of metabolic-associated steatotic liver disease (MASLD) by contributing to oxidative stress, inflammation, protein dysfunction, and mitochondrial impairment. Reducing DE stress may be a potential strategy for managing MASLD. We hypothesized that the DE scavenger 2-hydroxybenzylamine (2-HOBA) would reduce liver injury by reducing liver protein adduct formation by DE in mouse models of MASLD. Methods: Protein adducts were measured in human livers by immunohistochemistry and immunoblot. The effects of 2-HOBA were assessed in two different mouse models of MASLD. Results: Isolevuglandin (IsoLG) protein adducts were increased in MASH-staged human livers relative to histologically normal controls. Diet-Induced Animal Model of Nonalcoholic Fatty Liver Disease (DIAMOND) mice treated with 2-HOBA exhibited significantly lower fibrosis scores (* p = 0.012) and reduced liver transaminases (AST, p = 0.03) and ALT, p = 0.012) by over 40%. In STAM (Stelic Animal Model) mice, 2-HOBA improved NAFLD activity scores (p = 0.03, NAS), hyperglycemia, and inflammatory cytokines and reduced serum F2-isoprostanes (IsoPs) by 30%, p = 0.05. These improvements were absent mRNA changes in hepatic antioxidant enzymes (Cat, Gpx1, or Sod2) or ROS-generating proteins (p22PHOX, p47PHOX, NOX4 or COX1). Conclusions: DE scavenging with 2-HOBA may be a promising therapeutic strategy for managing MASLD. While findings are currently limited to male mice, a nutraceutical that reduces liver fibrosis could significantly improve the management of MASH by offering a non-invasive treatment option to potentially slow or reverse liver scarring, delay progression to cirrhosis, and improve patient outcomes, while also providing a potential treatment option for patients who may not be suitable for other interventions like liver transplantation. Full article
(This article belongs to the Special Issue Hot Topics in Clinical Nutrition (3rd Edition))
Show Figures

Figure 1

24 pages, 3729 KiB  
Article
Time Course of Mitochondrial Antioxidant Markers in a Preclinical Model of Severe Penetrating Traumatic Brain Injury
by Sudeep Musyaju, Hiren R. Modi, Deborah A. Shear, Anke H. Scultetus and Jignesh D. Pandya
Int. J. Mol. Sci. 2025, 26(3), 906; https://doi.org/10.3390/ijms26030906 - 22 Jan 2025
Cited by 1 | Viewed by 1213
Abstract
Traumatic brain injury (TBI) results from external mechanical forces exerted on the brain, triggering secondary injuries due to cellular excitotoxicity. A key indicator of damage is mitochondrial dysfunction, which is associated with elevated free radicals and disrupted redox balance following TBI. However, the [...] Read more.
Traumatic brain injury (TBI) results from external mechanical forces exerted on the brain, triggering secondary injuries due to cellular excitotoxicity. A key indicator of damage is mitochondrial dysfunction, which is associated with elevated free radicals and disrupted redox balance following TBI. However, the temporal changes in mitochondrial redox homeostasis after penetrating TBI (PTBI) have not been thoroughly examined. This study aimed to investigate redox alterations from 30 min to two-weeks post-injury in adult male Sprague Dawley rats that experienced either PTBI or a Sham craniectomy. Redox parameters were measured at several points: 30 min, 3 h, 6 h, 24 h, 3 d, 7 d, and 14 d post-injury. Mitochondrial samples from the injury core and perilesional areas exhibited significant elevations in protein modifications including 3-nitrotyrosine (3-NT) and protein carbonyl (PC) adducts (14–53%, vs. Sham). In parallel, antioxidants such as glutathione, NADPH, peroxiredoxin-3 (PRX-3), thioredoxin-2 (TRX-2), and superoxide dismutase 2 (SOD2) were significantly depleted (20–80%, vs. Sham). In contrast, catalase (CAT) expression showed a significant increase (45–75%, vs. Sham). These findings indicate a notable imbalance in redox parameters over the two-week post-PTBI period suggesting that the therapeutic window to employ antioxidant therapy extends well beyond 24 h post-TBI. Full article
(This article belongs to the Special Issue Mitochondrial Function in Health and Diseases)
Show Figures

Figure 1

12 pages, 692 KiB  
Article
The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential
by Boleslaw T. Karwowski
Appl. Sci. 2025, 15(1), 437; https://doi.org/10.3390/app15010437 - 5 Jan 2025
Viewed by 1447
Abstract
The human body contains ~1014 cells—each of which is separated by a lipid bilayer, along with its organeller. Unsaturated fatty acids are located on the external layer and, as a result, are particularly exposed to harmful factors, including xenobiotics and ionising radiation. [...] Read more.
The human body contains ~1014 cells—each of which is separated by a lipid bilayer, along with its organeller. Unsaturated fatty acids are located on the external layer and, as a result, are particularly exposed to harmful factors, including xenobiotics and ionising radiation. During this activity, lipid peroxidation products are generated, e.g., 4-hydroxy-2-nonenal (HNA), 4-oxo-2(E)-nonenal (ONE), and malondialdehyde (MDA). The mentioned aldehydes can react with cytosolic 2′-deoxynucleosides via Michael addition. In this paper, the following adducts have been taken into theoretical consideration: ε-dCyt, H-ε-dAde, ε-dCyt, H-ε-dAde, H-ε-dGua, R/S-OH-PdGua, N2,3-ε-dGua, M1-dGua, N1-ε-dGua, and HNE-dGua. The presence of the above molecules can alter a cell’s antioxidant pool. With this in mind, the adiabatic ionisation potential (AIP) and vertical ionisation potential (VIP), as well as the spin and charge distributions, are discussed. For this purpose, DFT studies were performed at the M06-2x/6-31++G** level of theory in the aqueous phase (both non-equilibrated (NE) and equilibrated (EQ) solvent–solute interaction modes), together with a Hirshfeld charge and spin distribution analysis. The obtained results indicate that the AIPs of all the investigated molecules fell within a range of 5.72 and 5.98 eV, which is consistent with the reference value of 7,8-dihydro-8-oxo-2′-deoxyguanosine (OXOdGua), 5.78 eV. N2,3-ε-dGua and M1-dGua were the only exceptions, whose VIP and AIP were noted as higher. The electronic properties analysis of 2′-deoxynucleoside adducts with lipid peroxidation products reveals their potential influence on the cells’ antioxidant pool, whereby they can affect the communication process between proteins, lipids, and nucleotides. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

37 pages, 7538 KiB  
Review
Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review
by Innokenty M. Mokhosoev, Dmitry V. Astakhov, Alexander A. Terentiev and Nurbubu T. Moldogazieva
Cells 2024, 13(23), 1958; https://doi.org/10.3390/cells13231958 - 26 Nov 2024
Cited by 10 | Viewed by 4907
Abstract
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that [...] Read more.
Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. Findings: In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug–drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. Conclusions: The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumor Pathogenesis)
Show Figures

Figure 1

17 pages, 3224 KiB  
Article
Impact of Nannochloropsis oceanica and Chlorococcum amblystomatis Extracts on UVA-Irradiated on 3D Cultured Melanoma Cells: A Proteomic Insight
by Agnieszka Gęgotek, Tiago Conde, Maria Rosário Domingues, Pedro Domingues and Elżbieta Skrzydlewska
Cells 2024, 13(23), 1934; https://doi.org/10.3390/cells13231934 - 21 Nov 2024
Cited by 1 | Viewed by 1393
Abstract
Melanoma is one of the most malignant forms of skin cancer, characterised by the highest mortality rate among affected patients. This study aims to analyse and compare the effects of lipid extracts from the microalgae Nannochloropsis oceanica (N.o.) and Chlorococcum amblystomatis [...] Read more.
Melanoma is one of the most malignant forms of skin cancer, characterised by the highest mortality rate among affected patients. This study aims to analyse and compare the effects of lipid extracts from the microalgae Nannochloropsis oceanica (N.o.) and Chlorococcum amblystomatis (C.a.) on the intra and extracellular proteome of UVA-irradiated melanoma cells using a three-dimensional model. Proteomic analysis revealed that UVA radiation significantly increases the levels of pro-inflammatory proteins in melanoma cells. Treatment with algae extracts reduced these protein levels in both non-irradiated and irradiated cells. Furthermore, untreated cells released proteins responsible for cell growth and proliferation into the medium, a process hindered by UVA radiation through the promotion of pro-inflammatory molecules secretion. The treatment with algae extracts effectively mitigated UVA-induced alterations. Notably, UVA radiation significantly induced the formation of 4-HNE and 15-PGJ2 protein adducts in both cells and the medium, while treatment with algae extracts stimulated the formation of 4-HNE-protein adducts and reduced the level of 15-PGJ2-protein adducts. However, both algae extracts successfully prevented these UVA-induced modifications. In conclusion, lipid extracts from N.o. and C.a. appear to be promising agents in supporting anti-melanoma therapy. However, their potent protective capacity may limit their applicability, particularly following cells exposure to UVA. Full article
Show Figures

Graphical abstract

23 pages, 2272 KiB  
Review
Effect of Oxidative Stress on Mitochondrial Damage and Repair in Heart Disease and Ischemic Events
by Paweł Kowalczyk, Sebastian Krych, Karol Kramkowski, Agata Jęczmyk and Tomasz Hrapkowicz
Int. J. Mol. Sci. 2024, 25(22), 12467; https://doi.org/10.3390/ijms252212467 - 20 Nov 2024
Cited by 6 | Viewed by 2843
Abstract
The literature analysis conducted in this review discusses the latest achievements in the identification of cardiovascular damage induced by oxidative stress with secondary platelet mitochondrial dysfunction. Damage to the platelets of mitochondria as a result of their interactions with reactive oxygen species (ROS) [...] Read more.
The literature analysis conducted in this review discusses the latest achievements in the identification of cardiovascular damage induced by oxidative stress with secondary platelet mitochondrial dysfunction. Damage to the platelets of mitochondria as a result of their interactions with reactive oxygen species (ROS) and reactive nitrogen species (RNS) can lead to their numerous ischemic events associated with hypoxia or hyperoxia processes in the cell. Disturbances in redox reactions in the platelet mitochondrial membrane lead to the direct oxidation of cellular macromolecules, including nucleic acids (DNA base oxidation), membrane lipids (lipid peroxidation process) and cellular proteins (formation of reducing groups in repair proteins and amino acid peroxides). Oxidative changes in biomolecules inducing tissue damage leads to inflammation, initiating pathogenic processes associated with faster cell aging or their apoptosis. The consequence of damage to platelet mitochondria and their excessive activation is the induction of cardiovascular and neurodegenerative diseases (Parkinson’s and Alzheimer’s), as well as carbohydrate metabolism disorders (diabetes). The oxidation of mitochondrial DNA can lead to modifications in its bases, inducing the formation of exocyclic adducts of the ethano and propano type. As a consequence, it disrupts DNA repair processes and conduces to premature neoplastic transformation in critical genes such as the p53 suppressor gene, which leads to the development of various types of tumors. The topic of new innovative methods and techniques for the analysis of oxidative stress in platelet mitochondria based on methods such as a nicking assay, oxygen consumption assay, Total Thrombus formation Analysis System (T-Tas), and continuous-flow left ventricular assist devices (CF-LVADs) was also discussed. They were put together into one scientific and research platform. This will enable the facilitation of faster diagnostics and the identification of platelet mitochondrial damage by clinicians and scientists in order to implement adequate therapeutic procedures and minimize the risk of the induction of cardiovascular diseases, including ischemic events correlated with them. A quantitative analysis of the processes of thrombus formation in cardiovascular diseases will provide an opportunity to select specific anticoagulant and thrombolytic drugs under conditions of preserved hemostasis. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Cardiovascular Diseases)
Show Figures

Figure 1

29 pages, 3702 KiB  
Article
Methylglyoxal-Induced Modifications in Human Triosephosphate Isomerase: Structural and Functional Repercussions of Specific Mutations
by Ignacio de la Mora-de la Mora, Itzhel García-Torres, Luis Antonio Flores-López, Gabriel López-Velázquez, Gloria Hernández-Alcántara, Saúl Gómez-Manzo and Sergio Enríquez-Flores
Molecules 2024, 29(21), 5047; https://doi.org/10.3390/molecules29215047 - 25 Oct 2024
Viewed by 1624
Abstract
Triosephosphate isomerase (TPI) dysfunction is a critical factor in diverse pathological conditions. Deficiencies in TPI lead to the accumulation of toxic methylglyoxal (MGO), which induces non-enzymatic post-translational modifications, thus compromising protein stability and leading to misfolding. This study investigates how specific TPI mutations [...] Read more.
Triosephosphate isomerase (TPI) dysfunction is a critical factor in diverse pathological conditions. Deficiencies in TPI lead to the accumulation of toxic methylglyoxal (MGO), which induces non-enzymatic post-translational modifications, thus compromising protein stability and leading to misfolding. This study investigates how specific TPI mutations (E104D, N16D, and C217K) affect the enzyme’s structural stability when exposed to its substrate glyceraldehyde 3-phosphate (G3P) and MGO. We employed circular dichroism, intrinsic fluorescence, native gel electrophoresis, and Western blotting to assess the structural alterations and aggregation propensity of these TPI mutants. Our findings indicate that these mutations markedly increase TPI’s susceptibility to MGO-induced damage, leading to accelerated loss of enzymatic activity and enhanced protein aggregation. Additionally, we observed the formation of MGO-induced adducts, such as argpyrimidine (ARGp), that contribute to enzyme inactivation and aggregation. Importantly, the application of MGO-scavenging molecules partially mitigated these deleterious effects, highlighting potential therapeutic strategies to counteract MGO-induced damage in TPI-related disorders. Full article
Show Figures

Figure 1

15 pages, 2792 KiB  
Article
Nannochloropsis oceanica Lipid Extract Moderates UVB-Irradiated Psoriatic Keratinocytes: Impact on Protein Expression and Protein Adducts
by Adam Wroński, Agnieszka Gęgotek, Tiago Conde, Maria Rosário Domingues, Pedro Domingues and Elżbieta Skrzydlewska
Antioxidants 2024, 13(10), 1236; https://doi.org/10.3390/antiox13101236 - 14 Oct 2024
Viewed by 1445
Abstract
Psoriasis is characterized by excessive exfoliation of the epidermal layer due to enhanced pro-inflammatory signaling and hyperproliferation of keratinocytes, further modulated by UV-based anti-psoriatic treatments. Consequently, this study aimed to evaluate the impact of a lipid extract derived from the microalgae Nannochloropsis oceanica [...] Read more.
Psoriasis is characterized by excessive exfoliation of the epidermal layer due to enhanced pro-inflammatory signaling and hyperproliferation of keratinocytes, further modulated by UV-based anti-psoriatic treatments. Consequently, this study aimed to evaluate the impact of a lipid extract derived from the microalgae Nannochloropsis oceanica on the proteomic alterations induced by lipid derivatives in non-irradiated and UVB-irradiated keratinocytes from psoriatic skin lesions compared to keratinocytes from healthy individuals. The findings revealed that the microalgae extract diminished the viability of psoriatic keratinocytes without affecting the viability of these cells following UVB exposure. Notably, the microalgae extract led to an increased level of 4-HNE-protein adducts in non-irradiated cells and a reduction in 4-hydroxynonenal (4-HNE)-protein and 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2)-protein adducts in UVB-exposed keratinocytes from psoriasis patients. In healthy skin cells, the extract decreased the UV-induced elevation of 4-HNE-protein and 15d-PGJ2-protein adducts. The antioxidant/anti-inflammatory attributes of the lipid extract from the Nannochloropsis oceanica suggest its potential as a protective agent for keratinocytes in healthy skin against UVB radiation’s detrimental effects. Moreover, it could offer therapeutic benefits to skin cells afflicted with psoriatic lesions by mitigating their proliferation and inflammatory responses during UV radiation treatment. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

14 pages, 1197 KiB  
Article
Adherence to Mediterranean Diet and Biomarkers of Redox Balance and Inflammation in Old Patients Hospitalized in Internal Medicine
by Francesco Bellanti, Aurelio Lo Buglio, Michał Dobrakowski, Aleksandra Kasperczyk, Sławomir Kasperczyk, Gaetano Serviddio and Gianluigi Vendemiale
Nutrients 2024, 16(19), 3359; https://doi.org/10.3390/nu16193359 - 2 Oct 2024
Cited by 2 | Viewed by 1803
Abstract
Background/Objectives: We have previously described that low adherence to the Mediterranean diet (MD) in elderly patients admitted in internal medicine wards is linked to poorer clinical outcomes. This investigation was designed to explore whether adherence to the MD is related to circulating markers [...] Read more.
Background/Objectives: We have previously described that low adherence to the Mediterranean diet (MD) in elderly patients admitted in internal medicine wards is linked to poorer clinical outcomes. This investigation was designed to explore whether adherence to the MD is related to circulating markers of redox balance and inflammation in this clinical scenario. Methods: A cross-sectional study was performed on 306 acute old patients hospitalized in internal medicine wards. Adherence to the MD was estimated by the Italian Mediterranean Index (IMI). The circulating markers of redox balance were assessed in serum and erythrocytes and correlated with inflammatory markers across different MD adherence groups. Results: Compared to the patients with high adherence, those with low adherence to the MD exhibited severely impaired redox balance, as evidenced by a higher GSSG/GSH ratio and increased serum hydroxynonenal/malondialdehyde–protein adducts. No modifications were described in the expression of antioxidant enzymes in peripheral blood mononuclear cells. Patients with low adherence to the MD exhibited a higher neutrophil-to-lymphocyte ratio and markers of systemic inflammation, as well as raised levels of interleukin-6 and tumor necrosis factor, compared to those with high MD adherence. A strong association was observed between the circulating markers of redox balance and inflammation/immune response, with the highest regression coefficients found in the low adherence group. Conclusions: Old patients admitted to internal medicine wards with low adherence to the MD display unfavorable profiles of the circulating markers of redox balance and inflammation. It is conceivable that such effects on redox balance can be linked to the high polyphenol content of MD. This study supports the rationale for intervention trials that attest to the effectiveness of MD as a nutritional strategy for disease prevention. Full article
(This article belongs to the Special Issue Effects of Dietary Polyphenols on Immune System)
Show Figures

Figure 1

Back to TopTop