The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spatial Geometry Analysis of 2′-Deoxynucleoside Adducts with Lipid Peroxidation Products
3.2. Charge and Spin Distribution Analysis
3.3. Vertical and Adiabatic Ionisation Potential (AIP) of 2′Deoxynucleosides Adducts
4. Discussion
5. Conclusions
- The results of the presented studies have been discussed on the M06-2x/6-31++G** level of theory in the aqueous phase. The non-equilibrated and equilibrated solvent–solute interaction has been considered using Tomasi’s Conductor-like Polarised Continuum Model;
- The vertical and adiabatic ionisation potentials of ε-dCyt, H-ε-dAde, ε-dCyt, H-ε-dAde, H-ε-dGua, R/S-OH-PdGua, N1-ε-dGua, HNE-dGua (8 diastereomeric forms), dCyt, dAdo, and dGuo have been calculated;
- The spatial geometry comparison between the neutral and adiabatic radical cations of discussed LPO derivatives reveals the lowest RMSD value (0.156 [Å2]) for (RSS)HNE-dGua. Conversely, for N2,3-OH-ε-PdGua, the highest RMSD value was calculated as 0.650;
- The lowest VIPNE, VIPEQ, and AIP in [eV] have been found for the following 2′-deoxynucleoside LPO adducts:H-ε-dAdo (2′-deoxyadenosine derivative) 7.07, 6.25, and 6.00, respectively,H-ε-dCyt (2′-deoxycytidine derivatives) 6.78, 5.96, and 5.80, respectively,(SRR) HNE-dGua (2′-deoxyguanosine derivatives) 6.80, 6.07, and 5.72, respectively;
- All the 2′-deoxyguanosine LPO adducts discussed in this paper have AIP values similar to OXOdGua (5.78 eV), apart from N2,3-ε-dGua and M1-dGua.
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sender, R.; Fuchs, S.; Milo, R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta Rev. Biomembr. 2000, 1469, 159–195. [Google Scholar] [CrossRef]
- Rangamani, P.; Zhang, D.; Oster, G.; Shen, A.Q. Lipid tubule growth by osmotic pressure. J. R. Soc. Interface 2013, 10, 20130637. [Google Scholar] [CrossRef] [PubMed]
- Abbott, S.K.; Else, P.L.; Atkins, T.A.; Hulbert, A.J. Fatty acid composition of membrane bilayers: Importance of diet polyunsaturated fat balance. Biochim. Biophys. Acta Biomembr. 2012, 1818, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Botta, E.; Holinstat, M. Eicosanoids in inflammation in the blood and the vessel. Front. Pharmacol. 2022, 13, 997403. [Google Scholar] [CrossRef]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (Ros) revisited: Outlining their role in biological macromolecules (dna, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2016, 44, 1245049. [Google Scholar] [CrossRef]
- De Almeida, A.J.P.O.; De Oliveira, J.C.P.L.; Da Silva Pontes, L.V.; De Souza Júnior, J.F.; Gonçalves, T.A.F.; Dantas, S.H.; De Almeida Feitosa, M.S.; Silva, A.O.; De Medeiros, I.A. ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. Oxid. Med. Cell. Longev. 2022, 2022, 1225578. [Google Scholar] [CrossRef]
- Barry Halliwell, A.; Adhikary, M.; Dingfelder, M.D. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem. Soc. Rev. 2021, 50, 8355–8360. [Google Scholar] [CrossRef]
- Lennicke, C.; Cochemé, H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 2021, 81, 3691–3707. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.M.; Chandel, N.S. Mitochondrial Regulation of Cell Survival and Death During Low-Oxygen Conditions. Antioxidants Redox Signal. 2009, 11, 2673–2683. [Google Scholar] [CrossRef] [PubMed]
- Farmer, E.E.; Mueller, M.J. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 2013, 64, 429–450. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Lipid peroxidation: Physiological levels and dual biological effects. Free Radic. Biol. Med. 2009, 47, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hou, L.; Guo, Z.; Wang, G.; Xu, J.; Zheng, Z.; Sun, K.; Guo, F. Lipid peroxidation in osteoarthritis: Focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov. 2023, 9, 320. [Google Scholar] [CrossRef]
- Gentile, F.; Arcaro, A.; Pizzimenti, S.; Daga, M.; Cetrangolo, G.P.; Dianzani, C.; Lepore, A.; Graf, M.; Ames, P.R.J.; Barrera, G. DNA damage by lipid peroxidation products: Implications in cancer, inflammation and autoimmunity. AIMS Genet. 2017, 4, 103–137. [Google Scholar] [CrossRef]
- Nair, U.; Bartsch, H.; Nair, J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: A review of published adduct types and levels in humans. Free Radic. Biol. Med. 2007, 43, 1109–1120. [Google Scholar] [CrossRef]
- Voulgaridou, G.P.; Anestopoulos, I.; Franco, R.; Panayiotidis, M.I.; Pappa, A. DNA damage induced by endogenous aldehydes: Current state of knowledge. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2011, 711, 13–27. [Google Scholar] [CrossRef]
- Bursch, M.; Mewes, J.M.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular ComputationalChemistry. Angew. Chemie Int. Ed. 2022, 61, e202205735. [Google Scholar] [CrossRef]
- Evangelista, F.A.; Schaefer, H.F. Structures and energetics of adenosine radicals: (2′-dAdo—H). J. Phys. Chem. A 2004, 108, 10258–10269. [Google Scholar] [CrossRef]
- Miertus, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Markx, G.H.; Davey, C.L. The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology. Enzyme Microb. Technol. 1999, 25, 161–171. [Google Scholar] [CrossRef]
- Zhao, Y.; Pu, J.; Lynch, B.J.; Truhlar, D.G. Tests of second-generation and third-generation density functionals for thermochemical kinetics. Phys. Chem. Chem. Phys. 2004, 6, 673. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- Karwowski, B.T. The 2Ih and OXOG Proximity Consequences on Charge Transfer through ds -DNA: Theoretical Studies of Clustered DNA Damage. Molecules 2023, 28, 2180. [Google Scholar] [CrossRef]
- Kumar, A.; Adhikary, A.; Sevilla, M.D.; Close, D.M. One-electron oxidation of ds(5′-GGG-3′) and ds(5′-G(8OG)G-3′) and the nature of hole distribution: A density functional theory (DFT) study. Phys. Chem. Chem. Phys. 2020, 22, 5078–5089. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Marenich, A.V.; Jerome, S.V.; Cramer, C.J.; Truhlar, D.G. Charge model 5: An extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. J. Chem. Theory Comput. 2012, 8, 527–541. [Google Scholar] [CrossRef]
- Saha, S.; Roy, R.K.; Ayers, P.W. Are the Hirshfeld and Mulliken Population Analysis Schemes Consistent With Chemical Intuition? Int. J. Quantum Chem. 2009, 109, 1790–1806. [Google Scholar] [CrossRef]
- Karwowski, B.T. The influence of phosphorothioate on charge migration in single and double stranded DNA: A theoretical approach. Phys. Chem. Chem. Phys. 2015, 17, 21507–21516. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Davidson, E.R.; Chakravorty, S. A test of the Hirshfeld definition of atomic charges and moments. Theor. Chim. Acta 1992, 83, 319–330. [Google Scholar] [CrossRef]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection. Antioxid. Redox Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef]
- Fridovich, I. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 1986, 247, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meister, A.; Anderson, M.E. Glutathione. Annu Rev Biochem. 1983, 52, 711–760. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.K. Membrane peroxidases. Mol. Cell. Biochem. 1988, 128, 105–128. [Google Scholar] [CrossRef]
- Glorieux, C.; Calderon, P.B. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 2017, 398, 1095–1108. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- De Bont, R.; van Larebeke, N. Endogenous DNA damage in humans: A review of quantitative data. Mutagenesis 2004, 19, 169–185. [Google Scholar] [CrossRef]
- Sudhir Ambekar, S. DNA: Damage and Repair Mechanisms in Humans. Glob. J. Pharm. Pharm. Sci. 2017, 3, 7. [Google Scholar] [CrossRef]
- Piovesan, A.; Pelleri, M.C.; Antonaros, F.; Strippoli, P.; Caracausi, M.; Vitale, L. On the length, weight and GC content of the human genome. BMC Res. Notes 2019, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Traut, T.W. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 1994, 140, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Steenken, S.; Jovanovic, S.V. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 1997, 119, 617–618. [Google Scholar] [CrossRef]
- Matter, B.; Malejka-giganti, D.; Csallany, A.S.; Tretyakova, N. Quantitative analysis of the oxidative DNA lesion, 2,2-diamino-4-(2-deoxy-β-d-erythro-pentofuranosyl)amino]-5(2H)-oxazolone (oxazolone), in vitro and in vivo by isotope dilution-capillary HPLC-ESI-MS/MS. Nucleic Acids Res 2006, 34, 5449–5460. [Google Scholar] [CrossRef]
- Harkin, C.; Cobice, D.; Watt, J.; Kurth, M.J.; Brockbank, S.; Bolton, S.; Johnston, F.; Strzelecka, A.; Lamont, J.V.; Moore, T.; et al. Analysis of reactive aldehydes in urine and plasma of type-2 diabetes mellitus patients through liquid chromatography-mass spectrometry: Reactive aldehydes as potential markers of diabetic nephropathy. Front. Nutr. 2023, 9, 997015. [Google Scholar] [CrossRef]
- Fritz, K.S.; Petersen, D.R. Free Radical Biology and Medicine An overview of the chemistry and biology of reactive aldehydes. Free Radic. Biol. Med. 2013, 59, 85–91. [Google Scholar] [CrossRef]
- Esterbauer, H. Cytotoxicity and genotoxicity of lipid-oxidation products. Am. J. Clin. Nutr. 1993, 57, 779S–785S. [Google Scholar] [CrossRef]
- Huc, L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. Vol. 2013, 20, 1615–1630. [Google Scholar] [CrossRef]
- Lin, D.; Lee, H.; Liu, Q.; Perry, G.; Smith, M.A.; Sayre, L.M. 4-Oxo-2-nonenal Is Both More Neurotoxic and More Protein Reactive than 4-Hydroxy-2-nonenal. Chem. Res. Toxicol. 2005, 18, 1219–1231. [Google Scholar] [CrossRef]
- Hutzinger, O. The Handbook of Environmental Chemistry. Volume 2, Part A. Reactions and Processes; Springer-Verlag Berlin Heildelberg GmbH, Germany, 1980; ISBN 3540096892.
- Scanlan, L.D.; Coskun, S.H.; Jaruga, P.; Hanna, S.K.; Sims, C.M.; Almeida, J.L.; Catoe, D.; Coskun, E.; Golan, R.; Dizdaroglu, M.; et al. Measurement of Oxidatively Induced DNA Damage in Caenorhabditis elegans with High-Salt DNA Extraction and Isotope-Dilution Mass Spectrometry. Anal. Chem. 2019, 91, 12149–12155. [Google Scholar] [CrossRef]
- Chen, H.; Krishnamachari, S.; Guo, J.; Yao, L.; Murugan, P.; Weight, C.J.; Turesky, R.J. Quantitation of Lipid Peroxidation Product DNA Adducts in Human Prostate by Tandem Mass Spectrometry: A Method That Mitigates Artifacts. Chem. Res. Toxicol. 2019, 32, 1850–1862. [Google Scholar] [CrossRef]
- Swenberg, J.A.; La, D.K.; Scheller, N.A.; Wu, K. Dose-response relationships for carcinogens. Toxicol. Lett. 1995, 4274, 751–756. [Google Scholar] [CrossRef]
- Phaniendra, A.; Babu, D. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind. J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Close, D.M. Calculation of the Ionization Potentials of the DNA Bases in Aqueous Medium. J. Phys. Chem. A 2004, 108, 10376–10379. [Google Scholar] [CrossRef]
- Kumar, A.; Sevilla, M.D. Proton transfer induced SOMO-to-HOMO level switching in one-electron oxidized A-T and G-C base pairs: A density functional theory study. J. Phys. Chem. B 2014, 118, 5453–5458. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, P.; Tavernelli, I.; Rothlisberger, U. Redox Properties of Native and Damaged DNA from Mixed Quantum Mechanical/Molecular Mechanics Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 6690–6701. [Google Scholar] [CrossRef] [PubMed]
Compound | RMSD | |ΔDM| | Compound | RMSD | |ΔDM| | Compound: (C10, C12, C13) HNE-dGua | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
dGua | 0.043 | 3.54 | H-ε-dCyt | 0.474 | 0.92 | Chiral | RMSD | |ΔDM| | Chiral | RMSD | |ΔDM| |
dCyt | 0.521 | 0.98 | ε-dAdo | 0.137 | 5.49 | RRR | 0.293 | 4.48 | SSS | 0.171 | 1.97 |
dAde | 0.177 | 1.14 | H-ε-dAdo | 0.444 | 4.45 | RRS | 0.299 | 1.11 | SSR | 0.312 | 4.69 |
oxodGSYN | 0.111 | 3.00 | H-ε-dGua | 0.205 | 1.15 | RSR | 0.481 | 4.48 | SRS | 0.344 | 2.29 |
R-OH-PdGua | 0.213 | 1.86 | N1-ε-dGua | 0.275 | 0.73 | RSS | 0.502 | 3.21 | SRR | 0.156 | 1.80 |
S-OH-PdGua | 0.226 | 2.26 | N2,3-ε-dGua | 0.650 | 5.49 | ||||||
ε-dCyt | 0.254 | 3.05 | M1-dGua | 0.266 | 1.57 |
VCNE | VCEQ | AC | VCNE | VCEQ | AC | VCNE | VCEQ | AC | VCNE | VCEQ | AC | VCNE | VCEQ | AC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ε-dAdo | H-ε-dAdo | ε-dCyt | H-ε-dCyt | H-ε-dGua | |||||||||||
2-deoxyribose | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Nnucleobase | 0.69 | 0.68 | 0.65 | 0.63 | 0.62 | 0.61 | 0.65 | 0.63 | 0.32 | 0.59 | 0.58 | 0.32 | 0.81 | 0.82 | 0.82 |
Adduct | 0.30 | 0.32 | 0.34 | 0.36 | 0.37 | 0.39 | 0.34 | 0.36 | 0.67 | 0.40 | 0.41 | 0.68 | 0.19 | 0.18 | 0.18 |
R-OH-PdGua | S-OH-PdGua | M1-dGua | N1-ε-dGua | N2.3-ε-dGua | |||||||||||
2-deoxyribose | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Nnucleobase | 0.97 | 0.98 | 0.96 | 0.97 | 0.97 | 0.96 | 0.92 | 0.92 | 0.93 | 0.86 | 0.86 | 0.79 | 0.74 | 0.69 | 0.29 |
Adduct | 0.03 | 0.02 | 0.04 | 0.03 | 0.03 | 0.04 | 0.08 | 0.08 | 0.07 | 0.14 | 0.14 | 0.21 | 0.26 | 0.31 | 0.71 |
(RRR)HNE-dGua | (RRS)HNE-dGua | (RSR)HNE-dGua | (RSS)HNE-dGua | (SRR)HNE-dGua | |||||||||||
2-deoxyribose | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Nnucleobase | 0.97 | 0.97 | 0.97 | 0.96 | 0.97 | 0.96 | 0.97 | 0.97 | 0.98 | 0.97 | 0.97 | 0.98 | 0.97 | 0.97 | 0.97 |
Adduct | 0.03 | 0.03 | 0.04 | 0.04 | 0.03 | 0.04 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0.03 |
(SRS)HNE-dGua | (SSR)HNE-dGua | (SSS)HNE-dGua | |||||||||||||
2-deoxyribose | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||||||
Nnucleobase | 0.97 | 0.97 | 0.96 | 0.97 | 0.98 | 0.97 | 0.96 | 0.97 | 0.98 | ||||||
Adduct | 0.03 | 0.03 | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | 0.03 | 0.02 |
Molecule | VIPNE | VIPEQ | AIP | Molecule | VIPNE | VIPEQ | AIP | (C10, C12, C13) HNE-dGua | |||
---|---|---|---|---|---|---|---|---|---|---|---|
dAde | 7.64 | 6.57 | 6.31 | dGua | 7.48 | 6.44 | 6.06 | Dias. Form | VIPNE | VIPEQ | AIP |
ε-dAdo | 7.23 | 6.34 | 6.12 | OXOdGAnti | 7.17 | 6.15 | 5.78 | RRR | 6.82 | 6.07 | 5.76 |
H-ε-dAdo | 7.07 | 6.25 | 6.00 | OXOdGSyn | 7.15 | 6.13 | 5.78 | RRS | 6.98 | 6.17 | 5.86 |
dCyt | 7.93 | 6.85 | 6.52 | R-OH-PdGua | 6.99 | 6.13 | 5.84 | RSR | 6.90 | 6.12 | 5.82 |
ε-dCyt | 7.35 | 6.40 | 6.11 | S-OH-PdGua | 6.97 | 6.13 | 5.82 | RSS | 6.92 | 6.15 | 5.82 |
H-ε-dCyt | 7.14 | 6.28 | 5.98 | M1-dGua | 7.34 | 6.49 | 6.22 | SRR | 6.80 | 6.07 | 5.72 |
H-ε-dGua | 6.78 | 5.96 | 5.80 | N1-ε-dGua | 6.93 | 6.07 | 5.88 | SRS | 7.00 | 6.21 | 5.91 |
N2,3-ε-dGua | 9.66 | 8.75 | 6.18 | SSR | 6.92 | 6.16 | 5.91 | ||||
SSS | 6.99 | 6.19 | 5.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karwowski, B.T. The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential. Appl. Sci. 2025, 15, 437. https://doi.org/10.3390/app15010437
Karwowski BT. The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential. Applied Sciences. 2025; 15(1):437. https://doi.org/10.3390/app15010437
Chicago/Turabian StyleKarwowski, Boleslaw T. 2025. "The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential" Applied Sciences 15, no. 1: 437. https://doi.org/10.3390/app15010437
APA StyleKarwowski, B. T. (2025). The Adducts Lipid Peroxidation Products with 2′-DeoxyNucleosides: A Theoretical Approach of Ionisation Potential. Applied Sciences, 15(1), 437. https://doi.org/10.3390/app15010437