Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (309)

Search Parameters:
Keywords = protein phosphatase (PP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1600 KiB  
Article
LIMK2-1 Is a Phosphorylation-Dependent Inhibitor of Protein Phosphatase-1 Catalytic Subunit and Myosin Phosphatase Holoenzyme
by Andrea Kiss, Emese Tóth, Zsófia Bodogán, Mohamad Mahfood, Zoltán Kónya and Ferenc Erdődi
Int. J. Mol. Sci. 2025, 26(15), 7347; https://doi.org/10.3390/ijms26157347 - 30 Jul 2025
Viewed by 173
Abstract
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 [...] Read more.
The C-kinase-activated protein phosphatase-1 (PP1) inhibitor of 17 kDa (CPI-17) is a specific inhibitor of the PP1 catalytic subunit (PP1c) and the myosin phosphatase (MP) holoenzyme. CPI-17 requires the phosphorylation of Thr38 in the peptide segment 35ARV(P)TVKYDRREL46 for inhibitory activity. CPI-17 regulates myosin phosphorylation in smooth muscle contraction and the tumorigenic transformation of several cell lines via the inhibition of MP. A phosphospecific antibody (anti-CPI-17pThr38) against the phosphorylation peptide was used to determine the phosphorylation levels in cells. We found that phospho-CPI-17 and its closely related proteins are not present in HeLa and MCF7 cells after inducing phosphorylation by inhibiting phosphatases with calyculin A. In contrast, cross-reactions of proteins in the 40–220 kDa range with anti-CPI-17pThr38 were apparent. Searching the protein database for similarities to the CPI-17 phosphorylation sequence revealed several proteins with 42–75% sequence identities. The LIMK2-1 isoform emerged as a possible PP1 inhibitor. Experiments with Flag-LIMK2-1 overexpressed in tsA201 cells proved that LIMK2-1 interacts with PP1c isoforms and is phosphorylated predominantly by protein kinase C. Phosphorylated LIMK2-1 inhibits PP1c and the MP holoenzyme with similar potencies (IC50 ~28–47 nM). In conclusion, our results suggest that LIMK2-1 is a novel phosphorylation-dependent inhibitor of PP1c and MP and may function as a CPI-17-like phosphatase inhibitor in cells where CPI-17 is present but not phosphorylated upon phosphatase inhibition. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Macromolecules)
Show Figures

Figure 1

16 pages, 8263 KiB  
Article
Genome-Wide Identification of PP2C Gene Family in Oat (Avena sativa L.) and Its Functional Analyses in Response to ABA and Abiotic Stresses
by Panpan Huang, Kuiju Niu, Jikuan Chai, Wenping Wang, Yanming Ma, Yanan Cao and Guiqin Zhao
Plants 2025, 14(13), 2062; https://doi.org/10.3390/plants14132062 - 5 Jul 2025
Viewed by 476
Abstract
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene [...] Read more.
Plant protein phosphatase 2C (PP2C) represents the largest and most functionally diverse group of protein phosphatases in plants, playing pivotal roles in regulating metabolic processes, hormone signaling, stress responses, and growth regulation. Despite its significance, a comprehensive genome-wide analysis of the PP2C gene family in oat (Avena sativa L.) has remained unexplored. Leveraging the recently published oat genome, we identified 194 AsaPP2C genes, which were unevenly distributed across all 21 chromosomes. A phylogenetic analysis of PP2C classified these genes into 13 distinct subfamilies (A-L), with conserved motif compositions and exon-intron structures within each subfamily, suggesting evolutionary functional specialization. Notably, a promoter analysis revealed an abundance of stress-responsive cis-regulatory elements (e.g., MYB, MYC, ARE, and MBS), implicating AsaPP2Cs in hormones and biotic stress adaptation. To elucidate their stress-responsive roles, we analyzed transcriptomic data and identified seven differentially expressed AsaPP2C (Asa_chr6Dg00217, Asa_chr6Ag01950, Asa_chr3Ag01998, Asa_chr5Ag00079, Asa_chr4Cg03270, Asa_chr6Cg02197, and Asa_chr7Dg02992) genes, which were validated via qRT-PCR. Intriguingly, these genes exhibited dynamic expression patterns under varying stress conditions, with their transcriptional responses being both time-dependent and stress-dependent, highlighting their regulatory roles in oat stress adaptation. Collectively, this study provides the first comprehensive genomic and functional characterization of the PP2C family in oat, offering valuable insights into their evolutionary diversification and functional specialization. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 3438 KiB  
Article
Genome-Wide Identification and Expression Analysis of PP2C Gene Family in Eelgrass
by Chang Liu, Xu Dong, Dazuo Yang, Qingchao Ge, Jiaxin Dai, Zhi Ma, Rongna Wang and Huan Zhao
Genes 2025, 16(6), 657; https://doi.org/10.3390/genes16060657 - 29 May 2025
Viewed by 529
Abstract
Background: Protein Phosphatase 2C (PP2C), a conserved family in plants, plays a crucial role in ABA and MAPK signaling pathways. Its functional diversity provides key mechanisms for plants’ adaptation to environmental changes. However, research on PP2C family members remains significantly underexplored in seagrasses, [...] Read more.
Background: Protein Phosphatase 2C (PP2C), a conserved family in plants, plays a crucial role in ABA and MAPK signaling pathways. Its functional diversity provides key mechanisms for plants’ adaptation to environmental changes. However, research on PP2C family members remains significantly underexplored in seagrasses, which are model organisms adapted to complex marine environments. Methods: In this study, we systematically analyzed the PP2C gene family in eelgrass using bioinformatic methods and performed a qPCR experiment to verify the expression of a few members in their response to salt stress. Results: The eelgrass PP2C gene family comprises 52 members, categorized into 13 subfamilies. Most PP2C genes exhibit a differential expression across various organs, with some members showing significant organ specificity. For instance, 12 members are specifically highly expressed in male flowers, suggesting that PP2Cs may function in male flower development. Additionally, four members (ZosmaPP2C-04, ZosmaPP2C-07, ZosmaPP2C-15, and ZosmaPP2C-18) in eelgrass are up-regulated under salt stress, with a qPCR confirming their response. The syntenic genes of ZosmaPP2C-15 and ZosmaPP2C-18 were identified across multiple species, indicating their evolutionary conservation. Numerous response elements associated with plant hormones and stress were identified within the promoter sequences of eelgrass PP2C genes. Notably, the promoter regions of salt-responsive genes are rich in the ABRE, implying that ABA may participate in regulating the expression of these PP2Cs. Furthermore, the predictive analysis of protein interactions suggests the potential existence of the ABA core signaling module PYL-PP2C-SnRK2 in eelgrass. Conclusions: This study provides a new insight for understanding the biological functions of the PP2C family in eelgrass, which is important for elucidating the mechanisms of its growth, development, and environmental adaptability. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 3712 KiB  
Article
PtrSAUR32 Interacts with PtrPP2C.Ds to Regulate Root Growth in Citrus
by Xiaoli Wang, Xiaoya Li, Saihang Zheng, Fusheng Wang, Shiping Zhu and Xiaochun Zhao
Plants 2025, 14(11), 1579; https://doi.org/10.3390/plants14111579 - 22 May 2025
Viewed by 481
Abstract
Small auxin-up-regulated RNA (SAUR) genes are involved in the regulation of dynamic and adaptive growth in higher plants. However, their function and mode of action in citrus root growth are still unknown. Here, we demonstrate that in Poncirus trifoliata, PtrSAUR32 [...] Read more.
Small auxin-up-regulated RNA (SAUR) genes are involved in the regulation of dynamic and adaptive growth in higher plants. However, their function and mode of action in citrus root growth are still unknown. Here, we demonstrate that in Poncirus trifoliata, PtrSAUR32 acted downstream of the auxin response factor PtrARF8 to regulate root growth by interacting with PtrPP2C.Ds, subfamily type 2C protein phosphatases which interacted with H-ATPase and PtrHA. In this study, several members of SAUR family in Poncirus trifoliata are identified to be associated with the growth and development of the roots. Among them, PtrSAUR32 was found to be highly expressed in the RT (root tip), and the level of its expression was significantly positively corelated to the length of primary roots (p < 0.01). The overexpression of PtrSAUR32 in citrus significantly promoted the growth of primary roots. In PtrSAUR32 transgenic citrus plants, the expressions of several auxin biosynthesis and transport genes were altered in accordance with the expression of PtrSAUR32. Y1H and dual-luciferase reporter assays proved that the expression of PtrSUAR32 is regulated by PtrARF8. Y2H and BiFC assay results indicated that PtrSAUR32 interacted with PtrPP2C.Ds subfamily members PtrPP2C.D1, PtrPP2C.D6, and PtrPP2C.D7, of which PtrPP2C.D7 could interact with PtrHA in vivo. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

12 pages, 1743 KiB  
Article
Cell-Penetrating Peptide Based on Myosin Phosphatase Target Subunit Sequence Mediates Myosin Phosphatase Activity
by Andrea Kiss, Mohamad Mahfood, Zsófia Bodogán, Zoltán Kónya, Bálint Bécsi and Ferenc Erdődi
Biomolecules 2025, 15(5), 705; https://doi.org/10.3390/biom15050705 - 12 May 2025
Cited by 1 | Viewed by 492
Abstract
Myosin phosphatase (MP) holoenzyme consists of protein phosphatase-1 (PP1) catalytic subunit (PP1c) associated with myosin phosphatase target subunit-1 (MYPT1) and it plays an important role in mediating the phosphorylation of the 20 kDa light chain (MLC20) of myosin, thereby regulating cell contractility. The [...] Read more.
Myosin phosphatase (MP) holoenzyme consists of protein phosphatase-1 (PP1) catalytic subunit (PP1c) associated with myosin phosphatase target subunit-1 (MYPT1) and it plays an important role in mediating the phosphorylation of the 20 kDa light chain (MLC20) of myosin, thereby regulating cell contractility. The association of MYPT1 with PP1c increases the phosphatase activity toward myosin; therefore, disrupting/dissociating this interaction may result in inhibition of the dephosphorylation of myosin. In this study, we probed how MYPT132–58 peptide including major PP1c interactive regions coupled with biotin and cell-penetrating TAT sequence (biotin-TAT-MYPT1) may influence MP activity. Biotin-TAT-MYPT1 inhibited the activity of MP holoenzyme and affinity chromatography as well as surface plasmon resonance (SPR) binding studies established its stable association with PP1c. Biotin-TAT-MYPT1 competed for binding to PP1c with immobilized GST-MYPT1 in SPR assays and it partially relieved PP1c inhibition by thiophosphorylated (on Thr696 and Thr853) MYPT1. Moreover, biotin-TAT-MYPT1 dissociated PP1c from immunoprecipitated PP1c-MYPT1 complex implying its holoenzyme disrupting ability. Biotin-TAT-MYPT1 penetrated into A7r5 smooth muscle cells localized in the cytoplasm and nucleus and exerted inhibition on MP with a parallel increase in MLC20 phosphorylation. Our results imply that the biotin-TAT-MYPT1 peptide may serve as a specific MP regulatory cell-penetrating peptide as well as possibly being applicable to further development for pharmacological interventions. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

18 pages, 2980 KiB  
Article
The Wheat Intrinsically Disordered Protein TdRL1 Negatively Regulates the Type One Protein Phosphatase TdPP1
by Fatma Amor, Mariem Bradai, Ikram Zaidi, Vitor Amorim-Silva, Nabil Miled, Moez Hanin and Chantal Ebel
Biomolecules 2025, 15(5), 631; https://doi.org/10.3390/biom15050631 - 28 Apr 2025
Viewed by 479
Abstract
Type 1 protein phosphatases (PP1s) are crucial in various plant cellular processes. Their function is controlled by regulators known as PP1-interacting proteins (PIPs), often intrinsically disordered, such as Inhibitor 2 (I2), conserved across kingdoms. The durum wheat TdRL1 acts as a positive [...] Read more.
Type 1 protein phosphatases (PP1s) are crucial in various plant cellular processes. Their function is controlled by regulators known as PP1-interacting proteins (PIPs), often intrinsically disordered, such as Inhibitor 2 (I2), conserved across kingdoms. The durum wheat TdRL1 acts as a positive regulator of plant stress tolerance, presumably by inhibiting PP1 activity. In this work, co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays demonstrate that the durum wheat TdPP1 interacts with both TdRL1 and At-I2 in vivo. YFP fluorescence restored after TdRL1-TdPP1 interaction decorated specifically the microtubular network of the tobacco co-infiltrated cells. In vitro phosphatase assays revealed that TdRL1 inhibited the activity of wild-type TdPP1 and two mutant forms (T243M and H135A) in a concentration-dependent manner, showing a novel and potent inhibition mechanism. Structural modeling of the TdPP1-inhibitor complexes suggested that both At-I2 and TdRL1 bind to TdPP1 by wrapping their flexible C-terminal tails around it, blocking access to the active site. Remarkably, the model showed that TdRL1 differs from At-I2 in its interaction with TdPP1 by trapping the phosphatase with its N-terminal tail. These findings provide important insights into the regulatory mechanisms governing the activity of PP1s in plants and highlight the potential for targeted inhibition to modulate plant stress responses. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3969 KiB  
Article
Transcriptome and Proteome Reveal Heat Shock Promotes Haploid Induction Rate via Activating ABA Signal Transduction in Watermelon
by Shiqi Gong, Bingqian Tang, Yujuan Dai, Xiangyu Sun, Huijuan Song, Cheng Xiong, Tian Zou, Longjun Sun, Guang Liu, Hongbo Yang, Shengxiu Zhu, Sihui Dai and Xiaowu Sun
Agronomy 2025, 15(5), 1063; https://doi.org/10.3390/agronomy15051063 - 27 Apr 2025
Viewed by 442
Abstract
Haploid breeding technology has advantages in terms of saving time and reducing labor intensity and costs. However, the low induction rate limits the application of this technology. Previous researchers found that heat shock can increase the rate of Embryo-like structures (ELSs) induction. However, [...] Read more.
Haploid breeding technology has advantages in terms of saving time and reducing labor intensity and costs. However, the low induction rate limits the application of this technology. Previous researchers found that heat shock can increase the rate of Embryo-like structures (ELSs) induction. However, molecular mechanisms underlying heat-shocked haploid induction remain poorly understood. In the current study, unfertilized ovules of watermelon were subjected to heat shock for 0–5 days and conducted transcriptomics sequencing and DIA-based proteomics sequencing. Results indicated that, in contrast to the non-heat-shock condition, the expression level of protein phosphatase 2C (PP2C), a negative regulator in abscisic acid (ABA) signal transduction pathway, was repressed, and the expression level of Sucrose-non-fermenting 1-related protein kinases (SnRK2) was activated. The activated SnRK2s are enabled to promote the accumulation of storage substances in ovules. Through analysis, the expression of many genes involved in the biosynthesis of unsaturated fatty acids and amino acids has indeed been upregulated. In conclusion, our findings demonstrate that heat shock promotes the accumulation of storage substances in unfertilized ovules by activating the signal transduction process of ABA, which correspondingly increases ELSs induction rate. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 2971 KiB  
Article
Type 2C Protein Phosphatase MoPtc6 Plays Critical Roles in the Development and Virulence of Magnaporthe oryzae
by Frankline Otieno Jagero, Abah Felix, Yakubu Saddeeq Abubakar, Meilian Chen, Wilfred M. Anjago, Hatungimana Mediatrice, Nkurikiyimfura Oswald, Osakina Aron, Wei Tang, Zonghua Wang and Jules Biregeya
J. Fungi 2025, 11(5), 335; https://doi.org/10.3390/jof11050335 - 24 Apr 2025
Viewed by 537
Abstract
Rice blast caused by Magnaporthe oryzae pathotype is the worst disease that leads to serious food insecurity globally. Understanding rice blast disease pathogenesis is therefore essential for the development of a blast disease mitigation strategy. Reverse phosphorylation mediated by phosphatases performs a vital [...] Read more.
Rice blast caused by Magnaporthe oryzae pathotype is the worst disease that leads to serious food insecurity globally. Understanding rice blast disease pathogenesis is therefore essential for the development of a blast disease mitigation strategy. Reverse phosphorylation mediated by phosphatases performs a vital function in the activation of diverse biological mechanisms within eukaryotic. However, little has been reported on the roles of PP2Cs in the virulence of blast fungus. In this current work, we deployed functional genomics and biochemical approaches to characterize type 2C protein phosphatase MoPtc6 in blast fungus. Deletion of MoPTC6 led to a drastic reduction in conidiophore development, conidia production, hyphal growth, and stress tolerance. Western blotting assay demonstrated that the phosphorylation level of MoOsm1 was decreased while MoMps1 was increased in the MoPtc6 deletion mutant, and comparative transcriptome assay revealed a higher number of expressed genes between mutant and wild type. Localization assay confirmed that MoPtc6 is sub-localized in the cytoplasm of mycelia, spores, and in the appressoria of M. oryzae. Furthermore, disruption of MoPTC6 impaired appressoria turgor pressure and glycogen utilization; more findings revealed attenuation of hyphal penetration and virulence upon deletion of MoPTC6. Generally, present findings suggested the role of MoPtc6 in the growth and virulence of M. oryzae. Full article
(This article belongs to the Special Issue Genomics of Fungal Plant Pathogens, 4th Edition)
Show Figures

Figure 1

13 pages, 2860 KiB  
Article
Morphological Characteristics and Molecular Marker-Assisted Identification of Ovary Glabrous Phenotype in the Population of Nanchuan Dachashu (Camellia nanchuanica)
by Zhijun Wu, Weifeng Tang and Meng Lei
Horticulturae 2025, 11(4), 360; https://doi.org/10.3390/horticulturae11040360 - 27 Mar 2025
Viewed by 374
Abstract
Nanchuan Dachashu (Camellia nanchuanica), an arboreal tea species from Chongqing, China, exhibits valuable germplasm characteristics and tea production quality. However, the morphological diversity and genetic basis of key traits, such as tree architecture, leaf anatomy, and ovary trichomes, within this natural [...] Read more.
Nanchuan Dachashu (Camellia nanchuanica), an arboreal tea species from Chongqing, China, exhibits valuable germplasm characteristics and tea production quality. However, the morphological diversity and genetic basis of key traits, such as tree architecture, leaf anatomy, and ovary trichomes, within this natural population remain to be elucidated. In this study, we conducted a survey on 90 wild individuals from this population, with a special focus on ovary trichomes—an important taxonomic trait. Considerable variations were observed in tree architecture, leaf size and shape, and anatomical structures. Through association analysis, we identified the SNP locus Chr9_89939207 to be associated with the glabrous/hairy ovary trait. A KASP marker was subsequently developed based on this locus, which could accurately distinguish between glabrous and hairy ovary individuals of Nanchuan Dachashu, as well as differentiate this species from C. sinensis or other hairy ovary species. The SNP locus Chr9_89939207 resides in the exon of a predicted protein phosphatase 2C (PP2C) gene, CSS0003297, which potentially regulates ovary trichome development in tea plants. These results reveal extensive morphological variation within the Nanchuan Dachashu population, establish a molecular tool for the identification of valuable interspecific hybrids, and provide insights into the breeding and industrial applications of this germplasm. Full article
(This article belongs to the Special Issue Advances in Cultivation and Breeding of Tea Plants)
Show Figures

Figure 1

17 pages, 2912 KiB  
Article
Protein Phosphatases MoPtc5, MoPtc1, and MoPtc2 Contribute to the Vegetative Growth, Stress Adaptation, and Virulence of Magnaporthe oryzae
by Jules Biregeya, Frankline Jagero Otieno, Meilian Chen, Anjago Wilfred Mabeche, Abah Felix, Nsanzinshuti Aimable, Yakubu Saddeeq Abubakar, Osakina Aron, Guodong Lu, Zonghua Wang, Yonghe Hong and Wei Tang
J. Fungi 2025, 11(3), 231; https://doi.org/10.3390/jof11030231 - 18 Mar 2025
Viewed by 506
Abstract
Protein phosphatases are crucial enzymes that regulate key cellular processes such as the cell cycle, gene transcription, and translation in eukaryotes. Seven PP2C protein phosphatases have been identified in Magnaporthe oryzae. However, their synergistic roles in the pathology and physiology of M. [...] Read more.
Protein phosphatases are crucial enzymes that regulate key cellular processes such as the cell cycle, gene transcription, and translation in eukaryotes. Seven PP2C protein phosphatases have been identified in Magnaporthe oryzae. However, their synergistic roles in the pathology and physiology of M. oryzae remain poorly investigated. By qRT-PCR analysis, we found that PTC1 and PTC2 are significantly upregulated in the PTC5 deletion mutant. The double deletion of the MoPTC5/MoPTC1 and MoPTC5/MoPTC2 genes significantly reduced hyphal growth, conidiophore formation, sporulation, and virulence in M. oryzae. In addition, the double-knockout mutants were increasingly sensitive to different osmotic, oxidative, and cell wall stresses. Western blot analysis revealed that MoPtc5 plays a synergistic function with MoPtc1 and MoPtc2 in the regulation of MoMps1 and MoOsm1 phosphorylation levels. Lastly, appressorium formation and turgor generation were remarkably affected in the ΔMoptc5ΔMoptc1 and ΔMoptc5ΔMoptc2 double-deletion mutants. These findings demonstrate the overlapping roles of PP2c protein phosphatase in the fungal development and pathogenesis of M. oryzae. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

14 pages, 6422 KiB  
Article
Intratracheal Delivery of a Phospholamban Decoy Peptide Attenuates Cardiac Damage Following Myocardial Infarction
by Taewon Kook, Mi-Young Lee, Tae Hwan Kwak, Dongtak Jeong, Doo Sun Sim, Myung Ho Jeong, Youngkeun Ahn, Hyun Kook, Woo Jin Park and Seung Pil Jang
Int. J. Mol. Sci. 2025, 26(6), 2649; https://doi.org/10.3390/ijms26062649 - 14 Mar 2025
Viewed by 764
Abstract
Heart failure (HF) remains a major cause of mortality worldwide. While novel approaches, including gene and cell therapies, show promise, efficient delivery methods for such biologics to the heart are critically needed. One emerging strategy is lung-to-heart delivery using nanoparticle (NP)-encapsulated biologics. This [...] Read more.
Heart failure (HF) remains a major cause of mortality worldwide. While novel approaches, including gene and cell therapies, show promise, efficient delivery methods for such biologics to the heart are critically needed. One emerging strategy is lung-to-heart delivery using nanoparticle (NP)-encapsulated biologics. This study examines the efficiency of delivering a therapeutic peptide conjugated to a cell-penetrating peptide (CPP) to the heart via the lung-to-heart route through intratracheal (IT) injection in mice. The CPP, a tandem repeat of NP2 (dNP2) derived from the human novel LZAP-binding protein (NLBP), facilitates intracellular delivery of the therapeutic payload. The therapeutic peptide, SE, is a decoy peptide designed to inhibit protein phosphatase 1 (PP1)-mediated dephosphorylation of phospholamban (PLN). Our results demonstrated that IT injection of dNP2-SE facilitated efficient delivery to the heart, with peak accumulation at 3 h post-injection. The administration of dNP2-SE significantly ameliorated morphological and functional deterioration of the heart under myocardial infarction. At the molecular level, dNP2-SE effectively prevented PLN dephosphorylation in the heart. Immunoprecipitation experiments further revealed that dNP2-SE binds strongly to PP1 and disrupts its interaction with PLN. Collectively, our findings suggest that lung-to-heart delivery of a CPP-conjugated therapeutic peptide, dNP2-SE, represents a promising approach for the treatment of HF. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 968 KiB  
Review
Plant PP2A: A Versatile Enzyme with Key Physiological Functions
by Juan I. Cortelezzi, Martina Zubillaga, Victoria R. Scardino, María N. Muñiz García and Daniela A. Capiati
Kinases Phosphatases 2025, 3(1), 5; https://doi.org/10.3390/kinasesphosphatases3010005 - 3 Mar 2025
Viewed by 806
Abstract
Protein phosphatase 2A (PP2A) is a highly conserved heterotrimeric enzyme complex present in all eukaryotic cells, consisting of a scaffolding A subunit, a catalytic C subunit, and a regulatory B subunit. The A and C subunits form the core enzyme, which interacts with [...] Read more.
Protein phosphatase 2A (PP2A) is a highly conserved heterotrimeric enzyme complex present in all eukaryotic cells, consisting of a scaffolding A subunit, a catalytic C subunit, and a regulatory B subunit. The A and C subunits form the core enzyme, which interacts with the B subunit to determine the substrate specificity, subcellular localization, and enzymatic activity of the holoenzyme. The Arabidopsis thaliana genome encodes five C subunits, three A subunits, and 17 B subunits, enabling the formation of diverse holoenzymes with extensive functional versatility. Genetic evidence highlights the essential role of PP2A in regulating various physiological processes in plants, including responses to abiotic and biotic stresses and developmental programs. Notably, PP2A can act as both a positive and negative regulator within the same pathway, while individual subunits often participate in multiple processes. This functional diversity arises from the structural flexibility of PP2A. This review examines the structural diversity of plant PP2A and its regulatory roles across diverse physiological contexts. Full article
Show Figures

Figure 1

17 pages, 7042 KiB  
Article
Acid Sphingomyelinase Regulates AdipoRon-Induced Differentiation of Arterial Smooth Muscle Cells via TFEB Activation
by Xiang Li, Wei Zhao, Zhengchao Wang, Alexandra K. Moura, Kiana Roudbari, Rui Zuo, Jenny Z. Hu, Yun-Ting Wang, Pin-Lan Li and Yang Zhang
Int. J. Mol. Sci. 2025, 26(5), 2147; https://doi.org/10.3390/ijms26052147 - 27 Feb 2025
Viewed by 1016
Abstract
AdipoRon is a selective adiponectin receptor agonist that inhibits vascular remodeling by promoting the differentiation of arterial smooth muscle cells (SMCs). Our recent studies have demonstrated that activation of TFEB and its downstream autophagy–lysosomal signaling contribute to adipoRon-induced differentiation of SMCs. The present [...] Read more.
AdipoRon is a selective adiponectin receptor agonist that inhibits vascular remodeling by promoting the differentiation of arterial smooth muscle cells (SMCs). Our recent studies have demonstrated that activation of TFEB and its downstream autophagy–lysosomal signaling contribute to adipoRon-induced differentiation of SMCs. The present study was designed to examine whether acid sphingomyelinase (ASM; gene symbol Smpd1) is involved in mediating adipoRon-induced activation of TFEB–autophagy signaling and inhibition of proliferation/migration in arterial SMCs. Our results showed that adipoRon induced ASM expression and ceramide production in Smpd1+/+ SMCs, which were abolished in Smpd1−/− SMCs. Compared to Smpd1+/+ SMCs, Smpd1−/− SMCs exhibited less TFEB nuclear translocation and activation of autophagy signaling induced by adipoRon stimulation. SMC differentiation was further characterized by retarded wound healing, reduced proliferation, F-actin reorganization, and MMP downregulation. The results showed that Smpd1−/− SMCs were less responsive to adipoRon-induced differentiation than Smpd1+/+ SMCs. Mechanistically, adipoRon increased the expression of protein phosphatases such as calcineurin and PP2A in Smpd1+/+ SMCs. The calcineurin inhibitor FK506/cyclosporin A or PP2A inhibitor okadaic acid significantly attenuated adipoRon-induced activation of TFEB–autophagy signaling. In addition, adipoRon-induced expressions of calcineurin and PP2A were not observed in Smpd1−/− SMCs. However, activation of calcineurin by lysosomal TRPML1-Ca2+ channel agonist ML-SA1 rescued the activation of TFEB–autophagy signaling and the effects of adipoRon on cell differentiation in Smpd1−/− SMCs. Taken together, these data suggested that ASM regulates adipoRon-induced SMC differentiation through TFEB activation. This study provided novel mechanistic insights into the therapeutic effects of adipoRon on TFEB signaling and pathological vascular remodeling. Full article
(This article belongs to the Special Issue Smooth Muscle Cells in Vascular Disease)
Show Figures

Figure 1

14 pages, 1918 KiB  
Perspective
Rediscovery of PHI-1/PPP1R14B: Emerging Roles of Cellular PP1 Signaling Mediated by the PPP1R14B Gene Product in Multiple Cancers and Beyond
by Masumi Eto
Biomolecules 2025, 15(3), 344; https://doi.org/10.3390/biom15030344 - 27 Feb 2025
Cited by 1 | Viewed by 849
Abstract
PHI-1, encoded by PPP1R14B, regulates cellular protein phosphatase-1 (PP1) signaling and has emerged as both a biomarker and therapeutic target. Initially identified as a phospholipase-neighboring gene (PNG), PHI-1 is now known for its phosphorylation-dependent inhibition of PP1 holoenzymes, with bi-directional roles depending [...] Read more.
PHI-1, encoded by PPP1R14B, regulates cellular protein phosphatase-1 (PP1) signaling and has emerged as both a biomarker and therapeutic target. Initially identified as a phospholipase-neighboring gene (PNG), PHI-1 is now known for its phosphorylation-dependent inhibition of PP1 holoenzymes, with bi-directional roles depending on its expression levels. Under physiological conditions, PHI-1 selectively regulates PP1 activity to maintain cellular homeostasis, whereas its pathological upregulation promotes oncogenic pathways, stabilizes tumor-promoting proteins, and modulates immune responses. This article explores PHI-1’s emerging role as a pan-cancer biomarker in parallel with emphasizing its physiological functions in signaling networks, smooth muscle contraction, cytoskeletal dynamics, and selective proteostasis. The mechanistic insights highlight PHI-1’s potential in precision oncology, offering opportunities for developing diagnostics and therapies that target its conditional functions. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Members)
Show Figures

Figure 1

17 pages, 4709 KiB  
Article
Defining the Protein Phosphatase 2A (PP2A) Subcomplexes That Regulate FoxO Transcription Factor Localization
by Adeline M. Luperchio and Daniel J. Salamango
Cells 2025, 14(5), 342; https://doi.org/10.3390/cells14050342 - 27 Feb 2025
Viewed by 854
Abstract
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has [...] Read more.
The family of forkhead box O (FoxO) transcription factors regulate cellular processes involved in glucose metabolism, stress resistance, DNA damage repair, and tumor suppression. FoxO transactivation activity is tightly regulated by a complex network of signaling pathways and post-translational modifications. While it has been well established that phosphorylation promotes FoxO cytoplasmic retention and inactivation, the mechanism underlying dephosphorylation and nuclear translocation is less clear. Here, we investigate the role of protein phosphatase 2A (PP2A) in regulating this process. We demonstrate that PP2A and AMP-activated protein kinase (AMPK) combine to regulate nuclear translocation of multiple FoxO family members following inhibition of metabolic signaling or induction of oxidative stress. Moreover, chemical inhibitor studies indicate that nuclear accumulation of FoxO proteins occurs through inhibition of nuclear export as opposed to promoting nuclear import as previously speculated. Functional, genetic, and biochemical studies combine to identify the PP2A complexes that regulate FoxO nuclear translocation, and the binding motif required. Mutating the FoxO-PP2A interface to enhance or diminish PP2A binding alters nuclear translocation kinetics accordingly. Together, these studies shed light on the molecular mechanisms regulating FoxO nuclear translocation and provide insights into how FoxO regulation is integrated with metabolic and stress-related stimuli. Full article
Show Figures

Figure 1

Back to TopTop