Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = protein–polyphenol interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2752 KB  
Article
Non-Covalent Interactions Between Quercetin and Rice Bran Protein: Mechanisms and Functional Properties
by Shirang Wang, Dianyu Yu, Tengyu Wang, Liping Zhou and Xu Han
Foods 2025, 14(17), 2923; https://doi.org/10.3390/foods14172923 - 22 Aug 2025
Viewed by 258
Abstract
Rice bran protein (RBP) is an important plant protein, but its functional properties are reduced due to the presence of disulfide bonds in the structure. Polyphenol modification is an effective strategy to improve protein functional properties. However, the interactions between quercetin (Que) and [...] Read more.
Rice bran protein (RBP) is an important plant protein, but its functional properties are reduced due to the presence of disulfide bonds in the structure. Polyphenol modification is an effective strategy to improve protein functional properties. However, the interactions between quercetin (Que) and RBP have not been well-studied. In this study, we explored the mechanism of non-covalent interactions between RBP and Que and systematically evaluated the improvement of functional properties of the RBP–Que complex. The results revealed that the addition of Que can significantly affect the particle size, ζ-potential and protein flexibility of the RBP–Que complex, and the non-covalent interactions significantly altered the secondary structure (α-helix content decreased to 20.28%, β-sheet decreased to 22.02%, β-turn increased to 29.30% and random coil increased to 28.40%) and the tertiary conformation of RBP. Spectroscopic data showed that static quenching occurred. Thermodynamic parameters showed that ΔG, ΔH, and ΔS were negative, revealing that the binding process was spontaneous and exothermic and the main reactive bonds were the hydrogen bond and the van der Waals force. When the Que concentration was 120 μmol/g, the emulsifying and foaming properties were improved by 57.72% and 71.88% compared with the RBP, respectively. The study will expand the application of RBP in the food and beverage processing industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 1706 KB  
Review
Integrating Precision Medicine and Digital Health in Personalized Weight Management: The Central Role of Nutrition
by Xiaoguang Liu, Miaomiao Xu, Huiguo Wang and Lin Zhu
Nutrients 2025, 17(16), 2695; https://doi.org/10.3390/nu17162695 - 20 Aug 2025
Viewed by 373
Abstract
Obesity is a global health challenge marked by substantial inter-individual differences in responses to dietary and lifestyle interventions. Traditional weight loss strategies often overlook critical biological variations in genetics, metabolic profiles, and gut microbiota composition, contributing to poor adherence and variable outcomes. Our [...] Read more.
Obesity is a global health challenge marked by substantial inter-individual differences in responses to dietary and lifestyle interventions. Traditional weight loss strategies often overlook critical biological variations in genetics, metabolic profiles, and gut microbiota composition, contributing to poor adherence and variable outcomes. Our primary aim is to identify key biological and behavioral effectors relevant to precision medicine for weight control, with a particular focus on nutrition, while also discussing their current and potential integration into digital health platforms. Thus, this review aligns more closely with the identification of influential factors within precision medicine (e.g., genetic, metabolic, and microbiome factors) but also explores how these factors are currently integrated into digital health tools. We synthesize recent advances in nutrigenomics, nutritional metabolomics, and microbiome-informed nutrition, highlighting how tailored dietary strategies—such as high-protein, low-glycemic, polyphenol-enriched, and fiber-based diets—can be aligned with specific genetic variants (e.g., FTO and MC4R), metabolic phenotypes (e.g., insulin resistance), and gut microbiota profiles (e.g., Akkermansia muciniphila abundance, SCFA production). In parallel, digital health tools—including mobile health applications, wearable devices, and AI-supported platforms—enhance self-monitoring, adherence, and dynamic feedback in real-world settings. Mechanistic pathways such as gut–brain axis regulation, microbial fermentation, gene–diet interactions, and anti-inflammatory responses are explored to explain inter-individual differences in dietary outcomes. However, challenges such as cost, accessibility, and patient motivation remain and should be addressed to ensure the effective implementation of these integrated strategies in real-world settings. Collectively, these insights underscore the pivotal role of precision nutrition as a cornerstone for personalized, scalable, and sustainable obesity interventions. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

25 pages, 1001 KB  
Review
Functional Foods for Cholesterol Management: A Review of the Mechanisms, Efficacy, and a Novel Cholesterol-Lowering Capacity Index
by Daniel A. Jacobo-Velázquez
Nutrients 2025, 17(16), 2648; https://doi.org/10.3390/nu17162648 - 15 Aug 2025
Viewed by 1274
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with elevated low-density lipoprotein cholesterol (LDL-C) as a major risk factor. Beyond medications, dietary interventions and functional foods offer significant cholesterol-lowering potential. This article provides a comprehensive review of functional foods and nutraceutical [...] Read more.
Cardiovascular disease (CVD) remains the leading cause of death worldwide, with elevated low-density lipoprotein cholesterol (LDL-C) as a major risk factor. Beyond medications, dietary interventions and functional foods offer significant cholesterol-lowering potential. This article provides a comprehensive review of functional foods and nutraceutical ingredients that help to reduce cholesterol levels and introduces the novel Cholesterol-Lowering Capacity Index (CLCI), designed to quantify and communicate the efficacy of such foods. In doing so, it summarizes key functional components, including plant sterols/stanols, viscous fibers, soy protein, red yeast rice, berberine, polyphenols (e.g., bergamot extract, garlic), and others, highlighting their mechanisms of action and the typical LDL-C reductions observed in clinical studies. Strategies for the design of next-generation cholesterol-lowering foods are discussed, such as combining multiple bioactives for synergistic effects, personalized nutrition approaches, and novel food processing techniques to enhance bioavailability. Building on these strategies, the CLCI is then proposed as a practical scoring system, analogous to the glycemic index for blood sugar, that integrates the evidence-based potency of ingredients, effective dosing, and synergistic interactions into a single metric. A methodology for the calculation of the CLCI is presented, alongside potential applications in food labeling, clinical guidance, and dietary planning. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

20 pages, 4467 KB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 541
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

13 pages, 6042 KB  
Article
Whey Protein–Quercetin–Gellan Gum Complexes Prepared Using pH-Shift Treatment: Structural and Functional Properties
by Na Guo, Xin Zhou, Ganghua Zhou, Yimeng Zhang, Guoqing Yu, Yangliu Liu, Beibei Li, Fangyan Zhang and Guilan Zhu
Foods 2025, 14(15), 2720; https://doi.org/10.3390/foods14152720 - 3 Aug 2025
Viewed by 468
Abstract
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and [...] Read more.
The objectives of this study were to prepare whey protein–quercetin–gellan gum conjugates using the pH-shift method and to evaluate the impacts of varying pH values and quercetin concentrations on the interaction mechanisms and functional characteristics of the complexes. Spectroscopic analyses (fluorescence, UV-vis, and FT-IR) revealed that new complexes formed under alkaline conditions. Notably, an increasing quercetin concentration led to a reduction in complex particle size and an increase in the zeta potential value, with these effects being more pronounced under alkaline conditions. The particle size was 425.7 nm, and the zeta potential value was −30.00 mV at a quercetin addition concentration of 15 umol/g protein. Additionally, the complexes formed under alkaline conditions exhibited superior foaming capacity, emulsification properties, and significantly enhanced free radical scavenging activity. The complex’s DPPH and ABTS radical scavenging rates rose by 41.57% and 57.69%, respectively. This study provides theoretical foundations and practical insights for developing protein—polyphenol systems, offering significant implications for the application of quercetin functional foods and supplements in the food science and pharmaceutical industries. Full article
(This article belongs to the Special Issue Oil and Protein Engineering and Its Applications in Food Industry)
Show Figures

Figure 1

23 pages, 1746 KB  
Review
Advanced Modification Strategies of Plant-Sourced Dietary Fibers and Their Applications in Functional Foods
by Yansheng Zhao, Ying Shao, Songtao Fan, Juan Bai, Lin Zhu, Ying Zhu and Xiang Xiao
Foods 2025, 14(15), 2710; https://doi.org/10.3390/foods14152710 - 1 Aug 2025
Viewed by 660
Abstract
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical [...] Read more.
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical properties and bioactivity of PDFs from legumes, cereals, and other sources. Key modifications such as steam explosion, enzymatic hydrolysis, and carboxymethylation significantly improve solubility, porosity, and functional group exposure, thereby optimizing the health-promoting effects of legume-sourced dietary fiber. The review further elucidates critical structure–function relationships, highlighting PDF’s prebiotic potential, synergistic interactions with polyphenols and proteins, and responsive designs for targeted nutrient delivery. In functional food applications, cereal-sourced dietary fibers serve as a versatile functional ingredient in engineered foods including 3D-printed gels and low-glycemic energy bars, addressing specific metabolic disorders and personalized dietary requirements. By integrating state-of-the-art modification techniques with innovative applications, this review provides comprehensive insights into PDF’s transformative role in advancing functional foods and personalized nutrition solutions. Full article
Show Figures

Figure 1

22 pages, 4619 KB  
Article
Physiological and Transcriptomic Analyses Reveal Regulatory Mechanisms of Adventitious Root Formation in In Vitro Culture of Cinnamomum camphora
by Yuntong Zhang, Ting Zhang, Yongjie Zheng, Jun Wang, Chenglin Luo, Yuhua Li and Xinliang Liu
Int. J. Mol. Sci. 2025, 26(15), 7264; https://doi.org/10.3390/ijms26157264 - 27 Jul 2025
Viewed by 477
Abstract
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots [...] Read more.
Cinnamomum camphora is an ecologically and economically significant species, highly valued for its essential oil production and environmental benefits. Although a tissue culture system has been established for C. camphora, large-scale propagation remains limited due to the inconsistent formation of adventitious roots (ARs). This study investigated AR formation from callus tissue, focusing on associated physiological changes and gene expression dynamics. During AR induction, contents of soluble sugars and proteins decreased, alongside reduced activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) decreased significantly throughout AR formation. Zeatin riboside (ZR) levels initially declined and then rose, whereas gibberellic acid (GA) levels displayed the opposite trend. Comparative transcriptomic and temporal expression analyses identified differentially expressed genes (DEGs), which were grouped into four distinct expression patterns. KEGG pathway enrichment indicated that 67 DEGs are involved in plant hormone signaling pathways and that 38 DEGs are involved in the starch and sucrose metabolism pathway. Additionally, protein–protein interaction network (PPI) analysis revealed ten key regulatory genes, which are mainly involved in auxin, cytokinin, GA, ABA, and ethylene signaling pathways. The reliability of the transcriptome data was further validated by quantitative real-time PCR. Overall, this study provides new insights into the physiological and molecular mechanisms underlying AR formation in C. camphora and offers valuable guidance for optimizing tissue culture systems. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
Show Figures

Figure 1

19 pages, 3224 KB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 464
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

15 pages, 1588 KB  
Article
Effect of Dealcoholized Muscadine Wine on the Development of Spontaneous Colitis and Gut Microbiome in IL-10−/− Mice
by Hao Li and Liwei Gu
Nutrients 2025, 17(14), 2327; https://doi.org/10.3390/nu17142327 - 16 Jul 2025
Viewed by 488
Abstract
Background/Objectives: Colitis is a chronic condition affecting millions worldwide. Purple muscadine wine polyphenols have a unique composition and possible disease-preventive properties. This study aims to determine how dealcoholized muscadine wine (DMW) affects the development of colitis and gut microbiome in IL-10−/− [...] Read more.
Background/Objectives: Colitis is a chronic condition affecting millions worldwide. Purple muscadine wine polyphenols have a unique composition and possible disease-preventive properties. This study aims to determine how dealcoholized muscadine wine (DMW) affects the development of colitis and gut microbiome in IL-10−/− mice, compared to wild types (WT). Methods: Six-week-old male IL-10−/− and WT C57BL/6 mice were fed either a DMW-supplemented diet (4.8% v/w) or a control diet based on AIN-93M for 154 days. Colitis severity was evaluated by disease activity, intestinal permeability, gene expression of cytokines and tight junction proteins in the colon, and inflammatory cytokines in the serum. Fecal samples were collected for gut microbiome profiling via 16S rRNA gene sequencing. Results: DMW contained predominantly anthocyanins and a significant amount of ellagic acid. IL-10−/− mice developed mild colitis as indicated by the disease activity index. DMW × gene interactions decreased intestinal permeability, colonic mRNA levels of IL-1β, and serum TNF-α in the IL-10−/− mice. DMW suppressed the colonic mRNA levels of IL-6, enhanced the gene expression of ZO-1, but did not influence the mRNA level of TNF-α or occludin. While DMW did not alter α-diversity of the gut microbiome, it significantly influenced β-diversity in the WT mice. DMW significantly reduced the relative abundances of Akkermansia in the IL-10−/− and WT mice. DMW and DMW×gene interaction decreased the relative abundance of Parasutterella only in IL-10−/− mice. Conclusions: These results suggested that polyphenols from DMW interacted with genes to moderately alleviate the development of colitis in IL-10−/− mice and could be a useful dietary strategy for IBD prevention. Full article
Show Figures

Figure 1

27 pages, 520 KB  
Review
Sustainable Plant-Based Diets and Food Allergies: A Scoping Review Inspired by EAT-Lancet
by Giuseppe Mazzola, Carlo Cattaneo, Eleonora Patta, Tariq A. Alalwan, Domenico Azzolino, Simone Perna and Mariangela Rondanelli
Appl. Sci. 2025, 15(13), 7296; https://doi.org/10.3390/app15137296 - 28 Jun 2025
Cited by 1 | Viewed by 542
Abstract
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but [...] Read more.
Background: The escalating prevalence of food allergies, alongside the global call for environmentally sustainable dietary transitions, has drawn attention to plant-based dietary models—particularly those inspired by the EAT-Lancet Commission. These frameworks not only reduce reliance on animal-sourced foods, benefiting planetary health, but may also play a role in modulating immune tolerance and allergic responses. Methods: This scoping review followed PRISMA guidelines and included 53 peer-reviewed studies published between 2000 and 2024, retrieved from PubMed, Scopus, and Google Scholar. Eligible articles were classified into two thematic domains: prevention of food allergy onset (n = 31) and modulation of allergic symptoms in sensitized individuals (n = 22). Included studies comprised randomized controlled trials (n = 6), observational studies (n = 17), systematic reviews and meta-analyses (n = 11), and narrative/scoping reviews (n = 19). Results: Sustainable plant-based diets were consistently associated with a lower incidence of allergic sensitization and reduced symptom severity. These effects were partly due to the exclusion of common allergens (e.g., dairy, eggs, and shellfish) but more importantly due to immunomodulatory mechanisms. Fermentable fibers can enhance short-chain fatty acid (SCFA)-producing bacteria (e.g., Faecalibacterium prausnitzii), elevating butyrate and acetate levels, which interact with G-protein-coupled receptors 43 and 109A (GPR43 and GPR109A) to induce regulatory T cells (Tregs) and reinforce epithelial integrity via tight junction proteins such as occludin and claudin-1. Polyphenols (e.g., quercetin and luteolin) can inhibit Th2-driven inflammation by stabilizing mast cells and downregulating IL-4 and IL-1. Conclusions: Following sustainable dietary guidelines such as those proposed by the EAT-Lancet Commission may confer dual benefits: promoting environmental health and reducing the burden of allergic diseases. By emphasizing plant-based patterns rich in fiber and polyphenols, these diets support microbiota-mediated immune education, mucosal barrier function, and immunological tolerance. When properly supervised, they represent a promising tool for allergy prevention and symptom management. Larger randomized trials and long-term population studies are needed to confirm and operationalize these findings in clinical and public health contexts. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

22 pages, 486 KB  
Review
Polyphenolic Compounds from Indigenous Malus Species: A Novel Approach to Improve Ice Cream’s Thermodynamic Properties
by Lea Nehme, Youssef El Rayess, Maribelle Semaan, Elsa Nawfal and Philip Riachy
Processes 2025, 13(7), 2019; https://doi.org/10.3390/pr13072019 - 26 Jun 2025
Viewed by 627
Abstract
This review investigates the potential application of polyphenols extracted from indigenous Malus species as natural stabilizers to enhance ice cream thermodynamic properties. Ice cream quality and stability face significant challenges in regions with unreliable electrical infrastructure, such as Lebanon, where temperature fluctuations compromise [...] Read more.
This review investigates the potential application of polyphenols extracted from indigenous Malus species as natural stabilizers to enhance ice cream thermodynamic properties. Ice cream quality and stability face significant challenges in regions with unreliable electrical infrastructure, such as Lebanon, where temperature fluctuations compromise product integrity. Polyphenols derived from apple tissues and processing by-products demonstrate promising functionality through interactions with ice cream’s protein and fat components, improving stability, reducing melting rates, and enhancing overall thermodynamic properties. Extraction methodologies are critically evaluated, with emphasis on ultrasound-assisted extraction as an optimal approach balancing efficiency, yield, and the preservation of bioactive compounds. This review provides a comprehensive analysis of polyphenolic profiles across apple varieties and tissues, extraction methodologies, mechanisms of stabilization in frozen desserts, and potential sensory implications. The multifunctional approach addresses both technological challenges in frozen dairy products and evolving consumer preferences for clean-label ingredients while potentially adding nutritional value through the inherent bioactive properties of polyphenols. Furthermore, utilizing apple by-products aligns with circular economy principles, transforming waste streams into value-added ingredients. This approach shows particular promise for regions with cold chain challenges while supporting sustainable agricultural practices. Full article
(This article belongs to the Special Issue Advances in Organic Food Processing and Probiotic Fermentation)
Show Figures

Figure 1

24 pages, 3718 KB  
Review
Fruit Astringency: Mechanisms, Technologies, and Future Directions
by Wanru Zhao, Meizhu Zheng, Xue Li, Kai Song and Dongfang Shi
Horticulturae 2025, 11(6), 699; https://doi.org/10.3390/horticulturae11060699 - 17 Jun 2025
Viewed by 2085
Abstract
Fruit astringency, which primarily results from the interaction between polyphenolic compounds such as tannins and salivary proteins, is a critical sensory attribute that limits the commercial value and consumer acceptance of many fruits. A thorough understanding of the mechanisms underlying astringency formation and [...] Read more.
Fruit astringency, which primarily results from the interaction between polyphenolic compounds such as tannins and salivary proteins, is a critical sensory attribute that limits the commercial value and consumer acceptance of many fruits. A thorough understanding of the mechanisms underlying astringency formation and the development of efficient and safe de-astringency technologies are crucial for the fruit industry. This review systematically elucidates the molecular basis of fruit astringency, focusing on the biosynthesis pathways, accumulation dynamics, and transcriptional regulatory networks of key phenolic substances, such as tannins, as well as their modulation by environmental factors. It also evaluates the efficacy and current applications of existing de-astringency methods and discusses the potential impacts of different treatments on fruit quality attributes. This study thoroughly analyzes the major challenges faced by current technologies, including balancing de-astringency efficiency with quality preservation, ensuring environmental friendliness and food safety, reducing costs, and promoting wider application. Finally, future research directions are discussed, emphasizing the importance of precise genetic improvement using tools such as gene editing, developing green and efficient processes, achieving intelligent process control, and focusing on synergistic quality regulation and the exploration of functional value. This review aims to provide an integrated knowledge framework for developing innovative, efficient, safe, and sustainable fruit de-astringency solutions, offering a scientific reference to advance technological upgrades in the fruit industry. Full article
Show Figures

Figure 1

46 pages, 735 KB  
Review
Plant-Derived Phytobiotics as Emerging Alternatives to Antibiotics Against Foodborne Pathogens
by Kamila Rachwał and Klaudia Gustaw
Appl. Sci. 2025, 15(12), 6774; https://doi.org/10.3390/app15126774 - 16 Jun 2025
Cited by 1 | Viewed by 1359
Abstract
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential [...] Read more.
Growing consumer awareness of clean labels is driving demand for preservative-free products yet concerns about foodborne pathogens and microbiological safety remain significant. Plant-derived compounds with bioactive properties—phytobiotics—have emerged as promising alternatives or complements to conventional antimicrobial agents. This review discusses phytobiotics, including essential oils, polyphenols, alkaloids, and organosulfur compounds, highlighting their structural diversity and antimicrobial potential. Phytobiotics combat foodborne pathogens by disrupting cell structures, inhibiting biofilms and quorum sensing, and interfering with genetic and protein synthesis. Importantly, some phytobiotics exhibit synergistic effects when combined with antibiotics or other natural agents, enhancing overall antimicrobial efficacy. The impact of phytobiotics on the microbiota of food products and the gastrointestinal tract is also addressed, with attention to both beneficial modulation and possible unintended effects. Practical applications in food preservation and supplementation are analyzed, as well as challenges related to composition variability, stability, and interactions with food matrices. Nevertheless, modern technologies such as nanoencapsulation, complexation with polysaccharides, and advanced extraction methods are being developed to address these challenges and enhance the stability and bioavailability of phytobiotics. Continued investment in research and innovation is essential to fully harness the potential of phytobiotics in ensuring safe, natural, and sustainable food systems. Full article
(This article belongs to the Special Issue Advances in Food Safety and Microbial Control)
Show Figures

Figure 1

20 pages, 18302 KB  
Article
Harnessing the Therapeutic Potential of Pomegranate Peel-Derived Bioactive Compounds in Pancreatic Cancer: A Computational Approach
by Rita Majhi, Sagar Kurmi, Hilal Tayara and Kil To Chong
Pharmaceuticals 2025, 18(6), 896; https://doi.org/10.3390/ph18060896 - 15 Jun 2025
Viewed by 777
Abstract
Background/Objectives: Pomegranate (Punica granatum) peel, often discarded as waste, contains abundant bioactive compounds such as polyphenols, vitamins, flavonoids, tannins, anthocyanins, and many more. This contributes to remarkable bioactivities, including anticancer, anti-inflammatory, antioxidant, antibacterial, and antifungal properties. Pancreatic cancer is a deadly cancer [...] Read more.
Background/Objectives: Pomegranate (Punica granatum) peel, often discarded as waste, contains abundant bioactive compounds such as polyphenols, vitamins, flavonoids, tannins, anthocyanins, and many more. This contributes to remarkable bioactivities, including anticancer, anti-inflammatory, antioxidant, antibacterial, and antifungal properties. Pancreatic cancer is a deadly cancer with a 9% survival rate. Its aggressiveness, invasiveness, quick metastasis, and poor prognosis significantly decrease the survival rate. Thus, we aim to explore pomegranate peel as a possible alternative medication for treating pancreatic cancer through virtual methods. Methods: Firstly, bioactive compounds were collected from multiple databases and screened for oral bioavailability (OB) ≥ 0.3 and drug likeness (DL) ≥ 0.18 scores. Simultaneously, network pharmacology was employed to extract the most probable targets for pancreatic cancer. Further computational analyses were performed, including molecular docking, molecular dynamics simulation, and in silico pharmacokinetics evaluation. Results: Consequently, the top 10 key targets from network analysis were AKT1, IL6, TNF, SRC, STAT3, EGFR, BCL2, HSP90AA1, HIF1A, and PTGS2. However, only AKT1, EGFR, BCL2, HSP90AA1, and PTGS2 exhibited strong binding affinities with pomegranate compounds, which are significantly declared in affected cells to enhance cancer progression. Outcomes from molecular dynamics simulations, particularly RMSD, RMSF, hydrogen bonding, and radius of gyration (Rg), confirmed stable interactions between 1-O-Galloyl-beta-D-glucose, epicatechin, phloridzin, and epicatechin gallate with respective target proteins. Conclusions: This suggests that pomegranate peels hold anticancer bioactive compounds for treating pancreatic cancer. Surprisingly, most compounds adhere to Lipinski’s and Pfizer’s rules and display no toxicity. However, as this study relies entirely on computational methods, experimental validation is necessary to confirm these findings and assess real-world efficacy and potential side effects. Full article
(This article belongs to the Special Issue The Discovery and Development of Drug Ingredients from Food Sources)
Show Figures

Figure 1

28 pages, 1776 KB  
Review
Nutrition and Diet Patterns as Key Modulators of Metabolic Reprogramming in Melanoma Immunotherapy
by Katerina Grafanaki, Alexandros Maniatis, Alexandra Anastogianni, Angelina Bania, Efstathia Pasmatzi and Constantinos Stathopoulos
J. Clin. Med. 2025, 14(12), 4193; https://doi.org/10.3390/jcm14124193 - 12 Jun 2025
Viewed by 2952
Abstract
Background: Melanoma, one of the most aggressive forms of skin cancer, has seen significant therapeutic advances with immune checkpoint inhibitors (ICIs). However, many patients fail to respond or develop resistance, creating the need for adjunct strategies. Objective: The objective of this [...] Read more.
Background: Melanoma, one of the most aggressive forms of skin cancer, has seen significant therapeutic advances with immune checkpoint inhibitors (ICIs). However, many patients fail to respond or develop resistance, creating the need for adjunct strategies. Objective: The objective of this study is to critically evaluate how specific dietary patterns and nutrient-derived metabolites modulate melanoma metabolism and immunotherapy outcomes, emphasizing translational implications. Methods: We performed an integrative review of preclinical and clinical studies investigating dietary interventions in melanoma models and ICI-treated patients. Mechanistic insights were extracted from studies on nutrient transport, immunometabolism, and microbiome–immune interactions, including data from ongoing nutritional clinical trials. Results: Diets rich in fermentable fibers, plant polyphenols, and unsaturated lipids, such as Mediterranean and ketogenic diets, seem to contribute to the reprogramming of tumor metabolism and enhance CD8+ T-cell activity. Fasting-mimicking and methionine-restricted diets modulate T-cell fitness and tumor vulnerability via nutrient stress sensors (e.g., UPR, mTOR). High fiber intake correlates with favorable gut microbiota and improved ICI efficacy, while excess protein, methionine, or refined carbohydrates impair immune surveillance via lactate accumulation and immunosuppressive myeloid recruitment. Several dietary molecules act as network-level modulators of host and microbial proteins, with parallels to known drug scaffolds. Conclusions: Integrating dietary interventions into melanoma immunotherapy can significantly influence metabolic reprogramming by targeting metabolic vulnerabilities and reshaping the tumor–immune–microbiome axis. When combined with AI-driven nutrient–protein interaction mapping, this approach offers a precision nutrition paradigm that supports both physicians and patients, emerging as a novel layer to enhance and consolidate existing therapeutic strategies. Full article
(This article belongs to the Section Clinical Nutrition & Dietetics)
Show Figures

Graphical abstract

Back to TopTop