Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,400)

Search Parameters:
Keywords = protein–ligand interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7571 KB  
Article
Discontinued BACE1 Inhibitors in Phase II/III Clinical Trials and AM-6494 (Preclinical) Towards Alzheimer’s Disease Therapy: Repurposing Through Network Pharmacology and Molecular Docking Approach
by Samuel Chima Ugbaja, Hezekiel Matambo Kumalo and Nceba Gqaleni
Pharmaceuticals 2026, 19(1), 138; https://doi.org/10.3390/ph19010138 (registering DOI) - 13 Jan 2026
Abstract
Background: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors demonstrated amyloid-lowering efficacy but failed in phase II/III clinical trials due to adverse effects and limited disease-modifying outcomes. This study employed an integrated network pharmacology and molecular docking approach to quantitatively elucidate [...] Read more.
Background: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors demonstrated amyloid-lowering efficacy but failed in phase II/III clinical trials due to adverse effects and limited disease-modifying outcomes. This study employed an integrated network pharmacology and molecular docking approach to quantitatively elucidate the multitarget mechanisms of 4 (phase II/III) discontinued BACE1 inhibitors (Verubecestat, Lanabecestat, Elenbecestat, and Umibecestat) and the preclinical compound AM-6494 in Alzheimer’s disease (AD). Methods: Drug-associated targets were intersected with AD-related genes to construct a protein–protein interaction (PPI) network, followed by topological analysis to identify hub proteins. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using statistically significant thresholds (p < 0.05, FDR-adjusted). Molecular docking was conducted using AutoDock Vina to quantify binding affinities and interaction modes between the selected compounds and the identified hub proteins. Results: Network analysis identified 10 hub proteins (CASP3, STAT3, BCL2, AKT1, MTOR, BCL2L1, HSP90AA1, HSP90AB1, TNF, and MDM2). GO enrichment highlighted key biological processes, including the negative regulation of autophagy, regulation of apoptotic signalling, protein folding, and inflammatory responses. KEGG pathway analysis revealed significant enrichment in the PI3K–AKT–MTOR signalling, apoptosis, and TNF signalling pathways. Molecular docking demonstrated strong multitarget binding, with binding affinities ranging from approximately −6.6 to −11.4 kcal/mol across the hub proteins. Umibecestat exhibited the strongest binding toward AKT1 (−11.4 kcal/mol), HSP90AB1 (−9.5 kcal/mol), STAT3 (−8.9 kcal/mol), HSP90AA1 (−8.5 kcal/mol), and MTOR (−8.3 kcal/mol), while Lanabecestat showed high affinity for AKT1 (−10.6 kcal/mol), HSP90AA1 (−9.9 kcal/mol), BCL2L1 (−9.2 kcal/mol), and CASP3 (−8.5 kcal/mol), respectively. These interactions were stabilized by conserved hydrogen bonding, hydrophobic contacts, and π–alkyl interactions within key regulatory domains of the target proteins, supporting their multitarget engagement beyond BACE1 inhibition. Conclusions: This study demonstrates that clinically failed BACE1 inhibitors engage multiple non-structural regulatory proteins that are central to AD pathogenesis, particularly those governing autophagy, apoptosis, proteostasis, and neuroinflammation. The identified ligand–hub protein complexes provide a mechanistic rationale for repurposing and optimization strategies targeting network-level dysregulation in Alzheimer’s disease, warranting further in silico refinement and experimental validation. Full article
(This article belongs to the Special Issue NeuroImmunoEndocrinology)
Show Figures

Figure 1

16 pages, 3692 KB  
Article
Study on the Molecular Mechanism of Interaction Between Perfluoroalkyl Acids and PPAR by Molecular Docking
by Renli Wei, Huiping Xiao, Jie Fu, Yin Luo and Pengfei Wang
Toxics 2026, 14(1), 67; https://doi.org/10.3390/toxics14010067 - 11 Jan 2026
Viewed by 38
Abstract
Per- and polyfluoroalkyl substances (PFASs), as a class of “permanent chemicals” with high environmental persistence and bioaccumulation, have attracted much attention. In this study, we focused on the molecular mechanism of the interaction between perfluoroalkyl acids (PFAAs) and peroxisome proliferator-activated receptor δ (PPARδ). [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), as a class of “permanent chemicals” with high environmental persistence and bioaccumulation, have attracted much attention. In this study, we focused on the molecular mechanism of the interaction between perfluoroalkyl acids (PFAAs) and peroxisome proliferator-activated receptor δ (PPARδ). Using molecular docking, binding free energy calculation, and structural analysis, we systematically investigated the binding modes, key amino acid residues, and binding energies of 20 structurally diverse PFAAs with PPARδ. The results showed that the binding energies of PFAAs with PPARδ were significantly affected by the molecular weight, the number of hydrogen bond donors, and the melting point of PFAAs. PFAAs with smaller molecular weights and fewer hydrogen bond donors showed stronger binding affinity. The binding sites were concentrated in high-frequency amino acid residues such as TRP-256, ASN-269, and GLY-270, and the interaction forces were dominated by hydrogen and halogen bonds. PFAAs with branched structure of larger molecular weight (e.g., 3m-PFOA, binding energy of −2.92 kcal·mol−1; 3,3m2-PFOA, binding energy of −2.45 kcal·mol−1) had weaker binding energies than their straight-chain counterparts due to spatial site-blocking effect. In addition, validation group experiments further confirmed the regulation law of binding strength by physicochemical properties. In order to verify the binding stability of the key complexes predicted by molecular docking, and to investigate the dynamic behavior under the conditions of solvation and protein flexibility, molecular dynamics simulations were conducted on PFBA, PFOA, 3,3m2-PFOA, and PFHxA. The results confirmed the dynamic stability of the binding of the high-affinity ligands selected through docking to PPARδ. Moreover, the influence of molecular weight and branched structure on the binding strength was quantitatively verified from the perspectives of energy and RMSD trajectories. The present study revealed the molecular mechanism of PFAAs interfering with metabolic homeostasis through the PPARδ pathway, providing a theoretical basis for assessing its ecological and health risks. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

10 pages, 902 KB  
Article
The Phylogenomic Approach Suggests That Butyrophilins Have Ligands Beyond Gamma–Delta Receptors
by Ludovic Marenco, Daniel Olive and Pierre Pontarotti
Int. J. Mol. Sci. 2026, 27(2), 741; https://doi.org/10.3390/ijms27020741 - 11 Jan 2026
Viewed by 51
Abstract
Since γδ T cells are present in all jawed vertebrates, we wondered whether butyrophilins, proteins that play a key role in the activation of these cells, were also present in these organisms. Our analyses revealed the presence of genes encoding butyrophilins across all [...] Read more.
Since γδ T cells are present in all jawed vertebrates, we wondered whether butyrophilins, proteins that play a key role in the activation of these cells, were also present in these organisms. Our analyses revealed the presence of genes encoding butyrophilins across all jawed vertebrates, including in squamates, a reptilian clade that is nonetheless reported in the literature to have lost γδ T cells. The conservation of butyrophilins in this group, despite the absence of their only known cellular partner, suggests that they may fulfill an alternative function, possibly through interaction with another ligand. Given their strong conservation across jawed vertebrates, it is reasonable to hypothesize that this alternative ligand may also be present in humans. Full article
(This article belongs to the Section Molecular Immunology)
26 pages, 7756 KB  
Article
Neonicotinoids and the Androgen Receptor: Structural Dynamics and Potential Signaling Disruption
by Mohd Amin Beg, Md Amjad Beg, Ummer Rashid Zargar, Torki Zughaibi, Adel Mohammad Abuzenadah and Ishfaq Ahmad Sheikh
Biology 2026, 15(2), 126; https://doi.org/10.3390/biology15020126 - 10 Jan 2026
Viewed by 236
Abstract
Neonicotinoids are synthetic nicotine-like compounds extensively used globally as insecticides for agricultural and urban purposes. Neonicotinoid-contaminated produce is a major public health concern worldwide. Limited epidemiological studies have shown an association of neonicotinoid exposure with abnormal semen analysis. This study aimed to elucidate [...] Read more.
Neonicotinoids are synthetic nicotine-like compounds extensively used globally as insecticides for agricultural and urban purposes. Neonicotinoid-contaminated produce is a major public health concern worldwide. Limited epidemiological studies have shown an association of neonicotinoid exposure with abnormal semen analysis. This study aimed to elucidate the potential disruption of the androgen receptor (AR) by eight common neonicotinoids, including imidacloprid (IMI), acetamiprid, clothianidin, thiamethoxam, dinotefuran, thiacloprid (THI), nitenpyram, and nithiazine using docking and molecular dynamics (MD) simulation. The results showed good binding strength of all compounds (except THI) with AR, as indicated by high binding energy, high binding affinity, and number of bonding interactions. The results of MD simulation supported the conformational stability and structural dynamic behavior of the AR-IMI (receptor-neonicotinoid) complex upon binding. This was indicated by root mean square deviation showing stability of the complex; the root mean square fluctuation showing minimized residual fluctuations upon binding; the radius of gyration showing greater compactness of the protein structure; the solvent-accessible surface area showing no changes upon binding; and the Gibbs funnel energy of the landscape showing a stable conformation state with minimum energy and slight change in size and position of the sampled energy basin of the AR, with a stable equilibrium. Taken together, the structural dynamics results showed that neonicotinoids are bound stably in the same ligand-binding domain of the AR as the native ligand testosterone. This may perturb the natural binding of testosterone with the AR and potentially disrupt downstream signaling and biological pathways, leading to male reproductive dysfunction. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

16 pages, 2407 KB  
Article
Discovery of RUVBL1 as a Target of the Marine Alkaloid Caulerpin via MS-Based Functional Proteomics
by Alessandra Capuano, Gilda D’Urso, Lucia Capasso, Emilio Brancaccio, Erica Gazzillo, Marianna Carbone, Ernesto Mollo, Gianluigi Lauro, Maria Giovanna Chini, Giuseppe Bifulco, Angela Nebbioso and Agostino Casapullo
Mar. Drugs 2026, 24(1), 37; https://doi.org/10.3390/md24010037 - 10 Jan 2026
Viewed by 73
Abstract
Marine flora is a significant source of bioactive metabolites. These compounds have been demonstrated to have outstanding bioactivity and biocompatibility, enabling their use in various therapeutic applications. Therefore, examining the biological potential of marine natural compounds remains important, with particular emphasis on their [...] Read more.
Marine flora is a significant source of bioactive metabolites. These compounds have been demonstrated to have outstanding bioactivity and biocompatibility, enabling their use in various therapeutic applications. Therefore, examining the biological potential of marine natural compounds remains important, with particular emphasis on their interaction profiles to identify the macromolecular partners they can modulate. This study focused on the interactome profiling of the marine alkaloid caulerpin (CAU), isolated from the alga Caulerpa cylindracea. Along with the discovery of its antitumor properties, this metabolite has garnered attention for its potential therapeutic applications, including modulation of MAO-B and PPARs involved in inflammatory responses, as well as the discovery of its antitumor properties. Two complementary MS-based proteomic approaches were used to identify CAU target proteins in cancer cells: DARTS, which enabled proteome-wide screening to identify proteins interacting with the compound, and t-LIP-MRM-MS, which pinpointed the target protein regions involved in ligand binding. RUVB-like 1 (RUVBL1), a protein that regulates the essential mechanism of carcinogenesis, including chromatin remodeling, DNA repair, and transcriptional control, was discovered as an intriguing CAU target. These results were corroborated via in silico and biological investigations that elucidated CAU role in the regulation of RUVBL1 activity, highlighting its promising therapeutic relevance. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 5th Edition)
Show Figures

Graphical abstract

27 pages, 5839 KB  
Article
Lipopeptides from Bacillus Probiotics Can Target Transmembrane Receptors NOX4, EGFR, PDGFR, and OCTN2 Involved in Oxidative Stress and Oncogenesis
by Evgeniya Prazdnova, Fadi Amirdzhanov, Anuj Ranjan and Radomir Skripnichenko
BioTech 2026, 15(1), 4; https://doi.org/10.3390/biotech15010004 - 6 Jan 2026
Viewed by 136
Abstract
Bacillus-derived lipopeptides are known to possess diverse biological activities, including antimicrobial and anticancer properties, though the mechanisms of such effects at the molecular level remain incompletely understood. We investigated whether non-ribosomal peptide metabolites from Bacillus can directly interact with transmembrane receptors implicated [...] Read more.
Bacillus-derived lipopeptides are known to possess diverse biological activities, including antimicrobial and anticancer properties, though the mechanisms of such effects at the molecular level remain incompletely understood. We investigated whether non-ribosomal peptide metabolites from Bacillus can directly interact with transmembrane receptors implicated in oxidative stress regulation and cancer progression (NOX4, EGFR, PDGFR, and OCTN2) using molecular docking and 200 ns molecular dynamics simulations of 11 lipopeptide metabolites. Molecular docking revealed several strong ligand–protein interactions, with plipastatin and fengycin emerging as lead compounds demonstrating the highest binding affinities to multiple receptors. For NOX4, iturin D showed the strongest docking score of −7.85 kcal/mol. Fengycin demonstrated a high docking score of −7.38 kcal/mol for PDGFR and −8.1 kcal/mol for EGFR. Plipastatin showed the strongest docking scores of −11.12 kcal/mol for EGFR and −8.7 kcal/mol for OCTN2. Molecular dynamics simulations confirmed complex stability for these lead compounds, with protein RMSD remaining stable at ~1.5 Å and ligand RMSD between 1.9 and 6 Å over 200 ns. Our findings suggest that plipastatin and fengycin may act as modulators of key receptors involved in oxidative stress and cancer-related signaling. However, those in silico predictions require experimental validation. This work provides the first computational evidence of potential lipopeptide–receptor interactions and establishes a foundation for future experimental investigation of probiotic-derived therapeutics. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Figure 1

17 pages, 2117 KB  
Article
Chronic Heat Stress Induces Stage-Specific Molecular and Physiological Responses in Spotted Seabass (Lateolabrax maculatus): Focus on Thermosensory Signaling and HPI Axis Activation
by Guozhu Zhang, Hao Niu, Xiangkai Tang, Kaile Wang, Xue Xia, Xiu Fang and Xiaojie Wang
Biology 2026, 15(2), 113; https://doi.org/10.3390/biology15020113 - 6 Jan 2026
Viewed by 176
Abstract
Global warming and the increasing frequency of marine heatwaves (MHWs) threaten marine ecosystems and aquaculture. For the economically important spotted seabass (L. maculatus), the neuroendocrine basis of its stage-specific thermal responses has yet to be elucidated. This study examined the transcriptomic, [...] Read more.
Global warming and the increasing frequency of marine heatwaves (MHWs) threaten marine ecosystems and aquaculture. For the economically important spotted seabass (L. maculatus), the neuroendocrine basis of its stage-specific thermal responses has yet to be elucidated. This study examined the transcriptomic, physiological, and behavioral adaptations to chronic heat stress in late larval and late juvenile seabass over 14 days. After thermal acclimation, larvae demonstrated a marked behavioral shift, preferring warmer waters (26–34 °C). While heat stress upregulated key thermosensory genes (e.g., trpv1, trpv4) in the brain across both stages, it induced distinct expression profiles in the skin, suggesting a developmental transition from peripheral to central dominance in thermosensation. Brain transcriptomics revealed stage-specific pathway activation: juveniles engaged in neuroactive ligand-receptor interactions and MAPK signaling, whereas larvae showed enrichment in phosphatidylinositol signaling and protein processing. Both stages showed activation of the hypothalamic-pituitary-interrenal (HPI) axis (upregulation of crh, crhr1, crhr2, pomc) and heat shock response (hsp70, hsp90), accompanied by elevated serum cortisol. Notably, energy metabolism diverged significantly: larvae maintained appetite and developed hyperglycemia, while juveniles exhibited severe feeding suppression and hypoglycemia, which was correlated with differential regulation of appetite genes (npy, orexin, cck). Our results elucidate the distinct neuroendocrine mechanisms underlying thermal acclimation in L. maculatus and provide a scientific basis for developing climate-resilient aquaculture practices for this species. Full article
(This article belongs to the Section Marine and Freshwater Biology)
Show Figures

Figure 1

15 pages, 1502 KB  
Review
Developmental Pathways of Immature CD11c+ Myeloid Dendritic Cells (mDCs) for Bona Fide Osteoclastogenesis Revisited: A Narrative Review
by Yen Chun G. Liu, Chen-Yi Liang and Andy Yen-Tung Teng
Int. J. Mol. Sci. 2026, 27(1), 480; https://doi.org/10.3390/ijms27010480 - 2 Jan 2026
Viewed by 187
Abstract
Recent studies support that hematopoietic stem cell (HSC)-derived myeloid dendritic cells, monocytes/macrophages (Mo/Mϕ), and osteoclast precursors (OCps) share common progenitor(s) during development. This occurs mainly through receptor activator of NF-κB ligand (RANKL) signaling via its cytoplasmic adaptor protein complex (TRAF6) to subsequent osteoclastogenesis [...] Read more.
Recent studies support that hematopoietic stem cell (HSC)-derived myeloid dendritic cells, monocytes/macrophages (Mo/Mϕ), and osteoclast precursors (OCps) share common progenitor(s) during development. This occurs mainly through receptor activator of NF-κB ligand (RANKL) signaling via its cytoplasmic adaptor protein complex (TRAF6) to subsequent osteoclastogenesis for bone loss and/or remodeling. Presently, mounting new evidence suggests that erythro-myeloid progenitor (EMP)-derived macrophages (Mϕ) and HSC-derived monocytes (Mo) produce embryonic, fetal, and postnatal OCp pools (i.e., primitive OCp), pinpointing a complex network of multiple OCp developmental origins. However, their ontogenic developments, lineage interactions, and contributions to the alternative osteoclastogenesis—in contrast to overall bone remodeling or loss—remain elusive. Interestingly, studies have also elucidated the contributions of immature CD11c+ myeloid DC-like OCps to osteoclastogenesis, with or without the classical so-called Mo/Mϕ-derived OCp subsets, and described that CD11c+ myeloid DCs (mDCs) develop into functionally active OCs; meanwhile, the cytokine TGF-β mediates a stepwise regulation of de novo immature mDCs/OCps through distinct crosstalk(s) with IL-17, an unrecognized interaction featuring TRAF6(−/−)CD11c+ mDDOCps that coexist and proficiently colocalize in the local environment to drive a bona fide route for alternative osteoclastogenesis in vivo. Collectively, new findings—critically hinged on progenitor osteoclastogenic pathways (primitive OCps, mDCs/OCps, osteomorphs, etc.) and involving classical and/or alternative routes to inflammation-induced bone loss—are discussed via the illustrated schemes. This review highlights plausible ontogenic vs. principal or alternative developmental paths and their consequential downstream effects. Full article
Show Figures

Figure 1

16 pages, 5863 KB  
Article
Transcriptomic Analysis of the Cold Resistance Mechanisms During Overwintering in Apis mellifera
by Xiaoyin Deng, Yali Du, Jiaxu Wu, Jinming He, Haibin Jiang, Yuling Liu, Qingsheng Niu and Kai Xu
Insects 2026, 17(1), 59; https://doi.org/10.3390/insects17010059 - 1 Jan 2026
Viewed by 431
Abstract
Safe overwintering is a challenging issue in rearing management that is inevitably faced by beekeepers in high-latitude regions. Under the combined influence of multiple factors, the overwintering loss rate of Western honey bees has risen continuously, and investigating the molecular mechanisms related to [...] Read more.
Safe overwintering is a challenging issue in rearing management that is inevitably faced by beekeepers in high-latitude regions. Under the combined influence of multiple factors, the overwintering loss rate of Western honey bees has risen continuously, and investigating the molecular mechanisms related to safe overwintering has become key. The Hunchun bee, an Apis mellifera ecotype in Jilin Province, China, exhibits strong overwintering ability during an overwintering period of more than five months. To investigate the molecular mechanisms of its cold resistance, we conducted a comparative transcriptomic analysis between the summer breeding period (July) and different overwintering intervals (November, December, January, and February), and then systematically identified key genes and signaling pathways related to cold resistance. The results showed that the highest number of differentially expressed genes (DEGs) was found between December and July. Compared with July, the upregulated genes in Hunchun bee in December were significantly enriched in several pathways, such as ion transport and neuroactive ligand–receptor interactions, and the downregulated genes were significantly enriched in pathways related to fatty acid metabolism, glutathione metabolism, and the peroxisome. Notably, a total of 378 shared DEGs were obtained from the four comparison groups, and several candidate cold-resistant gene families, such as AFPs, HSPs, C2H2-ZFPs, STKs, and LRRCs, were identified among the shared DEGs of the winter season. Additionally, 749 shared DEGs related to protein modification and metabolic process regulation were identified between the four successive overwintering intervals. Four shared genes, including sensory neuron membrane protein 1 (SNMP1), were revealed by pairwise comparison of the four intervals. The above results collectively indicate that the Hunchun bee attenuates winter-induced stress responses during the overwintering process by maintaining osmotic pressure balance, reducing fatty acid metabolism, increasing antioxidant capacity, and synthesizing cold-resistant macromolecular proteins. It was also found that chemical signal perception may serve a role in maintaining the stability of the overwintering bee colony. The key genes and pathways related to cold resistance identified in this study not only provide a basis for explaining the overwintering molecular mechanism for Apis mellifera of Hunchun bee but also offer key data to improve overwintering management strategies for Western honey bees. Full article
(This article belongs to the Special Issue Insect Transcriptomics)
Show Figures

Figure 1

14 pages, 2615 KB  
Article
HuR Knockdown in MLO-Y4 Osteocyte-like Cells Elevates OPG Expression and Suppresses Osteoclastogenesis In Vitro
by Ziqiu Fan, Hideki Kitaura, Aseel Marahleh, Abdulrahman Mousa, Fumitoshi Ohori, Alexandru Craevschi, Sherif Rashad and Hiroyasu Kanetaka
Int. J. Mol. Sci. 2026, 27(1), 430; https://doi.org/10.3390/ijms27010430 - 31 Dec 2025
Viewed by 196
Abstract
Bone remodeling is maintained through the coordinated actions of osteoblasts, osteoclasts, and osteocytes, among which osteocytes serve as major regulators of osteoclast-mediated bone resorption through the receptor activator of the nuclear factor-κB ligand (RANKL)–osteoprotegerin (OPG) signaling axis. While molecular signals regulating osteocytic RANKL-OPG [...] Read more.
Bone remodeling is maintained through the coordinated actions of osteoblasts, osteoclasts, and osteocytes, among which osteocytes serve as major regulators of osteoclast-mediated bone resorption through the receptor activator of the nuclear factor-κB ligand (RANKL)–osteoprotegerin (OPG) signaling axis. While molecular signals regulating osteocytic RANKL-OPG expression are fairly understood, how post-transcriptional mechanisms impact osteocyte function remains poorly defined. HuR (human antigen R) encoded by Elavl1 (embryonic lethal abnormal vision-like 1), a ubiquitously expressed RNA-binding protein, is known for stabilizing AU-rich element-containing transcripts involved in inflammatory and stress responses; however, its role in osteocyte-derived bone resorption is unknown. In this study, we examined the effect of HuR loss on osteocyte–osteoclastogenesis. Short hairpin RNA (shRNA)-mediated HuR knockdown in MLO-Y4 osteocyte-like cells resulted in a significant increase in OPG mRNA and its protein expression, whereas RANKL levels remained unchanged, leading to a significantly reduced RANKL/OPG ratio. Both co-culture and conditioned-medium assays demonstrated that HuR-deficient osteocytes produced a markedly diminished osteoclastogenic environment. Actinomycin D chase experiments showed no alteration in OPG mRNA decay kinetics, and RNA immunoprecipitation (RIP)-PCR failed to detect HuR–OPG interactions, indicating that HuR regulates OPG expression through indirect mechanisms rather than mRNA binding. These findings identify HuR as an indirect regulator of osteocyte-derived OPG expression that impacts osteoclast differentiation and reveal a previously unrecognized mechanism by which HuR contributes to bone remodeling. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

21 pages, 3414 KB  
Article
Spectroscopic and Physicochemical Analysis of Bioactive Cobalt(II) β-Diketo Ester Complexes: Insights into DNA and BSA Binding Mechanisms
by Ignjat Filipović, Snežana Stojanović, Jelena Petronijević, Milena Milutinović, Danijela Nikodijević, Nevena Petrović, Marijana Kosanić and Nenad Joksimović
Analytica 2026, 7(1), 3; https://doi.org/10.3390/analytica7010003 - 29 Dec 2025
Viewed by 216
Abstract
The urgent need for effective therapies against cancer and antimicrobial-resistant pathogens motivates the development of novel metal-based complexes. Herein, we report the synthesis and characterization of four novel cobalt(II) complexes with biologically relevant β-diketo ester ligands. The complexes were characterized via UV-Vis, FTIR, [...] Read more.
The urgent need for effective therapies against cancer and antimicrobial-resistant pathogens motivates the development of novel metal-based complexes. Herein, we report the synthesis and characterization of four novel cobalt(II) complexes with biologically relevant β-diketo ester ligands. The complexes were characterized via UV-Vis, FTIR, mass spectrometry, and elemental analysis. Their biological activities were evaluated through antimicrobial and cytotoxic assays. Complex B1 exhibited the strongest antimicrobial activity, with minimum inhibitory concentrations (MICs) of 0.23 mg/mL against Staphylococcus aureus and Proteus mirabilis, and 0.01 mg/mL against Mucor mucedo, exceeding the performance of ketoconazole. Cytotoxicity studies on SW480 colorectal cancer cells and HaCaT normal keratinocytes identified B3 as the most potent anticancer agent (IC50 = 11.49 µM), selectively targeting tumor cells. Morphological analysis indicated apoptosis as the primary mode of cell death. Mechanistic studies were performed to elucidate interactions with biomolecules. UV-Vis and fluorescence spectroscopy, viscosity measurements, and molecular docking revealed that B3 binds strongly to calf thymus DNA via hydrophobic interactions and groove binding, and exhibits selective binding to bovine serum albumin (site II, subdomain IIIA). These results highlight the potential of cobalt(II) complexes as multifunctional agents with significant antimicrobial and antitumor activities and provide detailed insight into their molecular interactions with DNA and serum proteins. Full article
Show Figures

Graphical abstract

34 pages, 48857 KB  
Article
In Silico Prediction of Potential pTLR7/pSTING Dual-Targeting Ligands via Virtual Screening and Molecular Dynamics Simulation
by Chang Liu, Zhe Qin, Lixia Bai, Xiao Xu, Wenbo Ge, Zhun Li and Jianyong Li
Int. J. Mol. Sci. 2026, 27(1), 338; https://doi.org/10.3390/ijms27010338 - 28 Dec 2025
Viewed by 217
Abstract
Toll-like receptor 7 (TLR7) and Stimulator of Interferon Genes (STING) ligands possess a series of immunomodulatory effects such as anti-infection, anti-tumor, and autoimmune-disease-alleviating effects. In this study, porcine TLR7 (pTLR7) and porcine STING (pSTING) were selected as targets, and molecular docking and virtual [...] Read more.
Toll-like receptor 7 (TLR7) and Stimulator of Interferon Genes (STING) ligands possess a series of immunomodulatory effects such as anti-infection, anti-tumor, and autoimmune-disease-alleviating effects. In this study, porcine TLR7 (pTLR7) and porcine STING (pSTING) were selected as targets, and molecular docking and virtual screening methods were used for screening of dual-target livestock immunomodulators. Finally, two compounds were screened with molecular docking scores higher than the positive control compounds. They have good binding ability with pTLR7 and pSTING proteins, as well as satisfactory predictive safety and pharmacokinetic properties. Molecular dynamics (MD) simulation results also indicated that the above ligands can form stable complexes with two target proteins. The average binding free energies of compound 2 with pTLR7 and pSTING were −28.65 kcal/mol and −30.12 kcal/mol, respectively, and of compound 7 with pTLR7 and pSTING were −35.93 kcal/mol and −31.70 kcal/mol, respectively, which were comparable to that of positive control ligands. The similarity of target proteins between pigs, humans, and mice, as well as the interactions between ligands and TLR7 and STING in different species, were analyzed. And analysis of predicted structure–activity relationship (SAR) was conducted. Briefly, compound 2 and compound 7 were predicted to form stable complexes with pTLR7 and pSTING, with satisfactory predicted physicochemical properties and pharmacokinetic characteristics, and represented candidates for experimental validation. This study supplies a research basis for the development, design, and structural modification of immune enhancers for animals. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

35 pages, 1000 KB  
Review
From Mechanism to Medicine: Peptide-Based Approaches for Cancer Diagnosis and Therapy
by Maria João Gouveia, Joana Campanhã, Francisca Barbosa and Nuno Vale
Biomolecules 2026, 16(1), 27; https://doi.org/10.3390/biom16010027 - 24 Dec 2025
Viewed by 785
Abstract
Therapeutic peptides have rapidly evolved into multifunctional tools for precision oncology, offering molecular specificity and biocompatibility. Their roles in cancer therapy, however, are inherently overlapping. The same peptide can function as a targeting ligand, a cell-penetrating motif, a therapeutic effector, or a structural [...] Read more.
Therapeutic peptides have rapidly evolved into multifunctional tools for precision oncology, offering molecular specificity and biocompatibility. Their roles in cancer therapy, however, are inherently overlapping. The same peptide can function as a targeting ligand, a cell-penetrating motif, a therapeutic effector, or a structural component of peptide–drug conjugates (PDCs), nanoparticle (NP) systems, and radionuclide constructs. This functional convergence makes rigid classification challenging. In this review, we therefore organize peptide modalities according to their dominant therapeutic function while acknowledging the fluid boundaries between categories. Firstly, we outline the main functional classes of therapeutic peptides, covering their use as targeting ligands and their roles as active agents (i.e., receptor agonists/antagonists, intracellular protein–protein interaction modulators, etc.). Additionally, we summarize their application in peptide–drug conjugates (PDCs), peptide-guided radionuclides, and cancer vaccines, integrating key mechanistic principles and clinical evidence. Finally, we discuss the major translational barriers to clinical use and how they might be overcome. The developments in peptide engineering position them as adaptable, multifunctional platforms capable of improving precision, reducing toxicity, and advancing personalized cancer care. Full article
Show Figures

Figure 1

18 pages, 7060 KB  
Article
A New Insight into the Study of Neural Cell Adhesion Molecule (NCAM) Polysialylation Inhibition Incorporated the Molecular Docking Models into the NMR Spectroscopy of a Crucial Peptide–Ligand Interaction
by Ri-Bo Huang, Bo Lu, Si-Ming Liao, Xue-Hui Liu and Guo-Ping Zhou
Biomolecules 2026, 16(1), 19; https://doi.org/10.3390/biom16010019 - 22 Dec 2025
Viewed by 286
Abstract
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. During the NCAM polysialylation process, polysialyltransferases (polySTs), such as polysialyltransferase IV [...] Read more.
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. During the NCAM polysialylation process, polysialyltransferases (polySTs), such as polysialyltransferase IV (ST8SIA4) or polysialyltransferase II (ST8SIA2), can catalyze the addition of CMP-sialic acid (CMP-Sia) to the NCAM to form polysialic acid (polySia). In this study, the docking models of polysialyltransferase IV (ST8Sia4) protein and different ligands were predicted using Alphafold 3 and DiffDock servers, and the prediction accuracy was further verified using the NMR experimental spectra of the interactions between polysialyltransferase domain (PSTD), a crucial peptide domain in ST8Sia4, and a different ligand. This combination strategy provides new insights into a quick and effective screening for inhibitors of tumor cell migration. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

16 pages, 6158 KB  
Article
Genistein Reduces the Risk of Diabetes in Long-Term Hospitalized Schizophrenic Patients
by Yiying Sun, Bin Liu, Tingting Jiang, Yi Guo, Ying Xia, Zhicheng Cao, Haiping Fang, Yi Yang and Xirong Sun
Behav. Sci. 2026, 16(1), 21; https://doi.org/10.3390/bs16010021 - 22 Dec 2025
Viewed by 208
Abstract
To identify clinical risk factors for diabetes mellitus (DM) in long-stay schizophrenia (LS-SCZ) patients, explore shared molecular mechanisms of schizophrenia and DM, and validate targeted interventions. Clinical data of LS-SCZ patients were analyzed via multiple logistic regression to identify DM risk factors. Differentially [...] Read more.
To identify clinical risk factors for diabetes mellitus (DM) in long-stay schizophrenia (LS-SCZ) patients, explore shared molecular mechanisms of schizophrenia and DM, and validate targeted interventions. Clinical data of LS-SCZ patients were analyzed via multiple logistic regression to identify DM risk factors. Differentially expressed genes (DEGs) from GSE53987/GSE161355 datasets were screened; overlapping DEGs were analyzed for co-expression and KEGG enrichment. Support vector machine (SVM) selected feature genes whose diagnostic efficacy was evaluated by ROC curves. Molecular docking verified Genistein’s binding with feature gene proteins. Risk factors for diabetes in LS-SCZ patients included age ≥50 years, hospitalization >20 years, BRI >5.306, family history of diabetes, and hypertension (all p < 0.05). Molecularly, 27 overlapping DEGs from two datasets were enriched in neuroactive ligand–receptor interaction, HIF-1, and MAPK pathways. SVM identified four feature genes (NPY, MKNK2, IFITM3, and S100A8) with good diagnostic efficacy. Genistein bound strongly to their proteins (binding energies: −8.98 to −6.026 kcal/mol). In conclusion, LS-SCZ patients have high DM risk. Targeting clinical risk factors and using Genistein for feature genes may reduce DM comorbidity. Full article
Show Figures

Figure 1

Back to TopTop