Genistein Reduces the Risk of Diabetes in Long-Term Hospitalized Schizophrenic Patients
Abstract
1. Introduction
2. Subjects and Methods
2.1. Study Subjects
2.2. Research Methods
2.3. Definition of Indicators
2.4. Quality Control
2.5. Dataset Screening and Pathway Enrichment Analysis
2.6. Machine Learning SVM Screening of Feature Genes, Construction of ROC Curve, and Molecular Docking (MD)
2.7. Statistical Analysis
3. Results
3.1. Diabetes Prevalence
3.2. Major Risk Factors for Diabetes
3.3. Multivariate Analysis
3.4. Screening of Schizophrenia- and Diabetes-Related Genes and Enrichment Analysis of Their Pathways
3.5. Diagnostic Evaluation and Molecular Docking of Characteristic Genes
4. Discussion
4.1. Schizophrenia: Core Clinical Manifestations, Multidimensional Impairments, and Impact on Quality of Life
4.2. Diabetes Mellitus: Core Pathophysiology, Clinical Manifestations, Multi-System Complications, and Health Risks
4.3. Prevalence, Underlying Mechanisms, Risk Factors, and Clinical Monitoring Gaps of T2DM in Patients with Severe Mental Disorders
4.4. Molecular Mechanisms and Targeted Intervention Potential of Comorbid Schizophrenia and Diabetes Mellitus During Long-Term Hospitalization
4.5. Limitations of the Study on T2DM Comorbidity in Long-Stay Patients with Schizophrenia and Future Research Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, E., Bajaj, P., Naik, S. B., & Pradeep, A. R. (2017). Locally delivered 0.5% azithromycin as an adjunct to non-surgical treatment in patients with chronic periodontitis with type 2 diabetes: A randomized controlled clinical trial. The Journal of Periodontology, 88(12), 1281–1287. [Google Scholar] [CrossRef]
- Alam, F., Islam, M. A., Kamal, M. A., & Gan, S. H. (2018). Updates on managing type 2 diabetes mellitus with natural products: Towards antidiabetic drug development. Current Medicinal Chemistry, 25(39), 5395–5431. [Google Scholar] [CrossRef]
- Anderson, J. E., & Leahy, J. J. L. (2025). Injecting new ideas into managing type 2 diabetes: Evolving roles of GLP-1 receptor agonists. The American Journal of Medicine, 138(3), e48. [Google Scholar] [CrossRef] [PubMed]
- Baryła, I., Styczeń-Binkowska, E., Płuciennik, E., Kośla, K., & Bednarek, A. K. (2022). The WWOX/HIF1A axis downregulation alters glucose metabolism and predispose to metabolic disorders. International Journal of Molecular Sciences, 23(6), 3326. [Google Scholar] [CrossRef]
- Brewster, S., Bartholomew, J., Holt, R. I. G., & Price, H. (2020). Non-attendance at diabetes outpatient appointments: A systematic review. Diabetic Medicine, 37(9), 1427–1442. [Google Scholar] [CrossRef] [PubMed]
- Burschinski, A., Schneider-Thoma, J., Chiocchia, V., Schestag, K., Wang, D., Siafis, S., Bighelli, I., Wu, H., Hansen, W., Priller, J., Davis, J. M., Salanti, G., & Leucht, S. (2023). Metabolic side effects in persons with schizophrenia during mid- to long-term treatment with antipsychotics: A network meta-analysis of randomized controlled trials. World Psychiatry, 22(1), 116–128. [Google Scholar] [CrossRef] [PubMed]
- Cannon, A., Jacoby, C., & Hughes, A. S. (2024). Mind in metabolism—A comprehensive literature review on diabetes and its connections to obsessive compulsive disorder, schizophrenia, and bipolar disorder. Current Diabetes Reports, 25(1), 10. [Google Scholar] [CrossRef]
- Chan, J. K. N., Wong, C. S. M., Or, P. C. F., Chen, E. Y. H., & Chang, W. C. (2021). Risk of mortality and complications in patients with schizophrenia and diabetes mellitus: Population-based cohort study. The British Journal of Psychiatry, 219(1), 375–382. [Google Scholar] [CrossRef]
- Chang, X., Shen, Y., Yun, L., Wang, X., Feng, J., Yang, G., Meng, X., Zhang, J., & Su, X. (2023). The antipsychotic drug olanzapine altered lipid metabolism in the common carp (Cyprinus carpio L.): Insight from the gut microbiota-SCFAs-liver axis. Science of The Total Environment, 856(Pt 1), 159054. [Google Scholar] [CrossRef]
- Chang, Y., Guo, X., Chen, Y., Guo, L., Li, Z., Yu, S., Yang, H., & Sun, Y. (2015). A body shape index and body roundness index: Two new body indices to identify diabetes mellitus among rural populations in northeast China. BMC Public Health, 15, 794. [Google Scholar] [CrossRef]
- Chen, S. R., Chien, Y. P., Kang, C. M., Jeng, C., & Chang, W. Y. (2014). Comparing self-efficacy and self-care behaviours between outpatients with comorbid schizophrenia and type 2 diabetes and outpatients with only type 2 diabetes. Journal of Psychiatric and Mental Health Nursing, 21(5), 414–422. [Google Scholar] [CrossRef]
- Cho, S. B. (2024). Comorbidity genes of Alzheimer’s disease and type 2 diabetes associated with memory and cognitive function. International Journal of Molecular Sciences, 25(4), 2211. [Google Scholar] [CrossRef]
- Dai, S., Mao, L., Chen, X., Zhang, J., Li, X., Zhang, M., Jiang, N., Yang, K., Duan, S., Gan, Z., & Ning, Z. (2026). A heterogeneous hydrogel patch with mechanical activity and bioactivity for chronic diabetic wound healing. Biomaterials, 324, 123531. [Google Scholar] [CrossRef]
- Fauska, C., Bastiampillai, T., Adams, R. J., Wittert, G., Eckert, D. J., & Loffler, K. A. (2024). Effects of the antipsychotic quetiapine on sleep and breathing: A review of clinical findings and potential mechanisms. Journal of Sleep Research, 33(3), e14051. [Google Scholar] [CrossRef]
- Gonzalez, V. H., Wang, P. W., & Ruiz, C. Q. (2021). Panretinal photocoagulation for diabetic retinopathy in the RIDE and RISE trials: Not “1 and Done”. Ophthalmology, 128(10), 1448–1457. [Google Scholar] [CrossRef]
- Gragnoli, C., Reeves, G., Reazer, J., & Postolache, T. T. (2016). Dopamine–prolactin pathway potentially contributes to the schizophrenia and type 2 diabetes comorbidity. Translational Psychiatry, 6(4), e785. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Cruz, M., Godinez-Salas, E. T., Sanchez-Tapia, M., Torres-Villalobos, G., Pichardo-Ontiveros, E., Guizar-Heredia, R., Arteaga-Sanchez, L., Gamba, G., Mojica-Espinosa, R., Schcolnik-Cabrera, A., Granados, O., López-Barradas, A., Vargas-Castillo, A., Torre-Villalvazo, I., Noriega, L. G., Torres, N., & Tovar, A. R. (2020). Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects. BMJ Open Diabetes Research & Care, 8(1), e000948. [Google Scholar] [CrossRef] [PubMed]
- Helaly, A. M. N., & Ghorab, D. S. E. D. (2023). Schizophrenia as metabolic disease. What are the causes? Metabolic Brain Disease, 38(3), 795–804. [Google Scholar] [CrossRef]
- Hsieh, Y. T., & Hsieh, M. C. (2021). Time-sequential correlations between diabetic kidney disease and diabetic retinopathy in type 2 diabetes—An 8-year prospective cohort study. Acta Ophthalmologica, 99(1), e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Huo, L., Lu, X., Wu, F., Huang, X., Ning, Y., & Zhang, X. Y. (2021). Diabetes in late-life schizophrenia: Prevalence, factors, and association with clinical symptoms. Journal of Psychiatric Research, 132, 44–49. [Google Scholar] [CrossRef]
- John, A. P., Mya, T., & Haywood, D. (2024). Cognitive deficits among people with schizophrenia and prediabetes or diabetes. Acta Psychiatrica Scandinavica, 149(1), 65–76. [Google Scholar] [CrossRef]
- Kwon, C. Y., Lee, K. E., Kim, M. J., Kim, J. W., Oh, J. W., Jeon, H. L., Lee, B., Kim, P., & Choi, Y. (2026). Effectiveness of herbal medicine as an add-on to antipsychotics in patients with schizophrenia spectrum disorders accompanied by depression: A systematic review and meta-analysis. Integrative Medicine Research, 15(1), 101224. [Google Scholar] [CrossRef] [PubMed]
- Lai, H. Y., Foo, L. L., Lim, S. M., Yong, C. F., Loh, P. S., Chaw, S. H., Hasan, M. S., & Wang, C. Y. (2020). The hemodynamic and pain impact of peripheral nerve block versus spinal anesthesia in diabetic patients undergoing diabetic foot surgery. Clinical Autonomic Research, 30(1), 53–60. [Google Scholar] [CrossRef]
- Lim, D. X. E., Yeo, S. Y., Chia, Z. Y. A., Fernandis, A. Z., Lee, J., & Chua, J. J. E. (2026). Schizophrenia: Genetics, neurological mechanisms, and therapeutic approaches. Neural Regeneration Research, 21(3), 1089–1103. [Google Scholar] [CrossRef]
- Liu, X., Shen, J., & Zhang, M. (2017). Efficacy of aripiprazole combined with modified electroconvulsive therapy in treatment of female refractory schizophrenia. Journal of Xinxiang Medical College, 34(09), 847–850. [Google Scholar]
- Liu, Y., Li, Z., Zhang, M., Deng, Y., Yi, Z., & Shi, T. (2013). Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Medical Genomics, 6(Suppl. S1), S17. [Google Scholar] [CrossRef]
- Malakoti, F., Mohammadi, E., Akbari Oryani, M., Shanebandi, D., Yousefi, B., Salehi, A., & Asemi, Z. (2024). Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Critical Reviews in Food Science and Nutrition, 64(7), 1865–1881. [Google Scholar] [CrossRef] [PubMed]
- Mani, V., & Alshammeri, B. S. (2023). Quetiapine moderates doxorubicin-induced cognitive deficits: Influence of oxidative stress, neuroinflammation, and cellular apoptosis. International Journal of Molecular Sciences, 24(14), 11525. [Google Scholar] [CrossRef]
- Miraghajani, M., Zaghian, N., Dehkohneh, A., Mirlohi, M., & Ghiasvand, R. (2019). Probiotic soy milk consumption and renal function among type 2 diabetic patients with nephropathy: A randomized controlled clinical trial. Probiotics and Antimicrobial Proteins, 11(1), 124–132. [Google Scholar] [CrossRef]
- Mitchell, A. J., Vancampfort, D., Sweers, K., van Winkel, R., Yu, W., & De Hert, M. (2013). Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders—A systematic review and meta-analysis. Schizophrenia Bulletin, 39(2), 306–318. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K., Mizuno, E., Suekane, A., & Shiratsuchi, T. (2022). Efficacy of clozapine for long-stay patients with treatment-resistant schizophrenia: 4-year observational study. Neuropsychopharmacology Reports, 42(2), 183–190. [Google Scholar] [CrossRef]
- Noort, A., Braam, A. W., Koolen, J., & Beekman, A. T. F. (2024). Religious delusions in Dutch older adults in treatment for psychosis: A follow-up study. International Psychogeriatrics, 36(1), 51–63. [Google Scholar] [CrossRef]
- Punaro, G. R., Lima, D. Y., Rodrigues, A. M., Pugliero, S., Mouro, M. G., Rogero, M. M., & Higa, E. M. S. (2019). Cupuacu extract reduces nitrosative stress and modulates inflammatory mediators in the kidneys of experimental diabetes. Clinical Nutrition, 38(1), 364–371. [Google Scholar] [CrossRef] [PubMed]
- Raafat, K., Aboul-Ela, M., & El-Lakany, A. (2021). Alloxan-induced diabetic thermal hyperalgesia, prophylaxis and phytotherapeutic effects of Rheum ribes L. in mouse model. Archives of Pharmacal Research, 44(8), 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rahme, C., El Kadri, N., Haddad, C., Fekih-Romdhane, F., Obeid, S., & Hallit, S. (2023). Exploring the association between lifetime traumatic experiences and positive psychotic symptoms in a group of long-stay patients with schizophrenia: The mediating effect of depression, anxiety, and distress. BMC Psychiatry, 23(1), 29. [Google Scholar] [CrossRef]
- Sanders, A. R., Drigalenko, E. I., Duan, J., Moy, W., Freda, J., Göring, H., & Gejman, P. V. (2017). Transcriptome sequencing study implicates immune-related genes differentially expressed in schizophrenia: New data and a meta-analysis. Translational Psychiatry, 7(4), e1093. [Google Scholar] [CrossRef]
- Scheuer, S. H., Kosjerina, V., Lindekilde, N., Pouwer, F., Carstensen, B., Jorgensen, M. E., Benros, M. E., & Andersen, G. S. (2022). Severe mental illness and the risk of diabetes complications: A nationwide, register-based cohort study. Journal of Clinical Endocrinology & Metabolism, 107(8), e3504–e3514. [Google Scholar] [CrossRef] [PubMed]
- Schoepf, D., Uppal, H., Potluri, R., & Heun, R. (2014). Physical comorbidity and its relevance on mortality in schizophrenia: A naturalistic 12-year follow-up in general hospital admissions. Archiv Fur Psychiatrie Und Nervenkrankheiten, 264(1), 3–28. [Google Scholar] [CrossRef]
- Schreur, V., Ng, H., Nijpels, G., Stefansson, E., Tack, C. J., Klevering, B. J., de Jong, E. K., Hoyng, C. B., Keunen, J. E. E., & van der Heijden, A. A. (2021). Validation of a model for the prediction of retinopathy in persons with type 1 diabetes. British Journal of Ophthalmology, 105(9), 1286–1288. [Google Scholar] [CrossRef]
- Shamir, A., Yitzhaky, A., Segev, A., Haroutunian, V., Katsel, P., & Hertzberg, L. (2023). Up-regulation of S100 gene family in brain samples of a subgroup of individuals with schizophrenia: Meta-analysis. NeuroMolecular Medicine, 25(3), 388–401. [Google Scholar] [CrossRef]
- Shao, Y., Peng, H., Huang, Q., Kong, J., & Xu, H. (2015). Quetiapine mitigates the neuroinflammation and oligodendrocyte loss in the brain of C57BL/6 mouse following cuprizone exposure for one week. European Journal of Pharmacology, 765, 249–257. [Google Scholar] [CrossRef] [PubMed]
- (2023). The Bearing of the Joint Family Unit on the Diagnosis and Delay of Schizophrenia Treatment. Schizophrenia Bulletin, 49(6), 1420–1421. [CrossRef] [PubMed]
- Thomas, D. M., Bredlau, C., Bosy-Westphal, A., Mueller, M., Shen, W., Gallagher, D., Maeda, Y., McDougall, A., Peterson, C. M., Ravussin, E., & Heymsfield, S. B. (2013). Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity, 21(11), 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Turra, B. O., Barbisan, F., Azzolin, V. F., Teixeira, C. F., Flores, T., Braun, L. E., Nerys, D. A. d. O., Rissi, V. B., Alves, A. d. O., Assmann, C. E., Jung, I. E. d. C., Marques, L. P. S., & da Cruz, I. B. M. (2020). Unmetabolized quetiapine exerts an in vitro effect on innate immune cells by modulating inflammatory response and neutrophil extracellular trap formation. Biomedicine & Pharmacotherapy, 131, 110497. [Google Scholar] [CrossRef]
- Wang, J., Feng, X., Bai, Z., Jin, L.-W., Duan, Y., & Lei, H. (2013). Chromosome 19p in Alzheimer’s disease: When genome meets transcriptome. Journal of Alzheimer’s Disease, 38(2), 245–250. [Google Scholar] [CrossRef]


| Basic Information | T2DM-B * (n = 31) | T2DM-A # (n = 90) | χ2 | p | |
|---|---|---|---|---|---|
| Gender | Male | 17 (54.84) | 54 (60.00) | 0.253 | 0.615 |
| Woman | 14 (45.16) | 36 (40.00) | |||
| Age | 30~ | 0 (0.00) | 2 (2.22) | 1.541 | 0.819 |
| 40~ | 1 (3.03) | 4 (4.44) | |||
| 50~ | 7 (22.58) | 30 (33.33) | |||
| 60~ | 12 (38.71) | 38 (42.22) | |||
| ≥70 | 11 (35.48) | 16 (17.78) | |||
| Age of onset of diabetes (years) | 30~ | 10 (32.26) | 3 (3.33) | 41.835 | <0.001 |
| 40~ | 11 (35.48) | 7 (7.78) | |||
| 50~ | 7 (22.58) | 32 (35.56) | |||
| 60~ | 3 (9.68) | 34 (37.78) | |||
| ≥70 | 0 (0) | 14 (15.56) | |||
| Years of Hospitalization | T2DM-B * (n = 31) | T2DM-A # (n = 90) | LS-SCZ (n = 368) |
|---|---|---|---|
| 0~1 | 7.06 ± 1.85 | 5.83 ± 1.02 | 5.01 ± 0.62 |
| 1~ | 6.96 ± 1.46 | 5.96 ± 1.09 | 4.95 ± 0.55 |
| 2~ | 7.13 ± 1.48 | 5.95 ± 1.02 | 4.96 ± 0.55 |
| 3~ | 6.98 ± 1.86 | 6.27 ± 1.39 | 4.94 ± 0.62 |
| 4~ | 6.79 ± 1.55 | 6.52 ± 1.6 | 4.98 ± 0.61 |
| 5~ | 6.60 ± 1.24 | 6.66 ± 1.83 | 5.01 ± 0.59 |
| 6~ | 6.96 ± 1.88 | 6.46 ± 1.47 | 5.00 ± 0.53 |
| 11~ | 6.91 ± 1.71 | 6.58 ± 1.44 | 5.09 ± 0.55 |
| 16~ | 6.99 ± 1.63 | 6.53 ± 1.65 | 5.23 ± 0.64 |
| 21~ | 6.56 ± 1.41 | 6.97 ± 1.65 | 5.10 ± 0.58 |
| Basic Information | LS-SCZ + T2DM (n = 121) | LS-SCZ (n = 368) | χ2 | p | |
|---|---|---|---|---|---|
| Age | ≤39 | 2 (1.65) | 41 (11.14) | 22.244 | <0.001 |
| 40~ | 8 (6.61) | 66 (17.93) | |||
| 50~ | 42 (34.71) | 98 (26.63) | |||
| 60~ | 48 (39.67) | 112 (30.43) | |||
| ≥70 | 21 (17.36) | 51 (13.86) | |||
| Duration of hospitalization | 1~ | 5 (4.13) | 26 (7.07) | 46.258 | <0.001 |
| 5~ | 28 (23.14) | 103 (27.99) | |||
| 10~ | 31 (25.62) | 171 (46.47) | |||
| 15~ | 34 (28.10) | 52 (14.13) | |||
| ≥20 | 23 (19.01) | 16 (4.35) | |||
| ABSI | Q1 (<0.072) | 25 (20.66) | 98 (26.63) | 2.868 | 0.412 |
| Q2 (0.072~0.076) | 28 (23.14) | 94 (25.54) | |||
| Q3 (0.077~0.081) | 33 (27.27) | 89 (24.18) | |||
| Q4 (>0.081) | 35 (28.93) | 87 (23.64) | |||
| BRI | Q1 (<3.475) | 20 (16.53) | 103 (27.99) | 13.601 | 0.004 |
| Q2 (3.475~4.324) | 24 (19.83) | 98 (26.63) | |||
| Q3 (4.325~5.306) | 35 (28.93) | 87 (23.64) | |||
| Q4 (>5.306) | 42 (34.71) | 80 (21.74) | |||
| Family history of diabetes | No | 112 (92.56) | 363 (98.64) | 12.101 | 0.001 |
| Yes | 9 (7.44) | 5 (1.36) | |||
| Comorbidities of hypertension | No | 67 (55.37) | 302 (82.07) | 35.038 | <0.001 |
| Yes | 54 (44.63) | 66 (17.93) | |||
| Daily meditation time | <8 | 86 (71.07) | 298 (80.98) | 5.297 | 0.021 |
| ≥8 | 35 (28.93) | 70 (19.02) | |||
| Factors | Wald | OR (95%CI) | p | |
|---|---|---|---|---|
| Age | ≤39 | 13.058 | 1.000 | |
| 40~ | 0.521 | 1.86 (0.345~10.676) | 0.470 | |
| 50~ | 6.341 | 7.056 (1.542~32.29) | 0.012 | |
| 60~ | 4.947 | 5.638 (1.228~25.882) | 0.026 | |
| ≥70 | 3.261 | 4.339 (0.882~21.343) | 0.071 | |
| Duration of hospitalization | 1~ | 34.289 | 1.000 | |
| 5~ | 0.005 | 0.959 (0.313~2.943) | 0.942 | |
| 10~ | 0.562 | 0.656 (0.218~1.974) | 0.453 | |
| 15~ | 1.832 | 2.183 (0.705~6.759) | 0.176 | |
| ≥20 | 7.984 | 5.978 (1.729~20.665) | 0.005 | |
| BRI | Q1 (<3.475) | 7.915 | ||
| Q2 (3.475~4.324) | 0.001 | 1.013 (0.487~2.108) | 0.973 | |
| Q3 (4.325~5.306) | 3.116 | 1.862 (0.934~3.712) | 0.078 | |
| Q4 (>5.306) | 4.631 | 2.129 (1.07~4.238) | 0.031 | |
| Family history of diabetes | No | 1.000 | ||
| Yes | 10.171 | 9.314 (2.363~36.704) | 0.001 | |
| Comorbidities of hypertension | No | 1.000 | ||
| Yes | 15.188 | 2.798 (1.668~4.693) | <0.001 | |
| Daily meditation time | <8 | 1.000 | ||
| ≥8 | 3.442 | 1.673 (0.971~2.883) | 0.064 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sun, Y.; Liu, B.; Jiang, T.; Guo, Y.; Xia, Y.; Cao, Z.; Fang, H.; Yang, Y.; Sun, X. Genistein Reduces the Risk of Diabetes in Long-Term Hospitalized Schizophrenic Patients. Behav. Sci. 2026, 16, 21. https://doi.org/10.3390/bs16010021
Sun Y, Liu B, Jiang T, Guo Y, Xia Y, Cao Z, Fang H, Yang Y, Sun X. Genistein Reduces the Risk of Diabetes in Long-Term Hospitalized Schizophrenic Patients. Behavioral Sciences. 2026; 16(1):21. https://doi.org/10.3390/bs16010021
Chicago/Turabian StyleSun, Yiying, Bin Liu, Tingting Jiang, Yi Guo, Ying Xia, Zhicheng Cao, Haiping Fang, Yi Yang, and Xirong Sun. 2026. "Genistein Reduces the Risk of Diabetes in Long-Term Hospitalized Schizophrenic Patients" Behavioral Sciences 16, no. 1: 21. https://doi.org/10.3390/bs16010021
APA StyleSun, Y., Liu, B., Jiang, T., Guo, Y., Xia, Y., Cao, Z., Fang, H., Yang, Y., & Sun, X. (2026). Genistein Reduces the Risk of Diabetes in Long-Term Hospitalized Schizophrenic Patients. Behavioral Sciences, 16(1), 21. https://doi.org/10.3390/bs16010021

