Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = prostaglandin fever

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1812 KiB  
Article
Systemic Metabolic Alterations Induced by Etodolac in Healthy Individuals
by Rajaa Sebaa, Reem H. AlMalki, Hatouf Sukkarieh, Lina A. Dahabiyeh, Maha Al Mogren, Tawfiq Arafat, Ahmed H. Mujamammi, Essa M. Sabi and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(8), 1155; https://doi.org/10.3390/ph18081155 - 4 Aug 2025
Viewed by 173
Abstract
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. [...] Read more.
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. While its pharmacological effects are well known, the broader metabolic impact and potential mechanisms underlying improved clinical outcomes remain underexplored. Untargeted metabolomics, which profiles the metabolome without prior selection, is an emerging tool in clinical pharmacology for elucidating drug-induced metabolic changes. In this study, untargeted metabolomics was applied to investigate metabolic changes following a single oral dose of etodolac in healthy male volunteers. By analyzing serial blood samples over time, we identified endogenous metabolites whose concentrations were positively or inversely associated with the drug’s plasma levels. This approach provides a window into both therapeutic pathways and potential off-target effects, offering a promising strategy for early-stage drug evaluation and multi-target discovery using minimal human exposure. Methods: Thirty healthy participants received a 400 mg dose of Etodolac. Plasma samples were collected at five time points: pre-dose, before Cmax, at Cmax, after Cmax, and 36 h post-dose (n = 150). Samples underwent LC/MS-based untargeted metabolomics profiling and pharmacokinetic analysis. A total of 997 metabolites were significantly dysregulated between the pre-dose and Cmax time points, with 875 upregulated and 122 downregulated. Among these, 80 human endogenous metabolites were identified as being influenced by Etodolac. Results: A total of 17 metabolites exhibited time-dependent changes closely aligned with Etodolac’s pharmacokinetic profile, while 27 displayed inverse trends. Conclusions: Etodolac influences various metabolic pathways, including arachidonic acid metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids. These selective metabolic alterations complement its COX-2 inhibition and may contribute to its anti-inflammatory effects. This study provides new insights into Etodolac’s metabolic impact under healthy conditions and may inform future therapeutic strategies targeting inflammation. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

9 pages, 616 KiB  
Article
The Utilization of Acetaminophen for Managing PGE1-Induced Fever in Neonates with Critical Congenital Heart Disease
by Başak Kaya, Hasan Akduman, Dilek Dilli, Özkan Kaya, Rumeysa Çitli and Ayşegül Zenciroğlu
Children 2024, 11(12), 1547; https://doi.org/10.3390/children11121547 - 20 Dec 2024
Viewed by 1108
Abstract
Introduction: We aimed to retrospectively evaluate the use of acetaminophen, which may be a risk factor for the ductal canal, in the treatment of fever due to prostaglandin E1 (PGE1) infusion in newborns with critical congenital heart disease (CCHD). Methods: The study included [...] Read more.
Introduction: We aimed to retrospectively evaluate the use of acetaminophen, which may be a risk factor for the ductal canal, in the treatment of fever due to prostaglandin E1 (PGE1) infusion in newborns with critical congenital heart disease (CCHD). Methods: The study included newborns who were followed-up in our neonatal intensive care unit with the diagnosis of critical congenital heart disease, developed fever due to PGE1 infusion and had acetaminophen administered for antipyretic treatment. The patent ductus arteriosus diameters of the patients were evaluated by echocardiographic imaging before intravenous acetaminophen treatment and at the end of the day of acetaminophen treatment. Results: PGE1 fever was observed in 10 (6%) of 156 infants with ductus-dependent congenital heart disease. Intravenous acetaminophen treatment administered as an antipyretic in these infants did not cause the narrowing or closure of the ductal canal diameter, which would lead to clinical decompensation if it was closed, and the patients remained hemodynamically stable until surgery. Conclusions: It can be considered that controlled and rapidly administered intravenous acetaminophen therapy in the management of fever in neonates with congenital heart disease who develop fever as a side effect of high-dose intravenous PGE1 infusion therapy (≥0.3 mcg/kg/min) may prevent hemodynamic decompensation in these critically ill infants, and as a secondary outcome, it can be speculated that avoiding rapid daily increases in PGE1 maintenance infusion doses may be necessary to limit the number of paracetamol administrations in these infants. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

21 pages, 6702 KiB  
Article
The Effect of the Root Bark of Lycium chinense (Lycii Radicis Cortex) on Experimental Periodontitis and Alveolar Bone Loss in Sprague-Dawley Rats
by Jinwon Yang, Hyosun Song, Jeongjun Lee, Hunsuk Chung, Young-Sam Kwon, Kyung-Hwan Jegal, Jae-Kwang Kim and Sae-Kwang Ku
Antioxidants 2024, 13(11), 1332; https://doi.org/10.3390/antiox13111332 - 31 Oct 2024
Cited by 2 | Viewed by 1479
Abstract
Lycii Radicis Cortex (LRC), the dried root bark of Lycium chinese Mill., has traditionally been used as a medicinal herb in East Asia to treat fever and hyperhidrosis. In the present study, we investigated the effects of LRC extract on ligation-induced experimental periodontitis [...] Read more.
Lycii Radicis Cortex (LRC), the dried root bark of Lycium chinese Mill., has traditionally been used as a medicinal herb in East Asia to treat fever and hyperhidrosis. In the present study, we investigated the effects of LRC extract on ligation-induced experimental periodontitis and associated alveolar bone loss in rats. Twenty-four hours after ligation placement, LRC was orally administered once daily for 10 days. Firstly, LRC administration inhibited anaerobic bacterial proliferation and inflammatory cell infiltration in gingival tissues. Additionally, LRC exhibited anti-inflammatory effects by reducing the expression of inflammatory mediators, including prostaglandin E2, interleukin-1β, and tumor necrosis factor-α. LRC treatment also downregulated mRNA expression of these inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting the mitogen-activated protein kinases and nuclear factor-κB (NF-κB) signaling pathways. Furthermore, LRC showed an antioxidant effect by decreasing the malondialdehyde level and inducible nitric oxide synthase activity in gingival tissues. Moreover, LRC effectively prevented the connective tissue degradation by inhibiting matrix metalloproteinase-8 expression and the loss of collagen-occupied areas in gingival tissues. LRC also decreased the receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) ratio, as well as the number and occupied areas of osteoclasts on the alveolar bone surface, thereby inhibiting alveolar bone loss. In summary, these findings suggest that LRC is a promising medicinal herb for alleviating periodontitis and related alveolar bone loss through its antimicrobial, anti-inflammatory, and antioxidant properties. Full article
(This article belongs to the Special Issue Effect of Dietary Antioxidants in Chronic Disease Prevention)
Show Figures

Figure 1

23 pages, 6726 KiB  
Article
Serum Metabolomics and NF-κB Pathway Analysis Revealed the Antipyretic Mechanism of Ellagic Acid on LPS-Induced Fever in Rabbits
by Feng-Feng Xie, Li-Ba Xu, Hua Zhu, Xiu-Qi Yu, Lin-Yu Deng, Hui-Zhen Qin and Si Lin
Metabolites 2024, 14(8), 407; https://doi.org/10.3390/metabo14080407 - 25 Jul 2024
Cited by 1 | Viewed by 1902
Abstract
Fever is one of the most common clinical conditions and is characterized by pyrogenic infection, malignancy, inflammation, and tissue damage, among others. Ellagic acid (EA) can inhibit the expression of related proteins on the pathway by blocking the nuclear factor kappa-B(NF-κB) signaling pathway, [...] Read more.
Fever is one of the most common clinical conditions and is characterized by pyrogenic infection, malignancy, inflammation, and tissue damage, among others. Ellagic acid (EA) can inhibit the expression of related proteins on the pathway by blocking the nuclear factor kappa-B(NF-κB) signaling pathway, inhibit the levels of pro-inflammatory factors interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), increase the level of anti-inflammatory factor IL-10, and effectively alleviate inflammatory symptoms. In addition, EA can also reduce the levels of malondialdehyde(MDA) and nitric oxide(NO) in the body, increase the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase(CAT), scavenge oxidative free radicals, inhibit lipid oxidation, and achieve antipyretic and anti-inflammatory effects. The purpose of this study was to establish the relationship between EA and various inflammatory markers, such as TNF-α, IL-6, IL-1β, prostaglandin E2(PGE2), and cyclic adenosine monophosphate(cAMP), and clarify the mechanism of the cyclooxidase-2(COX-2)/NF-κB signaling pathway. Combined with the metabolomics analysis, our study revealed the effects of EA on multiple endogenous biomarkers, reflecting the characteristics of a multi-component, multi-target, and multi-pathway mechanism. Compared to lipopolysaccharide (LPS)- treated animals, subsequent administration of EA significantly lowered the LPS-induced rectal temperature increase (p < 0.05 or p < 0.01), significantly increased serum SOD and GSH levels (p < 0.05 or p < 0.01), and significantly decreased serum MDA, IL-1β, IL-6, and TNF-α levels (p < 0.05 or p < 0.01). In addition, compared to LPS-treated animals, subsequent administration of EA significantly decreased cerebrospinal fluid cAMP and PGE2 levels (p < 0.05 or p < 0.01), significantly decreased cAMP, significantly increased 5-HT levels (p < 0.05 or p < 0.01), and significantly down-regulated p-NF-κB p65 and COX-2 protein levels in the hypothalamus. Subsequent gas chromatography mass spectrometry(GC-MS) metabolite analysis indicated that 12 differential metabolites were detected in serum isolated 4 h after LPS treatment, and 10 differential metabolites were detected in serum collected 7 h after LPS treatment. Next, Pearson correlation analysis was used to systematically characterize the relationship between the identified metabolites and TNF-α, IL-6, MDA, SOD, PGE2, and cAMP. The levels of propionic acid, pyridine, and L-valine were up-regulated by EA, which inhibited the expression of MDA, IL-1β, and TNF-α and increased the activity of GSH. The levels of inositol, urea, and 2-monopalmitin were down-regulated by EA, which inhibited the expression of MDA, IL-1β, and TNF-α, increased the activity of SOD and GSH, reduced the inflammatory response, and alleviated the oxidative stress state. Combined with the results of the metabolic pathway analysis, we suggest that the pathways of the galactose metabolism, synthesis and degradation of ketone bodies, as well as ascorbic acid and aldehyde acid metabolism are closely related to the antipyretic and anti-inflammatory effects of EA. Our study established the relationship between EA and various inflammatory markers, such as TNF-α, IL-6, IL-1β, PGE2, and cAMP, and clarified the mechanism of the COX-2/NF-κB signaling pathway. Combined with the metabolomics analysis, our study revealed the effects of EA on multiple endogenous biomarkers, reflecting the characteristics of a multi-component, multi-target, and multi-pathway mechanism. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

17 pages, 3496 KiB  
Article
Dietary Walnuts Prevented Indomethacin-Induced Gastric Damage via AP-1 Transcribed 15-PGDH, Nrf2-Mediated HO-1, and n-3 PUFA-Derived Resolvin E1
by Jong Min Park and Ki Baik Hahm
Int. J. Mol. Sci. 2024, 25(13), 7239; https://doi.org/10.3390/ijms25137239 - 30 Jun 2024
Viewed by 1603
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), the most highly prescribed drugs in the world for the treatment of pain, inflammation, and fever, cause gastric mucosal damage, including ulcers, directly or indirectly, by which the development of GI-safer (-sparing) NSAIDs relates to unmet medical needs. This [...] Read more.
Non-steroidal anti-inflammatory drugs (NSAIDs), the most highly prescribed drugs in the world for the treatment of pain, inflammation, and fever, cause gastric mucosal damage, including ulcers, directly or indirectly, by which the development of GI-safer (-sparing) NSAIDs relates to unmet medical needs. This study aimed to document the preventive effects of walnut polyphenol extracts (WPEs) against NSAID-induced gastric damage along with the molecular mechanisms. RGM-1 gastric mucosal cells were administered with indomethacin, and the expressions of the inflammatory mediators between indomethacin alone or a combination with WPEs were compared. The expressions of the inflammatory mediators, including COX-1 and COX-2, prostaglandin E2, 15-hydroxyprostaglandin dehydrogenase (15-PGDH), and antioxidant capacity, were analyzed by Western blot analysis, RT-PCR, and ELISA, respectively. HO-1, Nrf-2, and keap1 were investigated. The in vivo animal models were followed with in vitro investigations. The NSAIDs increased the expression of COX-2 and decreased COX-1 and 15-PGDH, but the WPEs significantly attenuated the NSAID-induced COX-2 expression. Interestingly, the WPEs induced the expression of 15-PGDH. By using the deletion constructs of the 15-PGDH promoter, we found that c-Jun is the most essential determinant of the WPE-induced up-regulation of 15-PGDH expression. We confirmed that the knockdown of c-Jun abolished the ability of the WPEs to up-regulate the 15-PGDH expression. In addition, the WPEs significantly increased the HO-1 expression. The WPEs increased the nuclear translocation of Nrf2 by Keap-1 degradation, and silencing Nrf2 markedly reduced the WPE-induced HO-1 expression. We found that the WPE-induced HO-1 up-regulation was attenuated in the cells harboring the mutant Keap1, in which the cysteine 151 residue was replaced by serine. These in vitro findings were exactly validated in indomethacin-induced gastric rat models. Daily walnut intake can be a promising nutritional supplement providing potent anti-inflammatory, antioxidative, and mucosa-protective effects against NSAID-induced GI damage. Full article
Show Figures

Figure 1

31 pages, 7141 KiB  
Article
Unraveling the Mechanism of Xiaochaihu Granules in Alleviating Yeast-Induced Fever Based on Network Analysis and Experimental Validation
by Xiuli Chen, Hao Wu, Peibo Li, Wei Peng, Yonggang Wang, Xiaoli Zhang, Ao Zhang, Jinliang Li, Fenzhao Meng, Weiyue Wang and Weiwei Su
Pharmaceuticals 2024, 17(4), 475; https://doi.org/10.3390/ph17040475 - 8 Apr 2024
Cited by 4 | Viewed by 3069
Abstract
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid [...] Read more.
Xiaochaihu granules (XCHG) are extensively used to treat fever. Nevertheless, the underlying mechanism remains elusive. This study aimed to explore the potential of XCHG in mitigating yeast-induced fever and the underlying metabolic pathways. The chemical composition of XCHG was ascertained using ultra-fast liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS), followed by integrated network analysis to predict potential targets. We then conducted experimental validation using pharmacological assays and metabolomics analysis in a yeast-induced mouse fever model. The study identified 133 compounds in XCHG, resulting in the development of a comprehensive network of herb–compound–biological functional modules. Subsequently, molecular dynamic (MD) simulations confirmed the stability of the complexes, including γ-aminobutyric acid B receptor 2 (GABBR2)–saikosaponin C, prostaglandin endoperoxide synthases (PTGS2)–lobetyolin, and NF-κB inhibitor IκBα (NFKBIA)–glycyrrhizic acid. Animal experiments demonstrated that XCHG reduced yeast-induced elevation in NFKBIA’s downstream regulators [interleukin (IL)-1β and IL-8], inhibited PTGS2 activity, and consequently decreased prostaglandin E2 (PGE2) levels. XCHG also downregulated the levels of 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (GABA), corticotropin releasing hormone (CRH), and adrenocorticotrophin (ACTH). These corroborated the network analysis results indicating XCHG’s effectiveness against fever in targeting NFKBIA, PTGS2, and GABBR2. The hypothalamus metabolomics analysis identified 14 distinct metabolites as potential antipyretic biomarkers of XCHG. In conclusion, our findings suggest that XCHG alleviates yeast-induced fever by regulating inflammation/immune responses, neuromodulation, and metabolism modules, providing a scientific basis for the anti-inflammatory and antipyretic properties of XCHG. Full article
(This article belongs to the Special Issue The Mode of Action of Herbal Medicines and Natural Products)
Show Figures

Figure 1

15 pages, 4649 KiB  
Article
Trade-Offs among Immune Mechanisms: Bacterial-Challenged Spodoptera frugiperda Larvae Reduce Nodulation Reactions during Behavioral Fever
by Lei Zhang, Cynthia L. Goodman, Joseph A. Ringbauer, Xingfu Jiang, Weixiang Lv, Dianjie Xie, Tamra Reall and David Stanley
Insects 2023, 14(11), 864; https://doi.org/10.3390/insects14110864 - 9 Nov 2023
Cited by 4 | Viewed by 1763
Abstract
Insect innate immunity is composed of cellular and humoral reactions, the former acting via circulating hemocytes and the latter via immune signaling that lead to the production of antimicrobial peptides and phenol oxidase-driven melanization. Cellular immunity involves direct interactions between circulating hemocytes and [...] Read more.
Insect innate immunity is composed of cellular and humoral reactions, the former acting via circulating hemocytes and the latter via immune signaling that lead to the production of antimicrobial peptides and phenol oxidase-driven melanization. Cellular immunity involves direct interactions between circulating hemocytes and invaders; it includes internalization and killing microbes (phagocytosis) and formation of bacterial-laden microaggregates which coalesce into nodules that are melanized and attached to body walls or organs. Nodulation can entail investing millions of hemocytes which must be replaced. We hypothesized that biologically costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae of fall armyworms, Spodoptera frugiperda, that were allowed to fever. We tested our hypothesis by infecting larvae with the Gram-negative bacterium, Serratia marcescens, placing them in thermal gradients (TGs) and recording their selected body temperatures. While control larvae selected about 30 °C, the experimental larvae selected up 41 °C. We found that 4 h fevers, but not 2, 6 or 24 h fevers, led to increased larval survival. Co-injections of S. marcescens with the prostaglandin (PG) biosynthesis inhibitor indomethacin (INDO) blocked the fevers, which was reversed after co-injections of SM+INDO+Arachidonic acid, a precursor to PG biosynthesis, confirming that PGs mediate fever reactions. These and other experimental outcomes support our hypothesis that costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae under appropriate conditions. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

14 pages, 692 KiB  
Review
Neurogenic Fever after Subarachnoid Hemorrhage in Animal Models: A Systematic Review
by Ernesto Migliorino, Francesco Nonino, Roberto Amici, Domenico Tupone and Raffaele Aspide
Int. J. Mol. Sci. 2023, 24(14), 11514; https://doi.org/10.3390/ijms241411514 - 15 Jul 2023
Cited by 1 | Viewed by 2682
Abstract
The observation of neurogenic fever resulting from subarachnoid hemorrhage (SAH) in animal models is a useful tool for the interpretation of its pathophysiology in humans, which is still a major challenge in the management of neurocritical patients. This systematic review aims to identify [...] Read more.
The observation of neurogenic fever resulting from subarachnoid hemorrhage (SAH) in animal models is a useful tool for the interpretation of its pathophysiology in humans, which is still a major challenge in the management of neurocritical patients. This systematic review aims to identify the prognostic factors and pathophysiological elements that determine the onset of neurogenic fever and its severity in animal models. In addition, our study aims to analyze which pharmacological treatments are most effective. All the articles available in Pubmed, Embase, and the Biological Science Collection until August 2021 concerning in vivo experimental studies on SAH animal models, including full texts and abstracts written in English and Italian, were considered. The risk of bias was assessed with SYRCLE’s Risk of Bias tool. In total, 81 records were retrieved; after excluding duplicates, 76 records were potentially relevant. A total of 64 articles was excluded after title and abstract screening. The remaining 12 studies were evaluated as full texts, and 6 other studies were excluded (SAH-induced animal studies without a body temperature assessment). In one study, body temperature was measured after SAH induction, but the authors did not report temperature recording. Therefore, only five studies met the search criteria. The high methodological heterogeneity (different animal species, different temperature measurement methods, and different methods of the induction of bleeding) prevented meta-analysis. Synthesis methodology without meta-analysis (SWiM) was used for data analysis. The total number of animals used as controls was 87 (23 rabbits, 32 mice, and 32 rats), while there were 130 animals used as interventions (54 rabbits, 44 mice, and 32 rats). The presence of blood in the subarachnoid space, particularly red blood cells, is responsible for neurogenic fever; the role of hemoglobin is unclear. The mechanism is apparently not mediated by prostaglandins. The autonomic nervous system innervating brown adipose tissue is undoubtedly implicated in the onset of neurogenic fever. The activation of the central adenosine-1 receptor is effective in controlling the temperature of animals with neurogenic fever (by inhibiting thermogenesis of brown adipose tissue). Full article
Show Figures

Figure 1

27 pages, 5318 KiB  
Article
Dysregulation of Immature Sertoli Cell Functions by Exposure to Acetaminophen and Genistein in Rodent Cell Models
by Maia Corpuz-Hilsabeck, Nicole Mohajer and Martine Culty
Cells 2023, 12(13), 1804; https://doi.org/10.3390/cells12131804 - 7 Jul 2023
Cited by 3 | Viewed by 2766
Abstract
Sertoli cells are essential for germ cell development and function. Their disruption by endocrine disrupting chemicals (EDCs) or drugs could jeopardize spermatogenesis, contributing to male infertility. Perinatal exposure to EDCs and acetaminophen (APAP) disrupts male reproductive functions in animals and humans. Infants can [...] Read more.
Sertoli cells are essential for germ cell development and function. Their disruption by endocrine disrupting chemicals (EDCs) or drugs could jeopardize spermatogenesis, contributing to male infertility. Perinatal exposure to EDCs and acetaminophen (APAP) disrupts male reproductive functions in animals and humans. Infants can be exposed simultaneously to the dietary soy phytoestrogen genistein (GEN) and APAP used for fever or pain relief. Our goal was to determine the effects of 10–100 µM APAP and GEN, alone or mixed, on immature Sertoli cells using mouse TM4 Sertoli cell line and postnatal-day 8 rat Sertoli cells, by measuring cell viability, proliferation, prostaglandins, genes and protein expression, and functional pathways. A value of 50 µM APAP decreased the viability, while 100 µM APAP and GEN decreased the proliferation. Sertoli cell and eicosanoid pathway genes were affected by GEN and mixtures, with downregulation of Sox9, Cox1, Cox2, and genes relevant for Sertoli cell function, while genes involved in inflammation were increased. RNA-seq analysis identified p53 and TNF signaling pathways as common targets of GEN and GEN mixture in both cell types. These results suggest that APAP and GEN dysregulate immature Sertoli cell function and may aid in elucidating novel EDC and drug targets contributing to the etiology of male infertility. Full article
Show Figures

Figure 1

9 pages, 2097 KiB  
Systematic Review
Diclofenac Sodium for Fever Control in Neurocritical Care: A Systematic Review
by Tommaso Rochat Negro, Michael Watchi, Hannah Wozniak, Jerome Pugin and Herve Quintard
J. Clin. Med. 2023, 12(10), 3443; https://doi.org/10.3390/jcm12103443 - 13 May 2023
Cited by 2 | Viewed by 12266
Abstract
Background: Fever is extremely common in neurocritical care patients and is independently associated with a worse outcome. Non-steroidal anti-inflammatory drugs (NSAIDs) lower the hypothalamic set point temperature through the inhibition of prostaglandin E2 synthesis, and they constitute a second line of pharmacological treatment [...] Read more.
Background: Fever is extremely common in neurocritical care patients and is independently associated with a worse outcome. Non-steroidal anti-inflammatory drugs (NSAIDs) lower the hypothalamic set point temperature through the inhibition of prostaglandin E2 synthesis, and they constitute a second line of pharmacological treatment for temperature control. This systematic review aims to evaluate the effectiveness of DCF in reducing body temperature and its effects on brain parameters. Methods: A comprehensive search of several databases was run in November 2022 in Ovid EBM (Evidence Based Medicine) Reviews, Cochrane library, Ovid Medline and Scopus (1980 onward). The outcome of interest included DCF control of body temperature and its impact on cerebral parameters. Results: A total of 113 titles were identified as potentially relevant. Six articles met eligible criteria and were reviewed. DCF induce a reduction in body temperature (MD, 1.10 [0.72, 1.49], p < 0.00001), a slight decrease in ICP (MD, 2.22 [−0.25, 4.68] IC 95%; p < 0.08) as well as in CPP and MAP (MD, 5.58 [0.43, 10.74] IC 95%; p < 0.03). The significant heterogeneity and possibility of publication bias reduces the strength of the available evidence. Conclusions: Diclofenac sodium is effective in reducing body temperature in patients with brain injury, but data in the literature are scarce and further studies are needed to evaluate the benefits of DCF. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

15 pages, 1178 KiB  
Review
Microbial and Host Metabolites at the Backstage of Fever: Current Knowledge about the Co-Ordinate Action of Receptors and Molecules Underlying Pathophysiology and Clinical Implications
by Luigi Santacroce, Marica Colella, Ioannis Alexandros Charitos, Marina Di Domenico, Raffaele Palmirotta and Emilio Jirillo
Metabolites 2023, 13(3), 461; https://doi.org/10.3390/metabo13030461 - 22 Mar 2023
Cited by 10 | Viewed by 6409
Abstract
Fever represents an elevation of body temperature, that exerts a protective effect against pathogens. Innate immune cells and neurons are implicated in the regulation of body temperature. Pathogen-associated molecular patterns, i.e., lipopolysaccharides from Gram-negative bacteria and peptidoglycan and lipoteichoic acid from Gram-positive bacteria [...] Read more.
Fever represents an elevation of body temperature, that exerts a protective effect against pathogens. Innate immune cells and neurons are implicated in the regulation of body temperature. Pathogen-associated molecular patterns, i.e., lipopolysaccharides from Gram-negative bacteria and peptidoglycan and lipoteichoic acid from Gram-positive bacteria are exogenous pyrogens, that bind to Toll-like receptors on immune and non-immune cells. The subsequent release of pro-inflammatory cytokines [interleukin-1 (IL-1), IL-6 and Tumor necrosis factor-alpha] and their passage through the brain trigger the febrile response. In fact, neurons of the pre-optic area produce prostaglandin E2 (PGE2), that, in turn, bind to the PGE2 receptors; thus, generating fever. Apart from classical non-steroidal anti-inflammatory drugs, i.e., aspirin and acetaminophen, various botanicals are currently used as antipyretic agents and, therefore, their mechanisms of action will be elucidated. Full article
Show Figures

Figure 1

19 pages, 2959 KiB  
Review
Development and Challenges of Diclofenac-Based Novel Therapeutics: Targeting Cancer and Complex Diseases
by Ayeman Amanullah, Arun Upadhyay, Rohan Dhiman, Sarika Singh, Amit Kumar, Dinesh Kumar Ahirwar, Ravi Kumar Gutti and Amit Mishra
Cancers 2022, 14(18), 4385; https://doi.org/10.3390/cancers14184385 - 9 Sep 2022
Cited by 32 | Viewed by 9883
Abstract
Diclofenac is a highly prescribed non-steroidal anti-inflammatory drug (NSAID) that relieves inflammation, pain, fever, and aches, used at different doses depending on clinical conditions. This drug inhibits cyclooxygenase-1 and cyclooxygenase-2 enzymes, which are responsible for the generation of prostaglandin synthesis. To improve current [...] Read more.
Diclofenac is a highly prescribed non-steroidal anti-inflammatory drug (NSAID) that relieves inflammation, pain, fever, and aches, used at different doses depending on clinical conditions. This drug inhibits cyclooxygenase-1 and cyclooxygenase-2 enzymes, which are responsible for the generation of prostaglandin synthesis. To improve current diclofenac-based therapies, we require new molecular systematic therapeutic approaches to reduce complex multifactorial effects. However, the critical challenge that appears with diclofenac and other drugs of the same class is their side effects, such as signs of stomach injuries, kidney problems, cardiovascular issues, hepatic issues, and diarrhea. In this article, we discuss why defining diclofenac-based mechanisms, pharmacological features, and its medicinal properties are needed to direct future drug development against neurodegeneration and imperfect ageing and to improve cancer therapy. In addition, we describe various advance molecular mechanisms and fundamental aspects linked with diclofenac which can strengthen and enable the better designing of new derivatives of diclofenac to overcome critical challenges and improve their applications. Full article
Show Figures

Figure 1

17 pages, 5828 KiB  
Article
Serum Metabolomics Based on GC-MS Reveals the Antipyretic Mechanism of Ellagic Acid in a Rat Model
by Fengfeng Xie, Liba Xu, Hua Zhu, Yinlan Li, Lizhen Nong, Yaling Chen, Yanfang Zeng and Sijie Cen
Metabolites 2022, 12(6), 479; https://doi.org/10.3390/metabo12060479 - 25 May 2022
Cited by 8 | Viewed by 3056
Abstract
Ellagic acid (EA) is a polyphenol dilactone that has been reported to have antipyretic, anti-inflammatory, anti-tumor, and antioxidant activities, but the mechanism of action has not been reported. In this study, serum metabolomics was used to explore the mechanism of EA on rat [...] Read more.
Ellagic acid (EA) is a polyphenol dilactone that has been reported to have antipyretic, anti-inflammatory, anti-tumor, and antioxidant activities, but the mechanism of action has not been reported. In this study, serum metabolomics was used to explore the mechanism of EA on rat fever induced by beer yeast, and to screen out marker metabolites to provide a reference for the antipyretic effect of EA. The acute fever model of male Sprague Dawley rats involved subcutaneous injection with 20% aqueous suspension of yeast (15 mL/kg) in their back. At the same time of modeling, EA was given orally by 10 mL/kg intragastric administration for treatment. During the experiment, the temperature and its change values of rats were recorded, and Interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), Prostaglandin E2 (PGE2), Cyclic Adenosine Monophosphate (cAMP), Superoxide Dismutase (SOD) and Malondialdehyde (MDA)—six physiological and biochemical indexes of rats—were detected after the experiment. In addition, the hypothalamus of each rat was analyzed by Western blot (WB), and the levels of Phospho Nuclear Factor kappa-B (P-NF-κB P65) and IkappaB-alpha (IKB-α) were detected. Then, the serum metabolites of rats in each group were detected and analyzed by gas chromatograph mass spectrometry and the multivariate statistical analysis method. Finally, when screening for differential metabolites, the potential target metabolic pathway of drug intervention was screened for through the enrichment analysis of differential metabolites. Pearson correlation analysis was used to systematically characterize the relationship between biomarkers and pharmacodynamic indicators. EA could reduce the temperature and its change value in yeast induced fever rats after 18 h (p < 0.05). The level of IL-6, TNF-α, PGE2, cAMP, SOD and MDA of the Model group (MG) increased significantly compared to the Normal group (NG) (p < 0.001) after EA treatment, while the levels of the six indexes in the serum and cerebrospinal fluid of yeast-induced rats decreased. The administration of yeast led to a significant increase in Hypothalamus P-NF-κB P65 and IKB-α levels. Treatment with EA led to a significant decrease in P-NF-κB P65 levels. Moreover, combined with VIP > 1 and p < 0.05 as screening criteria, the corresponding retention time and characteristic mass to charge ratio were compared with the NIST library, Match score > 80%, and a total of 15 differential metabolites were screened. EA administration significantly regulated 9 of 15 metabolites in rat serum. The 15 differential metabolites involved linoleic acid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, galactose metabolism, biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Pharmacodynamic correlation analysis was conducted between 15 different metabolites and six detection indexes. There was a significant correlation between 13 metabolites and six detection indexes. D-(−)-lactic acid, glycerin, phosphoric acid, 5-oxo-L-proline were negatively correlated with TNF-α, and p values were statistically significant except for L-tyrosine. In addition, glycerin was negatively correlated with IL-6, PGE2 and MDA, while phosphoric acid was negatively correlated with IL-6. In conclusion, EA may play an antipyretic anti-inflammatory role through the inhibition of the IKB-α/NF-κB signaling pathway and five metabolic pathways, which may contribute to a further understanding of the therapeutic mechanisms of the fever of EA. Full article
(This article belongs to the Topic Proteomics and Metabolomics in Biomedicine)
Show Figures

Figure 1

22 pages, 4505 KiB  
Article
Suppression of Oxidative Stress and Proinflammatory Cytokines Is a Potential Therapeutic Action of Ficus lepicarpa B. (Moraceae) against Carbon Tetrachloride (CCl4)-Induced Hepatotoxicity in Rats
by Senty Vun-Sang, Kenneth Francis Rodrigues, Urban J. A. Dsouza and Mohammad Iqbal
Molecules 2022, 27(8), 2593; https://doi.org/10.3390/molecules27082593 - 18 Apr 2022
Cited by 8 | Viewed by 2813
Abstract
Local tribes use the leaves of Ficus lepicarpa B. (Moraceae), a traditional Malaysian medicine, as a vegetable dish, a tonic, and to treat ailments including fever, jaundice and ringworm. The purpose of this study was to look into the possible therapeutic effects of [...] Read more.
Local tribes use the leaves of Ficus lepicarpa B. (Moraceae), a traditional Malaysian medicine, as a vegetable dish, a tonic, and to treat ailments including fever, jaundice and ringworm. The purpose of this study was to look into the possible therapeutic effects of F. lepicarpa leaf extract against carbon tetrachloride (CCl4)-induced liver damage in rats. The DPPH test was used to measure the antioxidant activity of plants. Gas chromatography-mass spectrometry was used for the phytochemical analysis (GCMS). Six groups of male Sprague-Dawley rats were subjected to the following treatment regimens: control group, CCl4 alone, F. lepicarpa 400 mg/kg alone, CCl4 + F. lepicarpa 100 mg/kg, CCl4 + F. lepicarpa 200 mg/kg and CCl4 + F. lepicarpa 400 mg/kg. The rats were euthanized after two weeks, and biomarkers of liver function and antioxidant enzyme status were assessed. To assess the extent of liver damage and fibrosis, histopathological and immunohistochemical examinations of liver tissue were undertaken. The total phenolic content and the total flavonoid content in methanol extract of F. lepicarpa leaves were 58.86 ± 0.04 mg GAE/g and 44.31 ± 0.10 mg CAE/g, respectively. F. lepicarpa’s inhibitory concentration (IC50) for free radical scavenging activity was reported to be 3.73 mg/mL. In a dose-related manner, F. lepicarpa was effective in preventing an increase in serum ALT, serum AST and liver MDA. Histopathological alterations revealed that F. lepicarpa protects against the oxidative stress caused by CCl4. The immunohistochemistry results showed that proinflammatory cytokines (tumour necrosis factor-α, interleukin-6, prostaglandin E2) were suppressed. The antioxidative, anti-inflammatory, and free-radical scavenging activities of F. lepicarpa can be related to its hepatoprotective benefits. Full article
Show Figures

Figure 1

14 pages, 2876 KiB  
Article
The Potential Antipyretic Mechanism of Ellagic Acid with Brain Metabolomics Using Rats with Yeast-Induced Fever
by Fengfeng Xie, Liba Xu, Hua Zhu, Yaling Chen, Yinlan Li, Lizhen Nong, Yanfang Zeng and Sijie Cen
Molecules 2022, 27(8), 2465; https://doi.org/10.3390/molecules27082465 - 11 Apr 2022
Cited by 12 | Viewed by 3672
Abstract
Fever is caused by an increase in the heat production process when the body is under the action of a heat source or the dysfunction of the temperature center. Ellagic acid (EA) is a polyphenol dilactone that has anti-inflammatory, anti-tumor, and antioxidant activities. [...] Read more.
Fever is caused by an increase in the heat production process when the body is under the action of a heat source or the dysfunction of the temperature center. Ellagic acid (EA) is a polyphenol dilactone that has anti-inflammatory, anti-tumor, and antioxidant activities. Male Sprague-Dawley rats were injected yeast to reproduce an experimental fever model (150 ± 20 g), and the rectal temperature and its change values were subsequently taken 19 h later; the excessive production of interleukin-1β (IL-1β) and prostaglandin2 (PGE2) induced by yeast was regulated to normal by EA administration. Rat brain metabolomics investigation of pyrexia and the antipyretic anti-inflammatory effect of EA was performed using Ultra-High-Performance Liquid Chromatography–Mass spectrometry (UPLC-MS). Twenty-six metabolites, as potential biomarkers, significantly altered metabolites that were found in pyretic rats, and eleven metabolites, as biomarkers of the antipyretic mechanism of EA, were significantly adjusted by EA to help relieve pyrexia, which was involved in glycerophospholipid metabolism and sphingolipid metabolism, etc. In conclusion, potential metabolic biomarkers in the brain shed light on the mechanism of EA’s antipyretic effects, mainly involving metabolic pathways, which may contribute to a further understanding of the therapeutic mechanisms of fever and therapeutic mechanism of EA. Full article
(This article belongs to the Topic Proteomics and Metabolomics in Biomedicine)
Show Figures

Figure 1

Back to TopTop