Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,930)

Search Parameters:
Keywords = properties of surface layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2151 KB  
Article
Shot Blasting for Enhancing Wear Resistance and Impact Resistance of SCMnH11 High-Manganese Steel
by Qilin Huang, Zihao Liu, Liang Hao and Te Hu
Metals 2025, 15(11), 1179; https://doi.org/10.3390/met15111179 (registering DOI) - 24 Oct 2025
Abstract
In this study, shot blasting was employed to enhance the wear resistance and impact toughness of SCMnH11 high-manganese steel. The steel was first fabricated via vacuum casting, followed by forging and water-toughening treatment. Subsequently, the steel was cut to the required dimensions using [...] Read more.
In this study, shot blasting was employed to enhance the wear resistance and impact toughness of SCMnH11 high-manganese steel. The steel was first fabricated via vacuum casting, followed by forging and water-toughening treatment. Subsequently, the steel was cut to the required dimensions using wire electrical discharge machining before the final shot blasting was performed. The influence of shot blasting duration on the microstructure and mechanical properties was investigated. Shot blasting introduced compressive residual stress and dislocations, resulting in the formation of numerous low-angle grain boundaries. As the shot blasting time increased, the surface grains were progressively refined. The surface hardness increased rapidly from an initial value of approximately 250 HV, reaching a maximum of 643 HV. After 60 min of shot blasting, the thickness of the surface hardened layer reached 600 μm; however, the surface hardness exhibited a trend of first increasing and then decreasing. In contrast, the wear resistance showed the opposite trend. Additionally, the dominant surface wear mechanism transitioned from adhesive wear in the heat-treated sample to abrasive wear in the shot-blasted samples. Compared to the heat-treated sample, the impact toughness of the samples subjected to 5 min and 60 min shot blasting was significantly enhanced. Correspondingly, the fracture mechanism shifted from predominantly ductile fracture to a mixed mode of ductile and cleavage fracture. In summary, shot blasting can effectively enhance the wear resistance and impact resistance of SCMnH11 steel. However, the selection of shot blasting duration is critical. Appropriate parameters can balance work hardening, compressive stress, and surface microcracks, thereby enabling the material to achieve an optimal combination of wear resistance and impact resistance. Full article
(This article belongs to the Section Metal Failure Analysis)
15 pages, 3438 KB  
Article
Changes in the Tribological and Mechanical Properties of Nimonic 90 Superalloy After Irradiation with Swift Xenon Ions
by Piotr Budzyński, Mariusz Kamiński, Zbigniew Surowiec and Marek Wiertel
Materials 2025, 18(21), 4876; https://doi.org/10.3390/ma18214876 (registering DOI) - 24 Oct 2025
Abstract
The article presents the results of research on the effect of 160 MeV xenon ions irradiation on the mechanical and tribological properties of the Nimonic 90 superalloy. The alloy samples were irradiated with xenon ion fluences ranging from 1 × 1014 to [...] Read more.
The article presents the results of research on the effect of 160 MeV xenon ions irradiation on the mechanical and tribological properties of the Nimonic 90 superalloy. The alloy samples were irradiated with xenon ion fluences ranging from 1 × 1014 to 5 × 1014 Xe24+/cm2 at a temperature of 60 °C. The investigations revealed significant changes in the crystal structure of the material, including the formation of new phases and partial amorphisation of the surface layer, particularly pronounced at the highest irradiation fluence. Measurements of microhardness, coefficient of friction, and wear revealed a deterioration in the mechanical and tribological properties of the samples irradiated with fluences of 1.0 and 2.5 × 1014 Xe24+ ions/cm2, attributed to the formation of radiation-induced defects. Increased friction and wear were observed at depths greater than the predicted range of xenon ions, indicating the occurrence of a long-range effect. After irradiation with a 5.0 × 1014 Xe24+ ions/cm2 fluence, a radiation annealing effect was observed, leading to a partial reduction in the earlier damage and resulting in improved microhardness and reduced wear. To our knowledge, this is the first observation of a radiation annealing effect under these specific irradiation and test conditions. The findings suggest limitations in the application of the Nimonic 90 superalloy in environments exposed to intense ionizing radiation, such as nuclear reactors. Full article
Show Figures

Figure 1

21 pages, 5467 KB  
Article
Study on Seismic Behavior of Earthquake-Damaged Joints Retrofitted with CFRP in Hybrid Reinforced Concrete–Steel Frames
by Xiaotong Ma, Tianxiang Guo, Yuxiao Xing, Ruize Qin, Huan Long, Chao Bao, Fusheng Cao and Ruixiao Hong
Materials 2025, 18(21), 4857; https://doi.org/10.3390/ma18214857 - 23 Oct 2025
Abstract
Mixed structures with lightweight steel added stories are particularly vulnerable to damage and failure at the joints during seismic events. To evaluate the secondary seismic behavior of the joints in lightweight steel added stories after seismic damage repair, a low-cycle load test was [...] Read more.
Mixed structures with lightweight steel added stories are particularly vulnerable to damage and failure at the joints during seismic events. To evaluate the secondary seismic behavior of the joints in lightweight steel added stories after seismic damage repair, a low-cycle load test was conducted in this study. Following the initial damage, carbon fiber-reinforced polymer (CFRP) was applied for reinforcement, along with epoxy resin for the repair of concrete cracks. The experimental analysis focused on the structural deformation, failure characteristics, and energy dissipation capacity in both the original and repaired joint states. On the basis of the experimental findings, finite element analysis was carried out to examine the influence of varying CFRP layer configurations on the seismic performance of the repaired joints. The results revealed a significant change in the damage pattern of the repaired specimen, shifting from secondary surface damage to significant concrete deterioration localized at the bottom of the column. The failure mechanism was characterized by the CFRP-induced tensile forces acting on the concrete at the column base, following considerable deformation at the beam’s end. When compared to the original joint, the repaired joints exhibited markedly improved performance, with a 33% increase in horizontal ultimate strength and an 85% increase in energy dissipation capacity at failure. Additionally, the rotation angle between the beams and columns was effectively controlled. Joints repaired with two layers of CFRP demonstrated superior performance in contrast to those with a single layer. However, once the repaired joints met the required strength, further increasing the number of CFRP layers had a minimal influence on the mechanical properties of the joints. The proposed CFRP-based seismic retrofit method, which accounts for the strength degradation of concrete in damaged joints due to earthquake-induced damage, has proven to be both feasible and straightforward, offering an easily implementable solution to improve the seismic behavior of structures. Full article
Show Figures

Figure 1

21 pages, 2521 KB  
Article
Encapsulation of rhBMP-2 as a Strategy for Dose Shielding Whilst Preserving Structural Integrity, Bioactivity, and Osteogenic Potential
by Charles Matthews, Elisa Tarsitano, Sejal Odedra, Whitney Holden, Dhanaraman Thillai Villalan, Sina Kavalakatt, Kalhari Silva, Laura-Marie A. Zimmermann and John von Benecke
Processes 2025, 13(11), 3395; https://doi.org/10.3390/pr13113395 - 23 Oct 2025
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is widely used to promote bone regeneration. However, conventional surface-attached delivery on absorbable collagen sponges causes a rapid burst release, excessive inflammation, and suboptimal healing. To overcome these limitations, we developed a thermally controlled Poly(DL-lactide-co-glycolide) (PDL [...] Read more.
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is widely used to promote bone regeneration. However, conventional surface-attached delivery on absorbable collagen sponges causes a rapid burst release, excessive inflammation, and suboptimal healing. To overcome these limitations, we developed a thermally controlled Poly(DL-lactide-co-glycolide) (PDLLGA) encapsulation system, designed to stabilize rhBMP-2 and enable controlled release. rhBMP-2 was incorporated in PDLLGA pellets using the hot-melt extrusion of a lyophilized mixture containing poloxamer 407 and hydroxypropyl-β-cyclodextrin, and terminal sterilization (X-ray irradiation). The released rhBMP-2 maintained its molecular integrity after sterilization and remained stable for up to 732 days in storage, as confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis (CE). Further, high-affinity binding between released rhBMP-2 and BMPR-IA was confirmed by bio-layer interferometry (BLI), and the released protein induced a robust in vitro ALP response, confirming preserved osteogenic activity. Our encapsulation approach for rhBMP-2 using PDLLGA, including the combination product with β-TCP (LDGraft; Locate Bio, Nottingham, UK), provides a stable and bioactive rhBMP-2 delivery strategy with inherent dose-shielding properties, supporting safe, controlled, and effective bone regeneration therapies. Full article
(This article belongs to the Special Issue Pharmaceutical Development and Bioavailability Analysis, 2nd Edition)
Show Figures

Figure 1

31 pages, 8104 KB  
Review
Recent Advances in Triboelectric Materials for Active Health Applications
by Chang Peng, Yuetong Lin, Zhenyu Jiang, Yiping Liu, Licheng Zhou, Zejia Liu, Liqun Tang and Bao Yang
Electron. Mater. 2025, 6(4), 16; https://doi.org/10.3390/electronicmat6040016 - 23 Oct 2025
Abstract
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the [...] Read more.
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the efficiency and reliability of triboelectric devices. In the context of active health, triboelectric materials not only serve as the core functional layers for self-powered sensing but also enable real-time physiological monitoring, motion tracking, and human–machine interaction by directly transducing biomechanical signals into electrical information. Soft triboelectric sensors exhibit high sensitivity, wide operational ranges, excellent biocompatibility, and wearability, making them highly promising for active health monitoring applications. Despite these advantages, challenges remain in enhancing surface charge density, achieving effective signal multiplexing, and ensuring long-term stability. This review provides a comprehensive overview of triboelectric mechanisms, working modes, influencing factors, performance enhancement strategies, and wearable health applications. Finally, it systematically summarizes the key improvement approaches and future development directions of triboelectric materials for active health, offering valuable guidance for advancing wearable self-powered biosensors. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

27 pages, 3092 KB  
Review
The Multi-Conductivity Clausius–Mossotti Factor as an Electrophysiology Rosetta Stone: Dielectrophoresis, Membrane Potential and Zeta Potential
by Michael Pycraft Hughes
Micromachines 2025, 16(11), 1200; https://doi.org/10.3390/mi16111200 - 23 Oct 2025
Abstract
Dielectrophoresis (DEP) has been used for decades to estimate the passive electrical properties of cells. However, the body of work on cell electrophysiology derived from Clausius–Mossotti analysis of DEP-derived data pales to insignificance against the wider backdrop of cell electrophysiology based on the [...] Read more.
Dielectrophoresis (DEP) has been used for decades to estimate the passive electrical properties of cells. However, the body of work on cell electrophysiology derived from Clausius–Mossotti analysis of DEP-derived data pales to insignificance against the wider backdrop of cell electrophysiology based on the Goldman–Hodgkin–Katz equation measured by patch clamp, which focuses on membrane potential Vm—a parameter which does not appear in the Clausius–Mossotti model—and values of patch clamp-derived membrane conductance which, shorn of double-layer conductivity, are often orders of magnitude lower than those derived from DEP. Conversely, the body of work on DEP analysis is more substantial than that reporting the electrical properties of the extracellular (ζ) potential. To address this, several studies have recently been published into the interconnections between the electrical properties determined by the Clausius–Mossotti model, Vm, and ζ-potential, which analyzed the effect of varying the suspending medium conductivity over a wide range, from below 50 mSm−1 to above 1.5 Sm−1. The results of these studies identified relationships between the cytoplasm conductivity, Vm, membrane conductance and capacitance, surface conductance, whole-cell resistance, and ζ-potential. Significantly, many of these relationships only become apparent when analyzed as a function of the conductivity of the suspending medium. This paper assembles these interconnections, using several separate studies approaching different parameter connections, to draw together a set of equations which collectively form a “cellular electrome”. This demonstrates that analysis of the Clausius–Mossotti factor across multiple conductivities allows determination of not only passive electrical properties, but also the membrane and ζ-potential, and accurately predicts DEP behavior at higher conductivity for the first time. Full article
(This article belongs to the Special Issue Electrokinetic Principles in Biological and Biomedical Systems)
Show Figures

Figure 1

25 pages, 8048 KB  
Article
Comparative Study of the Tribological Properties of MoSe2 Coatings Under Dry and Oil-Lubricated Sliding Conditions
by Saad Alshammari, Terence Harvey and Shuncai Wang
Lubricants 2025, 13(11), 467; https://doi.org/10.3390/lubricants13110467 - 23 Oct 2025
Abstract
MoSe2 is considered one of the most promising low-friction coatings for tribological applications due to its exceptionally low sensitivity to air humidity. However, knowledge of its tribological performance, especially in combination with oil lubrication, is still very limited. In this study, the [...] Read more.
MoSe2 is considered one of the most promising low-friction coatings for tribological applications due to its exceptionally low sensitivity to air humidity. However, knowledge of its tribological performance, especially in combination with oil lubrication, is still very limited. In this study, the tribological properties of MoSe2 coatings deposited by magnetron sputtering were investigated using a reciprocating pin-on-flat tribometer against steel balls under both dry and PAO4-lubricated sliding conditions. The worn surfaces of the coatings and their counterparts were analyzed by profilometry, Raman spectroscopy, and scanning and transmission electron microscopy. Under dry lubrication, the coatings exhibited low friction (0.054), which was attributed to the combined effects of a lubricious transfer layer forming on the steel ball and a crystalline MoSe2 tribolayer in the coating wear track, with MoSe2 basal planes aligned parallel to the sliding direction. In contrast, under oil lubrication, the absence of a transfer layer on the ball and a crystalline tribolayer in the coating wear track resulted in higher friction (0.101). This high friction was accompanied by a 27% reduction in the wear rate due to the presence of PAO4 at the sliding contact, which served as a sealant and protected the coating from oxidation. Full article
Show Figures

Figure 1

47 pages, 19449 KB  
Review
Laser Cladding Remanufacturing of Metallic Components in High-End Agricultural Machinery and Equipment: Material Design, Processing, and Properties
by Haifei Lu, Hailong Yan, Jiming Lv, Weiwei Deng, Yuchen Liang, Xiang Xu, Jie Cai, Kaiyu Luo and Jinzhong Lu
Metals 2025, 15(11), 1166; https://doi.org/10.3390/met15111166 - 22 Oct 2025
Abstract
Harsh working environments and excessive usage frequency cause wear, fatigue, and corrosion failure in metallic components in high-end agricultural machinery and equipment. Overall replacements of valuable metallic components could result in high overhaul costs and material waste. Therefore, remanufacturing these local areas is [...] Read more.
Harsh working environments and excessive usage frequency cause wear, fatigue, and corrosion failure in metallic components in high-end agricultural machinery and equipment. Overall replacements of valuable metallic components could result in high overhaul costs and material waste. Therefore, remanufacturing these local areas is an effective way to put damaged components back into service, thus maximizing the value of the remaining materials. Laser cladding (LC) technology utilizes high-energy, high-density laser beams to create cladding layers with specialized properties such as wear and corrosion resistance on the surfaces of damaged metallic components. This work provides a comprehensive analysis of pre-processing, processing, and post-processing in relation to laser cladding remanufacturing (LCR) of metallic components. The review examines the LC process, including material systems (Fe-, Ni-, and Co-based alloys and composites), process optimization, and path planning. The relationship between material composition, process parameters, microstructure evolution, and resultant properties (wear, corrosion, and fatigue) is emphasized. Finally, challenges and future trends faced in this process are introduced in detail. The discussed topics provide some important insights on high-quality and efficient remanufacturing of metallic components in high-end agricultural machinery and equipment. Full article
(This article belongs to the Special Issue Laser Assisted Additive Manufacturing of Metals)
Show Figures

Figure 1

13 pages, 3183 KB  
Article
Methyltrimethoxysilane Vapor Deposition Strategy for Preparing Superelastic and Hydrophobic Flexible Polyurethane Foams
by Hongyu Feng, Haijing Ma, Tian Jing, Bohan Zhai, Yanyan Dong, Shaohua Jiang and Xiaoshuai Han
Polymers 2025, 17(21), 2814; https://doi.org/10.3390/polym17212814 - 22 Oct 2025
Abstract
Flexible polyurethane foam (FPUF) is widely used in buffer protection, biomedical, and wearable fields due to its light weight, high resilience, and adjustable mechanical properties. However, the traditional water foaming system is often accompanied by bottleneck problems such as cyclic fatigue attenuation, insufficient [...] Read more.
Flexible polyurethane foam (FPUF) is widely used in buffer protection, biomedical, and wearable fields due to its light weight, high resilience, and adjustable mechanical properties. However, the traditional water foaming system is often accompanied by bottleneck problems such as cyclic fatigue attenuation, insufficient thermal stability, and surface hydrophilicity while achieving low density. In this study, a dense Si-O-Si cross-linked layer was in situ constructed on the surface of the foam by systematically regulating the water content of the foaming agent (1.5~2.5 wt%) and coupling with methyltrimethoxysilane (MTMS) chemical vapor deposition. Experiments show that the foam foamed with 2 wt% water content still maintains 0.0466 MPa compressive strength and 0.0532 MPa compressive modulus (modulus loss is only 16.6%) after 500 cycles of compression at 90% strain after MTMS deposition. MTMS modification drives the surface wettability to change from hydrophilic (70.4°) to hydrophobic (128.7°), and significantly improves thermal stability (the carbon residue rate at 800 °C increased to 25.5%, an increase of 59.4%). This study not only improves the resilience, but also endows the FPUF surface with hydrophobicity and thermal protection ability, which provides the feasibility for its wide application. Full article
(This article belongs to the Special Issue Polyurethane Composites: Properties and Applications)
Show Figures

Figure 1

11 pages, 2027 KB  
Communication
Silicon@Carbon Composite with Bioinspired Root-Nodule Nanostructures as Anode for High-Performance Lithium-Ion Batteries
by Yitong Sun, Lei Zhao, Ning Mi, Jiahao He and Jiantie Xu
Molecules 2025, 30(21), 4157; https://doi.org/10.3390/molecules30214157 - 22 Oct 2025
Abstract
Silicon (Si) is a promising high-capacity anode material for lithium–ion batteries but faces challenges such as severe volume fluctuations during cycles and the formation of unstable solid-electrolyte interphase films on the electrode surface. To address these limitations, we developed a bioinspired Si@C composite [...] Read more.
Silicon (Si) is a promising high-capacity anode material for lithium–ion batteries but faces challenges such as severe volume fluctuations during cycles and the formation of unstable solid-electrolyte interphase films on the electrode surface. To address these limitations, we developed a bioinspired Si@C composite anode through polydopamine-mediated self-assembly of aromatic polyamide nanofibers and nano–Si, followed by controlled pyrolysis at 1000 °C under N2. The resulting hierarchical architecture mimics the symbiotic root-nodule structure of legumes, featuring vascular bundle-like carbon frameworks and chemically bonded Si/C interfaces. The optimized composite delivers an initial capacity of 1107.0 mAh g−1 at 0.1 A g−1 and retains 580.0 mAh g−1 after 100 cycles with 52.4% retention. The exceptional electrochemical properties arise from the optimized architecture and surface interactions. The nature-inspired carbon network minimizes ionic transport resistance via vertically aligned porous pathways while simultaneously boosting lithium–ion adsorption capacity. Furthermore, radially aligned graphitic ribbons are generated through controlled polyamide thermal transformation that effectively mitigates electrode swelling and maintains stable interfacial layers during cycling. Full article
Show Figures

Figure 1

21 pages, 10542 KB  
Article
Tailoring Particle Size and Morphology to Enhance Performance and Safety of Glass-Based Battery Separators
by Philipp Rank, Sebastian Müllner, Thorsten Gerdes and Christina Roth
Batteries 2025, 11(11), 388; https://doi.org/10.3390/batteries11110388 - 22 Oct 2025
Abstract
The thermal characteristics and surface properties of battery separators are commonly modified by the incorporation of inorganic particles into a polymeric matrix material. At present, the particles employed are predominantly of an arbitrary shape. Herein, we demonstrate significantly improved battery safety features using [...] Read more.
The thermal characteristics and surface properties of battery separators are commonly modified by the incorporation of inorganic particles into a polymeric matrix material. At present, the particles employed are predominantly of an arbitrary shape. Herein, we demonstrate significantly improved battery safety features using a glass-based separator consisting of platelet-shaped particles. Glass is selected due to its temperature stability and the freedom of design that it offers when particles are formed directly from the melt. The influence of the particles’ aspect ratio and layer stacking on the electrochemical properties was analyzed, and a parametric study of glass particle layers as function of edge length and thickness was conducted. Particles with an excessively high aspect ratio impede the Li+ diffusion pathway, thereby negatively affecting the performance and stability of the battery cell. Conversely, if the aspect ratio is insufficient, a deterioration in cell performance can be observed, particularly at elevated C-rates, due to the high specific surface area of the particles. Hence, the utilization of particles with a moderate aspect ratio of about 10 and a thickness of around 1 µm is proposed to ensure optimum performance. Full article
Show Figures

Graphical abstract

14 pages, 1557 KB  
Article
Enhanced Thermal Performance of Variable-Density Maxwell Nanofluid Flow over a Stretching Sheet Under Viscous Dissipation: A Maritime Technology Perspective
by A. M. Amer, Nourhan I. Ghoneim, Shadi Alghaffari, Mohammad E. Gommosani and Ahmed M. Megahed
Modelling 2025, 6(4), 134; https://doi.org/10.3390/modelling6040134 - 22 Oct 2025
Abstract
This scientific research examines the intricate dynamics of Maxwell nanofluid flow across a stretching surface with Stefan blowing impacts, with a particular focus on maritime thermal management applications. The analysis integrates multiple physical phenomena including magnetohydrodynamic forces, the energy dissipation phenomenon, and thermal [...] Read more.
This scientific research examines the intricate dynamics of Maxwell nanofluid flow across a stretching surface with Stefan blowing impacts, with a particular focus on maritime thermal management applications. The analysis integrates multiple physical phenomena including magnetohydrodynamic forces, the energy dissipation phenomenon, and thermal density variations within Darcy porous media. Special attention is given to Stefan blowing’s role in modifying thermal and mass transfer boundary layers. We derive an enhanced mathematical formulation that couples Maxwell fluid properties with nanoparticle transport under combined magnetic and density-gradient conditions. Computational results demonstrate the crucial influence of viscous heating and blowing intensity on thermal performance, with direct implications for naval cooling applications. The reduced governing equations form a nonlinear system that requires robust numerical treatment. We implemented the shooting technique to solve this system, verifying its precision through systematic comparison with established benchmark solutions. The close correspondence between results confirms both the method’s reliability and our implementation’s accuracy. The primary results of this study indicate that raising the Stefan blowing and density parameters causes notable changes in the temperature and concentration fields. The Stefan blowing parameter enhances both temperature and concentration near the wall by affecting thermal diffusion and nanoparticle distribution. In contrast, the density parameter reduces these values because of increased fluid resistance. Full article
Show Figures

Figure 1

20 pages, 4587 KB  
Article
Implementation of High Air Voids Asphalt Mixtures on Trial Section—Performance Evaluation Case Study
by Wojciech Bańkowski, Jan B. Król, Karol J. Kowalski and Renata Horodecka
Appl. Sci. 2025, 15(20), 11298; https://doi.org/10.3390/app152011298 - 21 Oct 2025
Viewed by 142
Abstract
Asphalt mixtures designed with an elevated air void content are intended to lower traffic noise as well as to improve traffic safety and quality by improving rainwater evacuation through the layer of the surface mixture, not just on top of it. While undoubtedly [...] Read more.
Asphalt mixtures designed with an elevated air void content are intended to lower traffic noise as well as to improve traffic safety and quality by improving rainwater evacuation through the layer of the surface mixture, not just on top of it. While undoubtedly mixtures with high air voids have significant advantages, the durability of such mixes could be an issue. In the research presented in this paper, a performance evaluation case study of asphalt mixes with medium and high air void content was investigated, in both the laboratory and the trial section. The study assessed asphalt mixtures intended for so-called quiet pavements in terms of selected properties (such as water and frost resistance, low temperature cracking, fatigue life, and water permeability) that significantly impact the durability of the pavement surface course under traffic loads and climatic conditions. Five different mixtures were designed, which differed in the proportion of individual components, grain size, asphalt content, and void content. The conducted research indicates that mixtures with increased void content may exhibit lower durability parameters. In addition, the surface drainage performance can be effectively managed by selecting the appropriate mixture type, maximum aggregate size, and target air void content, depending on the functional requirements for macrotexture and pavement type. This should be considered both in the mix design process, by using the best possible materials and conducting additional testing, and also when selecting the mixture type to find an optimum between durability and acoustic parameters of the pavement layer. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 2322 KB  
Article
Assessment of Seismic Intensity Measures on Liquefaction Response: A Case Study of Yinchuan Sandy Soil
by Bowen Hu, Weibo Ji, Yinxin Zhao, Sihan Qiu and Zhehao Zhu
Buildings 2025, 15(20), 3803; https://doi.org/10.3390/buildings15203803 - 21 Oct 2025
Viewed by 143
Abstract
The proliferation of tunnel and subway networks in urban areas has heightened concerns regarding their vulnerability to seismic-induced liquefaction. This phenomenon, wherein saturated sandy soils lose strength and behave like a liquid under seismic waves, poses a catastrophic threat to the structural integrity [...] Read more.
The proliferation of tunnel and subway networks in urban areas has heightened concerns regarding their vulnerability to seismic-induced liquefaction. This phenomenon, wherein saturated sandy soils lose strength and behave like a liquid under seismic waves, poses a catastrophic threat to the structural integrity and stability of underground constructions. While extensive research has been conducted to evaluate liquefaction triggering, most existing approaches rely on single ground motion intensity measures (e.g., PGA, IA), which often fail to capture the combined effects of amplitude, energy, and duration on liquefaction behavior. In this study, the seismic response of saturated sandy soil from Yinchuan was analyzed using the Dafalias–Manzari constitutive model implemented in the OpenSeesPy platform. The model parameters were carefully calibrated using laboratory triaxial results. A total of ten real earthquake records were applied to evaluate two critical engineering demand parameters (EDPs): surface lateral displacement (SLD) and the maximum thickness of the liquefied layer (MTL). The results show that both SLD and MTL exhibit weak correlations with conventional intensity parameters, suggesting limited predictive value for engineering design. However, by applying Partial Least Squares (PLS) regression to combine multiple intensity measures, the prediction accuracy for SLD was significantly improved, with the correlation coefficient increasing to 0.81. In contrast, MTL remained poorly predicted due to its strong dependence on intrinsic soil characteristics such as permeability and fines content. These findings highlight the importance of integrating both seismic loading features and geotechnical soil properties in performance-based liquefaction hazard evaluation. Full article
Show Figures

Figure 1

18 pages, 5360 KB  
Article
Anti-Icing and Frost Property of Superhydrophobic Micro-Nano Structures with Embossed Micro-Array Channels
by Han Luo, Xiaoliang Wang, Qiwei Li, Honglei Liu, Lei Chen, Debin Shan, Bin Guo and Jie Xu
Materials 2025, 18(20), 4813; https://doi.org/10.3390/ma18204813 - 21 Oct 2025
Viewed by 260
Abstract
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed [...] Read more.
Icing on aircraft surfaces during operation poses a threat to flight safety. As a passive anti-icing technology, hydrophobic microstructure can achieve long-term anti-icing. In this work, a composite process combining hot-embossing of PVD-coated punches with a low surface energy fluoride-modification scheme is proposed to generate nanoscale cluster structures on hundreds of microns array channels to construct a superhydrophobic micro-nano composite structure. The droplet freezing and frosting behavior of the hydrophobic microstructures was analyzed, and it was found that the anti-icing and anti-frost properties of the microstructure surface improved with an increase in the microstructure period size (T). Compared with the original surface, the freezing time of the microstructure at T = 500 μm was delayed by 214.3% (7 s → 22 s), and the frost layer coverage time was delayed by 75.7% (70 s → 123 s). The maximum water contact angle of the superhydrophobic micro-nano composite structure was 153.3°, and the droplet freezing time was delayed to 95 s, which is a 1166.67% difference, indicating that the multi-stage micro-nano composite structure can significantly improve surface anti-icing performance. The main reason for this result is that the bottom of the microstructure can store air pockets, preventing droplet wetting and heat exchange. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop