Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = prohexadione calcium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1705 KiB  
Article
A Comparative Analysis of the Efficacy of Three Plant Growth Regulators and Dose Optimization for Improving Agronomic Traits and Seed Yield of Purple-Flowered Alfalfa (Medicago sativa L.)
by Xianwei Peng, Qunce Sun, Shuzhen Zhang, Youping An, Fengjun Peng, Jie Xiong, Ayixiwake Molidaxing, Shuming Chen, Yuxiang Wang and Bo Zhang
Plants 2025, 14(15), 2258; https://doi.org/10.3390/plants14152258 - 22 Jul 2025
Viewed by 257
Abstract
This study evaluated the effects of different plant growth regulators and their concentration gradients on the agronomic traits, seed yield, and yield components of Medicago sativa L. cv. “Xinmu No. 5” alfalfa. This experiment comprised 10 treatments, including 98% mepiquat chloride (200, 250, [...] Read more.
This study evaluated the effects of different plant growth regulators and their concentration gradients on the agronomic traits, seed yield, and yield components of Medicago sativa L. cv. “Xinmu No. 5” alfalfa. This experiment comprised 10 treatments, including 98% mepiquat chloride (200, 250, and 300 mg/L), 5% prohexadione-calcium (150, 250, and 350 mg/L), and 5% uniconazole (50, 100, and 150 mg/L), each at three concentration levels, along with a distilled water control (CK). The results show that the 98% mepiquat chloride treatment (MCT3) significantly reduced plant height (by 22%) and internode length (by 28.3%), while increasing stem diameter, branch number, and seed yield. Plant height and internode length exhibited a significant positive correlation, and both were highly significantly negatively correlated (p < 0.01) with seed yield components, indicating that controlling vegetative growth can enhance seed yield. Principal component analysis (extracting four principal components with a cumulative contribution rate of 80.8%) further confirmed that the 98% mepiquat chloride treatment MCT3 (300 mg/L) was the most effective treatment for improving seed yield of alfalfa in arid regions. Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
Show Figures

Figure 1

14 pages, 4328 KiB  
Article
Comparative Study of the Mechanisms Underlying the Effects of Prohexadione-Calcium and Gibberellin on the Morphogenesis and Carbon Metabolism of Rice Seedlings Under NaCl Stress
by Meiling Liu, Naijie Feng, Dianfeng Zheng and Fengyan Meng
Plants 2025, 14(8), 1240; https://doi.org/10.3390/plants14081240 - 18 Apr 2025
Viewed by 506
Abstract
NaCl stress is one of the most serious forms of salt stress. Prohexadione–calcium (EA) is a plant growth regulator, and gibberellin (GA) is a plant hormone that regulates various plant developmental processes. In this experiment, Guanghong 3 and Huang Huazhan served as experimental [...] Read more.
NaCl stress is one of the most serious forms of salt stress. Prohexadione–calcium (EA) is a plant growth regulator, and gibberellin (GA) is a plant hormone that regulates various plant developmental processes. In this experiment, Guanghong 3 and Huang Huazhan served as experimental rice (Overza sativa L.) varieties to study the effects of EA and GA on the growth of rice seedlings. The results revealed that NaCl treatment significantly inhibited plant growth and destroyed the balance of the carbon metabolism. The inhibition effect of NaCl stress on the growth and physiological metabolism of rice seedlings was alleviated by EA and GA, but the effects of EA and GA were slightly different. Compared with the NaCl treatment, the EA and GA treatments significantly increased the net photosynthetic rate, stem base width, and dry matter accumulation but had opposite effects on the plant height, with the GA treatment significantly increasing the plant height of rice seedlings. The EA treatment was superior to the GA treatment in improving the metabolic pathway efficiency of sucrose and starch in the leaves of rice seedlings. The soluble sugar content, sucrose content, fructose content, sucrose synthase activity, sucrose phosphate synthase activity, α-amylase activity, β-amylase activity, and starch phosphorylase activity increased with increasing NaCl stress time, and the changes in the starch content and acid invertase activity were the opposite. The max/min values were reached on the 13th day of NaCl stress. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

11 pages, 10259 KiB  
Article
Plant Growth Regulators Reduce Flower and Pod Shedding and Optimize Pod Distribution in Soybean in Northwest China
by Hao Cheng, Qinglan Xu, Chenfang Ding, Ziyi Meng, Feifei Zhao, Yuchen Gan, Xinghu Song and Qiang Zhao
Agronomy 2025, 15(4), 924; https://doi.org/10.3390/agronomy15040924 - 10 Apr 2025
Viewed by 815
Abstract
The soybean yield per unit area in Xinjiang has reached a high level, with the crop maturing quickly because of the higher temperatures and levels of mechanization. However, environmental factors cause flowers and pods to shed easily, limiting yield potential. Efficient plant growth [...] Read more.
The soybean yield per unit area in Xinjiang has reached a high level, with the crop maturing quickly because of the higher temperatures and levels of mechanization. However, environmental factors cause flowers and pods to shed easily, limiting yield potential. Efficient plant growth regulators (PGRs) used to increase crop yields have gained popularity, but their effectiveness in reducing flower and pod shedding, considering factors such as environment, crop variety, and time of spraying, remains unclear. This study investigated whether spraying several PGRs could reduce soybean flower and pod shedding. Field experiments were conducted from 2022 to 2024 in Ili, Xinjiang, China, using α-naphthaleneacetic acid (NAA), prohexadione-calcium (Pro-Ca), and iron chlorine e6 (ICE6) with foliar applications of 300, 450, and 45 g ha−1 at the four-node stage (V4) and full pod stage (R4). All PGR treatments reduced flower and pod shedding over the years and resulted in an increase in the average flower and pod numbers compared to normal-growth-treated (CK) soybeans. The effective slowing of flower and pod shedding during the critical pod formation stage (R4) ensured a stable yield potential. The flower-to-pod conversion rate was higher after spraying plants with PGRs than for the CK group, and pod retention was higher at the beginning of maturity (R7). Our results demonstrated that spraying PGRs (NAA, Pro-Ca, and ICE6) effectively reduced soybean flower and pod shedding, optimized pod distribution, and increased soybean yield potential. The study findings provide a useful reference for global soybean growers to optimize planting methods. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

26 pages, 8623 KiB  
Article
Prohexadione Calcium Improves Rice Yield Under Salt Stress by Regulating Source–Sink Relationships During the Filling Period
by Rui Deng, Dianfeng Zheng, Naijie Feng, Aaqil Khan, Jianqin Zhang, Zhiyuan Sun, Jiahuan Li, Jian Xiong, Linchong Ding, Xiaohui Yang, Zihui Huang and Yuecen Liao
Plants 2025, 14(2), 211; https://doi.org/10.3390/plants14020211 - 13 Jan 2025
Cited by 3 | Viewed by 1444
Abstract
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt [...] Read more.
Salt stress is an important factor affecting the growth and development of rice, and prohexadione calcium (Pro-Ca) plays an important role in alleviating rice salt stress and improving rice yield. However, there are few studies on how Pro-Ca improves rice yield under salt stress by regulating the source–sink metabolism. In this study, we used Guanghong 3 (salt-tolerant variety) and Huanghuazhan (salt-sensitive variety) as experimental materials to investigate the dynamic changes in the synthesis and partitioning of nonstructural carbohydrates among source–sink, the dynamic changes in related enzyme activities, the effects of the source–sink metabolism on yield in rice under salt stress and the effect of Pro-Ca during the filling period. The results of this study showed that Pro-Ca improved photosynthetic efficiency by increasing leaf photosynthetic gas exchange parameters and other stomatal factors on the one hand and, on the other hand, promoted sugar catabolism and reduced sugar synthesis by increasing leaf sucrose synthase activity and decreasing sucrose phosphate synthase activity, alleviating the inhibitory effect of high concentrations of sugars in the leaves on photosynthesis. Meanwhile, Pro-Ca promotes the transport of sugars from source (leaves) to sink (seeds), increases the sugar content in the seeds, and promotes starch synthesis in the seeds by increasing starch phosphorylase, which promotes seed filling, thus increasing the number of solid grains on the primary and secondary branches of the panicle in rice, increasing the 1000-grain weight, and ultimately increasing the seed setting rate and yield. These results indicated that Pro-Ca alleviated the inhibitory effect of salt stress on rice leaf photosynthesis through stomatal and non-stomatal factors. Meanwhile, Pro-Ca promotes the transport of rice sugars from source to sink under salt stress, regulates the source–sink relationship during the filling period of rice, promotes starch synthesis, and ultimately improves rice yield. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 3741 KiB  
Article
Prohexadione-Calcium Reduced Stem and Tiller Damage and Maintained Yield by Improving the Photosynthetic and Antioxidant Capacity of Rice (Oryza sativa L.) Under NaCl Stress
by Wanqi Mei, Shaoxia Yang, Jian Xiong, Aaqil Khan, Liming Zhao, Xiaole Du, Jingxin Huo, Hang Zhou, Zhiyuan Sun, Xiaohui Yang, Nana Yue, Naijie Feng and Dianfeng Zheng
Plants 2025, 14(2), 188; https://doi.org/10.3390/plants14020188 - 11 Jan 2025
Cited by 1 | Viewed by 975
Abstract
Salt stress is a vital environmental stress that severely limits plant growth and productivity. Prohexadione-calcium (Pro-Ca) has been extensively studied to regulate plant growth, development, and stress responses. However, the constructive role of Pro-Ca in alleviating damages and enhancing rice tillers’ morph-physiological characteristics [...] Read more.
Salt stress is a vital environmental stress that severely limits plant growth and productivity. Prohexadione-calcium (Pro-Ca) has been extensively studied to regulate plant growth, development, and stress responses. However, the constructive role of Pro-Ca in alleviating damages and enhancing rice tillers’ morph-physiological characteristics under salt stress remains largely unknown. The results showed that Pro-Ca significantly improved Changmaogu’s (CMG’s) productive tillering rate and the total yield per plant by 17.1% and 59.4%, respectively. At tillering stage, the results showed that Pro-Ca significantly improved the morph-physiological traits, i.e., leaf area, and photosynthetic traits of the rice variety with salt tolerance, under NaCl stress. Pro-Ca significantly increased the seedling index of the main stem and tiller by 10.3% and 20.0%, respectively. Pro-Ca significantly increased the chlorophyll a (chl a), chlorophyll b (chl b) and carotenoid contents by 32.8%, 58.4%, and 33.2%, respectively under NaCl stress. Moreover, Pro-Ca significantly enhanced the net photosynthetic rate (A) by 25.0% and the non-photochemical (NPQ) by 9.0% under NaCl stress. Furthermore, the application of Pro-Ca increased the activities of antioxidant enzymes by 7.5% and 14.7% in superoxide dismutase (SOD), 6.76% and 18.0% in peroxidase (POD), 26.4% and 58.5% in catalase (CAT), 11.0% and 15.9% in ascorbate peroxidase (APX), and Pro-Ca reduced the membrane damage index by 10.8% and 2.19% in malondialdehyde (MDA) content, respectively, for main stem and tiller leaves under NaCl stress. Pro-Ca significantly enhanced the soluble protein content of the main stem and tiller leaves by 2.60% and 6.08%, respectively. The current findings strongly suggested that exogenous application of Pro-Ca effectively alleviated the adverse impact of NaCl stress on the main stem and tillers by enhancing the photosynthetic capacity and antioxidant enzyme activity, and ultimately increased the productive tillering rate and grain yield. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

27 pages, 10586 KiB  
Article
Integrative Analyses Reveal the Physiological and Molecular Role of Prohexadione Calcium in Regulating Salt Tolerance in Rice
by Rui Deng, Yao Li, Nai-Jie Feng, Dian-Feng Zheng, You-Wei Du, Aaqil Khan, Ying-Bin Xue, Jian-Qin Zhang and Ya-Nan Feng
Int. J. Mol. Sci. 2024, 25(16), 9124; https://doi.org/10.3390/ijms25169124 - 22 Aug 2024
Cited by 3 | Viewed by 1281
Abstract
Salinity stress severely restricts rice growth. Prohexadione calcium (Pro-Ca) modulation can effectively alleviate salt stress in rice. In this study, we explored the effects of Pro-Ca on enhancing salt tolerance in two rice varieties, IR29 and HD96-1. The results revealed that Pro-Ca [...] Read more.
Salinity stress severely restricts rice growth. Prohexadione calcium (Pro-Ca) modulation can effectively alleviate salt stress in rice. In this study, we explored the effects of Pro-Ca on enhancing salt tolerance in two rice varieties, IR29 and HD96-1. The results revealed that Pro-Ca markedly enhanced root and shoot morphological traits and improved plant biomass under salt stress. Chlorophyll a and b content were significantly increased, which improved photosynthetic capacity. Transcriptomic and metabolomic data showed that Pro-Ca significantly up-regulated the expression of genes involved in E3 ubiquitin ligases in IR29 and HD96-1 by 2.5-fold and 3-fold, respectively, thereby maintaining Na+ and K+ homeostasis by reducing Na+. Moreover, Pro-Ca treatment significantly down-regulated the expression of Lhcb1, Lhcb2, Lhcb3, Lhcb5, and Lhcb6 in IR29 under salt stress, which led to an increase in photosynthetic efficiency. Furthermore, salt stress + Pro-Ca significantly increased the A-AAR of IR29 and HD96-1 by 2.9-fold and 2.5-fold, respectively, and inhibited endogenous cytokinin synthesis and signal transduction, which promoted root growth. The current findings suggested that Pro-Ca effectively alleviated the harmful effects of salt stress on rice by maintaining abscisic acid content and by promoting oxylipin synthesis. This study provides a molecular basis for Pro-Ca to alleviate salt stress in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 3347 KiB  
Article
Prohexadione Calcium and Gibberellin Improve Osmoregulation, Antioxidant Response and Ion Homeostasis to Alleviate NaCl Stress in Rice Seedlings
by Meiling Liu, Naijie Feng, Dianfeng Zheng and Rongjun Zhang
Agronomy 2024, 14(6), 1318; https://doi.org/10.3390/agronomy14061318 - 18 Jun 2024
Cited by 2 | Viewed by 1661
Abstract
Prohexadione calcium (EA) and gibberellin (GA) are two different types of plant growth regulators that have different effects on the regulation of plant development. The objective of this study was to evaluate the impacts of EA and GA on rice plant growth, development [...] Read more.
Prohexadione calcium (EA) and gibberellin (GA) are two different types of plant growth regulators that have different effects on the regulation of plant development. The objective of this study was to evaluate the impacts of EA and GA on rice plant growth, development and morph-physiological traits in two rice varieties: ‘Huang Huazhan’ and ‘Guang Hong 3’. At the three-leaf seedling stage, the plants were treated with 50 mM NaCl 24 h after foliar application of EA (100 mg·L−1) and GA (1 mg·L−1). Data on morphological indexes, osmotic regulators and antioxidant activities were compared with the treatment of EA and GA on the 4th, 7th, 10th and 13th days after NaCl stress. Our data analysis showed that NaCl stress inhibited the leaf area growth of rice seedlings, altered the microstructure and disrupted the antioxidant system, ion uptake and transport balance. The significant increase in malondialdehyde (MDA) content and superoxide anion production rate (O2·¯) indicated that NaCl stress caused a severe oxidative stress response to rice seedlings. Treatment with EA and GA activated the antioxidant system under NaCl stress, significantly elevated superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and suppressed the increase in MDA content and the O2·¯ production rate. Under NaCl stress, EA and GA treatments improved the osmoregulatory balance, significantly increased soluble protein and proline contents and maintained lower Na+/K+ levels. EA and GA treatments significantly increased the K+ and Ca2+ contents, thereby maintaining ionic balance, which was favorable for maintaining the growth of rice seedlings. In this study, moth plant growth regulators maintained the growth and development of rice seedlings under NaCl stress by inducing an increase in osmoregulation and antioxidant levels, reducing the degree of membrane damage and regulating the selective uptake of ions by rice seedlings. Current findings also clarified that foliar application of EA was more effective than GA in three-leaf seedlings by enhancing the morph-physiological and antioxidant parameters under NaCl stress. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

11 pages, 2245 KiB  
Article
Prohexadione-Calcium Mitigates the Overgrowth of Corn Seedlings
by Minh Vuong Duong, Jong-Wook Chung, Van Gioi Ha, Hwi Moon, Ju-Kyung Yu and Yoon-Sup So
Agronomy 2024, 14(2), 371; https://doi.org/10.3390/agronomy14020371 - 14 Feb 2024
Cited by 3 | Viewed by 1971
Abstract
In the temperate climate of South Korea, specific corn varieties are cultivated using plug trays. The cultivation process is initiated from February to March within greenhouse facilities, maintaining a temperature below 10 degrees Celsius. Following this, in April, seedlings are transplanted to enable [...] Read more.
In the temperate climate of South Korea, specific corn varieties are cultivated using plug trays. The cultivation process is initiated from February to March within greenhouse facilities, maintaining a temperature below 10 degrees Celsius. Following this, in April, seedlings are transplanted to enable an exceptionally early harvest for increased profitability. However, the subsequent elevation in indoor temperatures leads to seedling overgrowth. This study explores the effectiveness of three plant growth regulators—paclobutrazol, prohexadione-calcium, and diniconazole–on super sweet corn seedlings. Significantly, the application of prohexadione-calcium at 2 ppm during the first leaf stage substantially reduces seedling height and impedes the growth of both the first and second internodes. This impact extends to leaf-related traits, manifesting reductions in the area, length, and width of the third leaf. Furthermore, prohexadione-calcium induces a significant decrease in both fresh and dried shoot weight, while simultaneously augmenting root weight. This alteration results in a noteworthy shift in the root–shoot ratio, particularly at 2 ppm. Subsequent experiments have identified the optimal concentration of prohexadione-calcium at 15 ppm, effectively mitigating overgrowth in both hybrid and inbred corn varieties. These findings provide essential insights for practitioners seeking to efficiently manage corn seedling overgrowth. The study contributes to understanding the retardant effect of prohexadione-calcium on various morphological traits, offering practical applications for optimizing plant growth regulator concentrations in corn cultivation strategies. Full article
Show Figures

Figure 1

13 pages, 1206 KiB  
Article
Non-Structural Carbohydrates, Foliar Nutrients, Yield Components and Oxidative Metabolism in Pecan Trees in Response to Foliar Applications of Growth Regulators
by Damaris Leopoldina Ojeda-Barrios, Laura Raquel Orozco-Meléndez, Raquel Cano-Medrano, Esteban Sánchez-Chávez, Rafael Ángel Parra-Quezada, Marisela Calderón-Jurado, Juan Luis Jacobo-Cuellar, Elizabeth Hernández-Ordoñez and Oscar Cruz-Álvarez
Agriculture 2022, 12(5), 688; https://doi.org/10.3390/agriculture12050688 - 12 May 2022
Cited by 6 | Viewed by 2959
Abstract
Foliar sprays of growth regulators have commercial potential for improving the performance of some of the parameters associated with alternate bearing in pecan trees. The objective was to evaluate the behaviour of alternate bearing through analysis of seasonal variations in buds and leaflets [...] Read more.
Foliar sprays of growth regulators have commercial potential for improving the performance of some of the parameters associated with alternate bearing in pecan trees. The objective was to evaluate the behaviour of alternate bearing through analysis of seasonal variations in buds and leaflets of non-structural carbohydrates (glucose, fructose, sucrose, and starch), mineral nutrients (N-total, P, K+, Ca2+, Mg2+, Fe2+, Cu2+, Mn2+ and Zn2+), yield components (nut weight per kilogram and kernel percentage) and oxidative metabolism (superoxide dismutase, hydrogen peroxide, catalase, guaiacol peroxidase and antioxidant capacity) in cv. Wichita pecan trees in response to foliar applications of gibberellic acid (50 mg L−1), calcium prohexadione (500 mg L−1) or thidiazuron (10 mg L−1). The experiment was of a completely randomized experimental design with five replicates. Foliar growth regulator (GRs) sprays help maintain the concentration of non-structural carbohydrates in the leaflets and buds between the evaluation years. With the exception of K+ (12.9 and 10.9 g kg−1) and Zn2+ (45.1 and 30.5 mg kg−1), the GRs did not show any effects on the concentrations of the foliar mineral nutrients. The results suggest foliar sprays of gibberellic acid improve the performance of parameters associated with alternate bearing, including oxidative metabolism. Full article
(This article belongs to the Topic Plant Metabolism under Stress)
Show Figures

Figure 1

25 pages, 11835 KiB  
Article
Gibberellins Inhibit Flavonoid Biosynthesis and Promote Nitrogen Metabolism in Medicago truncatula
by Hao Sun, Huiting Cui, Jiaju Zhang, Junmei Kang, Zhen Wang, Mingna Li, Fengyan Yi, Qingchuan Yang and Ruicai Long
Int. J. Mol. Sci. 2021, 22(17), 9291; https://doi.org/10.3390/ijms22179291 - 27 Aug 2021
Cited by 20 | Viewed by 4269
Abstract
Bioactive gibberellic acids (GAs) are diterpenoid plant hormones that are biosynthesized through complex pathways and control various aspects of growth and development. Although GA biosynthesis has been intensively studied, the downstream metabolic pathways regulated by GAs have remained largely unexplored. We investigated Tnt1 [...] Read more.
Bioactive gibberellic acids (GAs) are diterpenoid plant hormones that are biosynthesized through complex pathways and control various aspects of growth and development. Although GA biosynthesis has been intensively studied, the downstream metabolic pathways regulated by GAs have remained largely unexplored. We investigated Tnt1 retrotransposon insertion mutant lines of Medicago truncatula with a dwarf phenotype by forward and reverse genetics screening and phylogenetic, molecular, biochemical, proteomic and metabolomic analyses. Three Tnt1 retrotransposon insertion mutant lines of the gibberellin 3-beta-dioxygenase 1 gene (GA3ox1) with a dwarf phenotype were identified, in which the synthesis of GAs (GA3 and GA4) was inhibited. Phenotypic analysis revealed that plant height, root and petiole length of ga3ox1 mutants were shorter than those of the wild type (Medicago truncatula ecotype R108). Leaf size was also much smaller in ga3ox1 mutants than that in wild-type R108, which is probably due to cell-size diminution instead of a decrease in cell number. Proteomic and metabolomic analyses of ga3ox1/R108 leaves revealed that in the ga3ox1 mutant, flavonoid isoflavonoid biosynthesis was significantly up-regulated, while nitrogen metabolism was down-regulated. Additionally, we further demonstrated that flavonoid and isoflavonoid biosynthesis was induced by prohexadione calcium, an inhibitor of GA3ox enzyme, and inhibited by exogenous GA3. In contrast, nitrogen metabolism was promoted by exogenous GA3 but inhibited by prohexadione calcium. The results of this study further demonstrated that GAs play critical roles in positively regulating nitrogen metabolism and transport and negatively regulating flavonoid biosynthesis through GA-mediated signaling pathways in leaves. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 542 KiB  
Article
Alfalfa Established Successfully in Intercropping with Corn in the Midwest US
by Marisol T. Berti, Andrea Cecchin, Dulan P. Samarappuli, Swetabh Patel, Andrew W. Lenssen, Ken J. Moore, Samantha S. Wells and Maciej J. Kazula
Agronomy 2021, 11(8), 1676; https://doi.org/10.3390/agronomy11081676 - 23 Aug 2021
Cited by 20 | Viewed by 4710
Abstract
Integrating alfalfa (Medicago sativa L.) with corn (Zea mays L.) for grain will increase biodiversity, reduce the negative environmental impact of corn monoculture and increase farm profitability. The objectives of this research were to evaluate forage productivity and nutritive value, along [...] Read more.
Integrating alfalfa (Medicago sativa L.) with corn (Zea mays L.) for grain will increase biodiversity, reduce the negative environmental impact of corn monoculture and increase farm profitability. The objectives of this research were to evaluate forage productivity and nutritive value, along with stand establishment of alfalfa in a corn grain system in Iowa, Minnesota, and North Dakota. The experimental design was a randomized complete block with four replicates at each site. Treatments included were: sole corn (i.e., check; T1), sole alfalfa (T2), alfalfa intercropped into corn (T3), a prohexadione-treated alfalfa intercropped with corn (T4), and a spring-seeded alfalfa in the year after intercropping (T5), which was planted in plots with T1 the previous year. All sites had below normal rainfall in 2016 and 2017. Corn grain yield was significantly lower when intercropped with alfalfa (T3 and T4) compared with the check corn crop (no alfalfa, T1). Corn grain yield reduction ranged from 14.0% to 18.8% compared with the check (T1). Corn biomass yield was reduced by intercropped alfalfa (T3 and T4) by 15.9% to 25.8%. In the seeding year, alfalfa seasonal forage yield was significantly greater when corn competition was absent in all environments. The intercropped alfalfa from the previous season (T3 and T4) had almost double the forage yield than the alfalfa in the seeding year (spring-seeded alfalfa; T5). In the second production year, there were no meaningful forage yield differences (p > 0.05) across all treatments, indicating alfalfa in intercropping systems does not affect forage yield past the first production year. Prohexadione-calcium, a growth regulator, did not affect alfalfa stand density, forage yield and nutritive value. The forage nutritive value was dependent on harvest date not the alfalfa intercropping treatments. Results of our study suggest that establishing alfalfa with corn is feasible and can be a potential alternative for the upper Midwest region. However, when under drought conditions, this system might be less resilient since competition between alfalfa and corn for soil moisture will be intensified under drought or moisture-limited conditions, and this will likely depress corn grain yield. Research targeted to reintroduce perennial crops into the current dominant corn–soybean systems in the US Corn Belt is urgently needed to improve stability and resiliency of production systems. Full article
(This article belongs to the Special Issue Advances in Forages, Cover Crops, and Biomass Crops Production)
Show Figures

Figure 1

15 pages, 648 KiB  
Article
Intercropping Alfalfa into Silage Maize Can Be More Profitable Than Maize Silage Followed by Spring-Seeded Alfalfa
by Marisol T. Berti, Johanna Lukaschewsky and Dulan P. Samarappuli
Agronomy 2021, 11(6), 1196; https://doi.org/10.3390/agronomy11061196 - 11 Jun 2021
Cited by 23 | Viewed by 4309
Abstract
Intercropping of silage maize (Zea mays L.) and alfalfa (Medicago sativa L.) is not a common practice because alfalfa generally reduces maize grain and biomass yield. The objective of this research was to evaluate the productivity and profitability of silage maize–alfalfa [...] Read more.
Intercropping of silage maize (Zea mays L.) and alfalfa (Medicago sativa L.) is not a common practice because alfalfa generally reduces maize grain and biomass yield. The objective of this research was to evaluate the productivity and profitability of silage maize–alfalfa intercropping, with a goal to establish alfalfa and increase alfalfa productivity in the first year of production. The experiment was conducted in Fargo and Prosper, ND, USA, in 2014–2017. The design was a randomized complete block with four replicates and a split-plot arrangement. The main plot had two maize row-spacing treatments (RS), 61 and 76 cm, respectively. Treatments in the subplot were: (1) maize monoculture, (2) maize intercropped with alfalfa, (3) maize intercropped with alfalfa + prohexadione-calcium (PHX), and (4) spring-seeded alfalfa in the following year (simulating a maize–spring-seeded alfalfa crop sequence). Both alfalfa and maize were seeded the same day in May of 2014 at both locations. Prohexadione-calcium, a growth regulator to reduce internode length and avoid etiolation of alfalfa seedlings, did not improve alfalfa plant survival. Averaged across locations, RS did not have an effect on silage maize yield and alfalfa forage yield. Alfalfa established in intercropping with maize had almost double the forage yield in the following year compared with spring-seeded alfalfa following a crop of silage maize. Considering a two-year system, alfalfa intercropped with maize had higher net returns than a silage-maize followed by a spring-seeded alfalfa sequence. This system has the potential to get more growers to have alfalfa in the rotation skipping the typical low forage yield of alfalfa in the establishment year. Full article
(This article belongs to the Special Issue Multifunctional Forages)
Show Figures

Figure 1

12 pages, 1709 KiB  
Article
The Influence of Agrotechnological Tools on cv. Rubin Apples Quality
by Kristina Laužikė, Nobertas Uselis and Giedrė Samuolienė
Agronomy 2021, 11(3), 463; https://doi.org/10.3390/agronomy11030463 - 2 Mar 2021
Cited by 4 | Viewed by 2911
Abstract
With the growing demand for quality food in the world, there is a new ambition to produce high-quality apples seeking reduced cultivation costs. The aim of this study was to evaluate the influence of agrotechnological tools on the quality of cv. Rubin apples [...] Read more.
With the growing demand for quality food in the world, there is a new ambition to produce high-quality apples seeking reduced cultivation costs. The aim of this study was to evaluate the influence of agrotechnological tools on the quality of cv. Rubin apples during the harvest. The apple tree (Malus domestica Borkh.) cv. Rubin was grafted on dwarfing rootstocks P60, planted in single rows spaced 1.25 m between trees and 3.5 m between rows. Six agrotechnological tools were used—hand pruning, mechanical pruning, trunk incision, calcium-prohexadione, summer pruning and mechanical pruning one side, changing sides annually. The agrotechnical tools had no significant effect on accumulation of most sugars and elements, malic, folic and succinic acids in the fruits. Mechanical pruning resulted in significant accumulation of phenolic compounds, antioxidants, ascorbic acid, but reduced the amount of glucose compared to hand pruning. However, the trunk incision or spraying with ca-prohexadione together with mechanical pruning had no significant effect on sugar content but resulted in significantly higher amounts of phenols, antioxidants, ascorbic acid, Fe and Mn and reduced starch and citric acid. Full article
Show Figures

Figure 1

17 pages, 1929 KiB  
Article
The Dwarfing Effects of Different Plant Growth Retardants on Magnolia wufengensis L.Y. Ma et L. R. Wang
by Xiaodeng Shi, Siyu Chen and Zhongkui Jia
Forests 2021, 12(1), 19; https://doi.org/10.3390/f12010019 - 26 Dec 2020
Cited by 14 | Viewed by 3940
Abstract
The effects of varieties, concentrations, and number of applications of plant growth retardants (PGRs) on the morphological, physiological, and endogenous hormones of Magnolia wufengensis L.Y. Ma et L. R. Wang were assessed to obtain the most suitable dwarfing protocol for M. wufengensis and [...] Read more.
The effects of varieties, concentrations, and number of applications of plant growth retardants (PGRs) on the morphological, physiological, and endogenous hormones of Magnolia wufengensis L.Y. Ma et L. R. Wang were assessed to obtain the most suitable dwarfing protocol for M. wufengensis and to provide theoretical support and technical guidance for the cultivation and promotion of this species. One-year-old M. wufengensis ‘Jiaohong No. 2’ grafted seedlings served as the experimental materials. In the first part of the experiment, three PGRs (uniconazole, paclobutrazol, prohexadione calcium), three concentrations (500, 1000, 1500 ppm), and three applications (one, three, and five applications) were applied in dwarfing experiments to perform L9 (34) orthogonal tests. In the second part of the study, dwarfing experiments were supplemented with different high uniconazole concentrations (0, 1500, 2000, 2500 ppm). Spraying 1500 ppm uniconazole five times achieved the best M. wufengensis dwarfing effect, related indicators of M. wufengensis under this treatment were better than other treatment combinations. Here, M. wufengensis plant height, internode length, scion diameter, and node number were significantly reduced by 56.9%, 62.6%, 72.8%, and 74.4%, respectively, compared with the control group. This treatment increased superoxide dismutase (SOD) activity by 66.0%, peroxidase (POD) activity by 85.0%, soluble protein contents by 43.3%, and soluble sugar contents by 27.6%, and reduced malondialdehyde (MDA) contents by 32.1% in leaves of M. wufengensis compared with the control. The stress resistance of M. wufengensis was enhanced. The treatment also reduced gibberellin (GA3) levels by 73.0%, auxin (IAA) by 58.0%, and zeatin (ZT) by 70.6%, and increased (abscisic acid) ABA by 98.1% in the leaves of M. wufengensis. The uniconazole supplementation experiment also showed that 1500 ppm was the optimal uniconazole concentration. The leaves exhibited abnormalities such as crinkling or adhesion when 2000 or 2500 ppm was applied. Given the importance of morphological indicators and dwarfing for the ornamental value of M. wufengensis, the optimal dwarfing treatment for M. wufengensis was spraying 1500 ppm uniconazole five times. Full article
Show Figures

Figure 1

12 pages, 974 KiB  
Article
Prohexadione-Calcium Application during Vegetative Growth Affects Growth of Mother Plants, Runners, and Runner Plants of Maehyang Strawberry
by Hyeon Min Kim, Hye Ri Lee, Jae Hyeon Kang and Seung Jae Hwang
Agronomy 2019, 9(3), 155; https://doi.org/10.3390/agronomy9030155 - 25 Mar 2019
Cited by 15 | Viewed by 5954
Abstract
Strawberry (Fragaria × ananassa Duch.) is an important horticultural crop that is vegetatively propagated using runner plants. To achieve massive production of runner plants, it is important to transfer the assimilation products of the mother plant to the runner plants, and not [...] Read more.
Strawberry (Fragaria × ananassa Duch.) is an important horticultural crop that is vegetatively propagated using runner plants. To achieve massive production of runner plants, it is important to transfer the assimilation products of the mother plant to the runner plants, and not to the runner itself. Application of prohexadione–calcium (Pro–Ca), a plant growth retardant with few side effects, to strawberry is effective in inhibiting transport of assimilates to runners. This study aimed to determine the optimum application method and concentration of Pro–Ca on the growth characteristics of mother plants, runners, and runner plants for the propagation of strawberry in nurseries. Pro–Ca was applied at the rate of 0, 50, 100, 150, or 200 mg·L−1 (35 mL per plant) to plants via foliar spray or drenching under greenhouse conditions at 30 days after transplantation. Petiole lengths of mother plants were measured 15 weeks after treatment; growth was suppressed at the higher concentrations of Pro–Ca regardless of the application method. However, the crown diameter was not significantly affected by the application method or Pro–Ca concentration. The number of runners was 7.0 to 8.2, with no significant difference across treatments. Runner length was shorter at higher concentrations of Pro–Ca, especially in the 200 mg·L−1 drench treatment. However, fresh weight (FW) and dry weights (DW) of runners in the 50 mg·L−1 Pro–Ca drench treatments were higher than controls. Foliar spray and drench treatments were more effective for runner plant production than the control; a greater number of runner plants were produced with the 100 and 150 mg·L−1 Pro–Ca foliar spray treatment and the 50 and 100 mg·L−1 drench treatment. The FW and DW of the first runner plant was not significantly different in all treatments, but DW of the second runner plant, and FW and DW of the third runner plant were greatest in the 50 mg·L−1 Pro–Ca drench treatment. These results suggested that growth and production of runner plants of Maehyang strawberry were greatest under the 50 mg·L−1 Pro–Ca drench treatment. Full article
(This article belongs to the Special Issue Berry Crop Production and Protection)
Show Figures

Figure 1

Back to TopTop