Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,033)

Search Parameters:
Keywords = produce graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8528 KiB  
Article
Study on the Durability of Graphene Oxide–Nanosilica Hybrid-Modified Sticky Rice–Lime Paste
by Ke Li, Donghui Cheng, Yingqi Fu, Xuwen Yan, Li Wang and Haisheng Ren
Nanomaterials 2025, 15(15), 1194; https://doi.org/10.3390/nano15151194 - 5 Aug 2025
Abstract
In order to improve the durability performance of sticky rice–lime paste in ancient masonry restoration materials, the effect of graphene oxide–nanosilica hybrids (GO–NS) on its basic physical properties and durability performance was investigated. The surface morphology, physical phase characteristics and infrared spectra of [...] Read more.
In order to improve the durability performance of sticky rice–lime paste in ancient masonry restoration materials, the effect of graphene oxide–nanosilica hybrids (GO–NS) on its basic physical properties and durability performance was investigated. The surface morphology, physical phase characteristics and infrared spectra of GO–NS and its sticky rice–lime paste were analysed by SEM, FE-TEM, XRD and FTIR. It was shown that NS successfully attached to the GO surface and improved the interlayer structure of GO. GO–NS reduces the fluidity and shrinkage of sticky rice–lime paste, prolongs the initial setting, shortens the final setting and significantly improves the compressive strength, water resistance and freeze resistance. As NS improves the interlayer structure of GO, it provides nucleation sites for the hardening of the sticky rice–lime paste, improves the quantity and structural distribution of the hardening products and reduces the pores. The NS undergoes a hydration reaction with Ca(OH)2 in the lime to produce calcium silicate hydrate (C–S–H), which further refines the internal pore structure of the sticky rice–lime paste. As a result, the GO–NS-modified sticky rice–lime paste has a denser interior and better macroscopic properties. Full article
Show Figures

Figure 1

12 pages, 1867 KiB  
Article
Graphene Oxide-Constructed 2 nm Pore Anion Exchange Membrane for High Purity Hydrogen Production
by Hengcheng Wan, Hongjie Zhu, Ailing Zhang, Kexin Lv, Hongsen Wei, Yumo Wang, Huijie Sun, Lei Zhang, Xiang Liu and Haibin Zhang
Crystals 2025, 15(8), 689; https://doi.org/10.3390/cryst15080689 - 29 Jul 2025
Viewed by 293
Abstract
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional [...] Read more.
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional (2D) graphene oxide act as building blocks, with ethylenediamine as a crosslinking stabilizer, to construct a unique 3D/2D 2 nm-tunneling structure between the GO and WG sheets through via an amide connection at a WG/GO ratio of 1:1. Here, the wrinkled graphene (WG) undergoes a transition from two-dimensional (2D) graphene oxide (GO) into three-dimensional (3D) through the adjustment of surface energy. By increasing the interlayer spacing and the number of ion fluid channels within the membranes, the E-W/G membrane has achieved the rapid passage of hydroxide ions (OH) and simultaneous isolation of produced gas molecules. Moreover, the dense 2 nm nano-tunneling structure in the electrolytic water process enables the E-W/G membrane to attain current densities >99.9% and an extremely low gas crossover rate of hydrogen and oxygen. This result suggests that the as-prepared membrane effectively restricts the unwanted crossover of gases between the anode and cathode compartments, leading to improved efficiency and reduced gas leakage during electrolysis. By enhancing the purity of the hydrogen production industry and facilitating the energy transition, our strategy holds great potential for realizing the widespread utilization of hydrogen energy. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

14 pages, 2553 KiB  
Article
Cathodic Exfoliation of Various Graphite Materials in Potassium Chloride Electrolyte
by Md Habibullah Dalal, Nuwan Hegoda Arachchi, Chong-Yong Lee and Gordon G. Wallace
Molecules 2025, 30(15), 3151; https://doi.org/10.3390/molecules30153151 - 28 Jul 2025
Viewed by 269
Abstract
Cathodic exfoliation of graphite has emerged as an attractive method to synthesize high-quality and lo- defect graphene. Here, it is demonstrated that the type of starting graphite material influences the properties of exfoliated graphene. Graphite foil, natural graphite, and graphite rods were examined [...] Read more.
Cathodic exfoliation of graphite has emerged as an attractive method to synthesize high-quality and lo- defect graphene. Here, it is demonstrated that the type of starting graphite material influences the properties of exfoliated graphene. Graphite foil, natural graphite, and graphite rods were examined in the exfoliation processes performed in 3.0 M KCl at −15 V. The use of a graphite foil facilitates the rapid cathodic exfoliation process in comparison with structurally more compact natural graphite and graphite rods. For the graphite foil, the cathodically exfoliated graphene exhibits a low defect density (ID/IG of 0.09, a C/O ratio of 35) with graphite exfoliation yield of 92.8%. In contrast, the exfoliated graphene from natural graphite exhibits an ID/IG of 0.15, a C/O ratio of 28, and a graphite exfoliation yield of 30.5%, whereas graphene from graphite rod exhibits an ID/IG of 0.86, a C/O ratio of 30, and a graphite exfoliation yield of 19.5%. The dense structure of natural graphite and graphite rods led to longer exfoliation times. Exfoliation of graphite rods produced few-layer graphene with the smallest sheet size, whereas natural graphite and graphite foil yielded multilayer graphene with larger sheets. This study demonstrates the feasibility of using aqueous-based cathodic exfoliation to produce graphene from various graphite sources, leading to variations in sheet thickness, size, defect density, and solvent dispersibility. Full article
Show Figures

Graphical abstract

34 pages, 5133 KiB  
Article
New Scalable Electrosynthesis of Distinct High Purity Graphene Nanoallotropes from CO2 Enabled by Transition Metal Nucleation
by Kyle Hofstetter, Gad Licht and Stuart Licht
Crystals 2025, 15(8), 680; https://doi.org/10.3390/cryst15080680 - 25 Jul 2025
Viewed by 188
Abstract
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO [...] Read more.
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO2 to Carbon Nano Technology) process. The C2CNT molten carbonate electrolysis technique enables the formation of Carbon NanoTubes (CNTs), Magnetic CNTs (MCNTs), Carbon Nano-Onions (CNOs), Carbon Nano-Scaffolds (CNSs), and Helical CNTs (HCNTs) directly from atmospheric or industrial CO2. We discuss the morphology control enabled through variations in electrolyte composition, temperature, current density, and nucleation additives. We present results from scaled operations reaching up to 1000 tons/year CO2 conversion and propose design approaches to reach megaton scales to support climate mitigation and GNC mass production. The products demonstrate high crystallinity, as evidenced by Raman, XRD, SEM, and TGA analyses, and offer promising applications in electronics, construction, catalysis, and medical sectors. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

11 pages, 2151 KiB  
Article
Fabrication of Antibacterial Poly(ethylene terephthalate)/Graphene Nanocomposite Fibers by In Situ Polymerization for Fruit Preservation
by Jiarui Wu, Qinhan Chen, Aobin Han, Min Liu, Wenhuan Zhong, Xiaojue Shao, Yan Jiang, Jing Lin, Zhenyang Luo, Jie Yang and Gefei Li
Molecules 2025, 30(15), 3109; https://doi.org/10.3390/molecules30153109 - 24 Jul 2025
Viewed by 208
Abstract
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers [...] Read more.
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers containing 0.2 wt% graphene fraction showed an excellent dispersity of graphene nanosheets in polymeric matrix. DSC test showed that the efficient polymer-chain grafting depresses the crystallization of PET chains. This graphene-contained PET fabric exhibited attractive antibacterial properties that can be employed in fruit preservation to ensure food safety. Full article
(This article belongs to the Special Issue Design and Application of Functional Supramolecular Materials)
Show Figures

Figure 1

11 pages, 3598 KiB  
Article
NMR Spectroelectrochemistry in Studies of Procarbazine Oxidation by Laser-Induced Graphene Thin Films
by Zhe Wang, Xiaoping Zhang, Shihui Xu, Lin Yang, Lina Wang, Yijing Wang, Ahmad Mansoor and Wei Sun
C 2025, 11(3), 52; https://doi.org/10.3390/c11030052 - 21 Jul 2025
Viewed by 325
Abstract
In this paper, nanoscale graphene film electrodes were prepared using laser-induced technology, and an in situ electrochemical cell was constructed. The normalized peak areas at 2.82 ppm for the samples without the in situ electrochemical cell and with an in situ electrochemical cell [...] Read more.
In this paper, nanoscale graphene film electrodes were prepared using laser-induced technology, and an in situ electrochemical cell was constructed. The normalized peak areas at 2.82 ppm for the samples without the in situ electrochemical cell and with an in situ electrochemical cell are 4.02 and 4.41, respectively. Tests showed that this in situ electrochemical cell has minimal interference from the nuclear magnetic resonance (NMR) magnetic field, allowing for high-resolution in situ spectra. Using this in situ electrochemical cell and employing in situ electrochemistry combined with NMR techniques, we investigated the oxidation reaction of 0.01 M procarbazine (PCZ) in real-time. We elucidated the following oxidation mechanism for procarbazine: the oxidation of PCZ first generates azo-procarbazine, which then undergoes a double bond shift to hydrazo-procarbazine. hydrazo-procarbazine undergoes hydrolysis to yield benzaldehyde-procarbazine, and then finally oxidizes to produce N-isopropylterephthalic acid. This confirms that the combination of in situ electrochemistry and nuclear magnetic resonance technology provides chemists with an effective tool for in situ studying the reaction mechanisms of drug molecules. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

11 pages, 2278 KiB  
Article
Femtosecond Laser Irradiation Induced Heterojunctions Between Graphene Oxide and Silver Nanowires
by Jiayun Feng, Zhiyuan Wang, Zhuohuan Wu, Shujun Wang, Yuxin Sun, Qi Meng, Jiayue Wen, Shang Wang and Yanhong Tian
Materials 2025, 18(14), 3393; https://doi.org/10.3390/ma18143393 - 19 Jul 2025
Viewed by 292
Abstract
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing [...] Read more.
In this article, femtosecond laser scanning was used to create heterojunctions between silver nanowire (Ag NW) and graphene oxide (GO), resulting in a mechanical and electrical interconnection. Surface plasmon resonances (SPRs) were generated on the nanowire surface by using femtosecond laser irradiation, producing a periodically excited electric field along the Ag NWs. This electric field then interfered with the femtosecond laser field, creating strong localized heating effects, which melted the Ag NW and GO, leading to mechanical bonding between the two. The formation of these heterostructures was attributed to the transfer of plasmon energy from the Ag NW to the adjacent GO surface. Since the connection efficiency of the nanowires is closely related to the specific location and the polarization direction of the laser, FDTD simulations were conducted to model the electric field distribution on the surface of Ag NW and GO structures under different laser polarization directions, varying the lengths and diameters of the nanowires. Finally, the resistance changes of the printed Ag NW paths on the GO thin film after femtosecond laser irradiation were investigated. It was found that laser bonding could reduce the resistance of the Ag NW-GO heterostructures by two orders of magnitude, further confirming the formation of the junctions. Full article
Show Figures

Figure 1

32 pages, 1689 KiB  
Review
Photocatalytic Degradation of Microplastics in Aquatic Environments: Materials, Mechanisms, Practical Challenges, and Future Perspectives
by Yelriza Yeszhan, Kalampyr Bexeitova, Samgat Yermekbayev, Zhexenbek Toktarbay, Jechan Lee, Ronny Berndtsson and Seitkhan Azat
Water 2025, 17(14), 2139; https://doi.org/10.3390/w17142139 - 18 Jul 2025
Viewed by 578
Abstract
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on [...] Read more.
Due to its persistence and potential negative effects on ecosystems and human health, microplastic pollution in aquatic environments has become a major worldwide concern. Photocatalytic degradation is a sustainable manner to degrade microplastics to non-toxic by-products. In this review, comprehensive discussion focuses on the synergistic effects of various photocatalytic materials including TiO2, ZnO, WO3, graphene oxide, and metal–organic frameworks for producing heterojunctions and involving multidimensional nanostructures. Such mechanisms can include the generation of reactive oxygen species and polymer chain scission, which can lead to microplastic breakdown and mineralization. The advancements of material modifications in the (nano)structure of photocatalysts, doping, and heterojunction formation methods to promote UV and visible light-driven photocatalytic activity is discussed in this paper. Reactor designs, operational parameters, and scalability for practical applications are also reviewed. Photocatalytic systems have shown a lot of development but are hampered by shortcomings which include a lack of complete mineralization and production of intermediary secondary products; variability in performance due to the fluctuation in the intensity of solar light, limited UV light, and environmental conditions such as weather and the diurnal cycle. Future research involving multifunctional, environmentally benign photocatalytic techniques—e.g., doped composites or composite-based catalysts that involve adsorption, photocatalysis, and magnetic retrieval—are proposed to focus on the mechanism of utilizing light effectively and the environmental safety, which are necessary for successful operational and industrial-scale remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 5293 KiB  
Article
Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS
by Maria Lucia Protopapa, Emiliano Burresi, Martino Palmisano and Emanuela Pesce
ChemEngineering 2025, 9(4), 73; https://doi.org/10.3390/chemengineering9040073 - 18 Jul 2025
Viewed by 208
Abstract
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as [...] Read more.
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as oxidative debris (OD)—via alkaline treatment of graphene oxide (GO) using KOH solutions ranging from 0.04 M to 1.78 M. The resulting OD, isolated from the supernatant after acid precipitation, exhibits strong and tunable photoluminescence (PL) across the visible spectrum. Emission peaks shift from blue (~440 nm) to green (~500 nm) and yellow (~565 nm) as a function of treatment conditions, with excitation wavelengths between 300 and 390 nm. Optical, morphological. and compositional analyses were performed using UV-Vis, AFM, FTIR, and Raman spectroscopy, confirming the presence of highly oxidized aromatic domains. The blue-emitting (S2) and green/yellow-emitting (R2) fractions were successfully separated and characterized, demonstrating potential color tuning by adjusting KOH concentration and treatment time. This study highlights the feasibility of reusing GO-derived byproducts as sustainable phosphor alternatives in wLEDs, reducing reliance on CRMs and aligning with green chemistry principles. Full article
Show Figures

Graphical abstract

19 pages, 2596 KiB  
Article
The Effect of Electrospun PMMA/rGO Fiber Addition on the Improvement of the Physical and Mechanical Properties of PMMA Resin
by Tugce Gul Elmas Alsini, Isin Kurkcuoglu, Neslihan Nohut Maslakci and Aysegul Uygun Oksuz
Prosthesis 2025, 7(4), 79; https://doi.org/10.3390/prosthesis7040079 - 4 Jul 2025
Viewed by 456
Abstract
Background/Objectives: Autopolymerizing poly (methyl methacrylate) (PMMA) resin is widely used in provisional restorations; however, its inadequate mechanical properties represent a significant limitation. This study aimed to develop electrospun fibers with chemically reduced graphene oxide (rGO) and to evaluate the effect of fiber reinforcement [...] Read more.
Background/Objectives: Autopolymerizing poly (methyl methacrylate) (PMMA) resin is widely used in provisional restorations; however, its inadequate mechanical properties represent a significant limitation. This study aimed to develop electrospun fibers with chemically reduced graphene oxide (rGO) and to evaluate the effect of fiber reinforcement on the mechanical and physical properties of a commercially available PMMA resin. Methods: Electrospinning was employed to produce nanofibers containing 0.02 wt% and 0.05 wt% rGO within a PMMA matrix. Fiber characterization was performed using SEM-EDS, XRD, TGA/DTG, and FTIR. Following characterization, the fibers were blended into PMMA resin at 1%, 2.5%, and 5% (by weight). The resulting fiber-reinforced composites were tested for flexural strength, elastic modulus, surface roughness, and Vickers microhardness. Results: The addition of 1% and 2.5% PMMA/rGO-0.02 fibers and 1% PMMA/rGO-0.05 fibers significantly improved the flexural strength of PMMA compared with the control group (p < 0.05). A statistically significant increase in elastic modulus was observed only in the group containing 1% PMMA/rGO-0.02 fibers (p < 0.05). However, there were no significant differences in surface roughness or microhardness between the control and experimental groups (p > 0.05). Conclusions: Incorporating electrospun PMMA-rGO fibers into PMMA resin enhances flexural properties at low concentrations without altering surface characteristics. These findings suggest that such fiber-reinforced systems hold promises for improving the mechanical performance and functional longevity of provisional dental restorations under clinical conditions. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

11 pages, 1375 KiB  
Article
Dual Signal Enhancement by Magnetic Separation and Split Aptamer for Ultrasensitive T-2 Toxin Detection
by Ziyi Yan, Ping Zhu, Chaoyi Zhou, Dezhao Kong and Hua Ye
Molecules 2025, 30(13), 2853; https://doi.org/10.3390/molecules30132853 - 4 Jul 2025
Viewed by 365
Abstract
T-2 toxin, a type A trichothecene mycotoxin produced by Fusarium species, is widely present in cereals and their processed products, posing a significant contaminant in food safety. To address the food safety challenges caused by this toxin, we established a dual signal enhancement [...] Read more.
T-2 toxin, a type A trichothecene mycotoxin produced by Fusarium species, is widely present in cereals and their processed products, posing a significant contaminant in food safety. To address the food safety challenges caused by this toxin, we established a dual signal enhancement by magnetic separation and split aptamer for ultrasensitive T-2 toxin detection. In this method, the introduction of magnetic graphene oxide (MGO) enhanced signal and increased sensitivity by reducing background interference. The shortened split aptamer reduces non-specific binding to MGO via decreased steric hindrance, thereby facilitating rapid target-induced dissociation and signal generation. A FAM fluorophore-labeled split aptamer probe FAM-SpA1-1 was quenched by MGO. While the fluorescence intensity remained nearly unchanged when the unlabeled split aptamer probe SpA1-2 was introduced alone, a significant fluorescence recovery was observed upon simultaneous addition of SpA1-2 and T-2 toxin. This recovery resulted from the cooperative binding of SpA1-1 and SpA1-2 to T-2 toxin, which distanced the FAM-SpA1-1 probe from MGO. Therefore, the proposed biosensor demonstrated excellent stability, reproducibility, and specificity, with a linear response range of 10–500 pM and a limit of detection (LOD) of 0.83 pM. Satisfactory recovery rates were achieved in spiked wheat (86.0–114.2%) and beer (112.0–129.6%) samples, highlighting the biosensor’s potential for practical applications in real-sample detection. This study establishes the T-2 toxin split aptamer and demonstrates a novel dual-signal enhancement paradigm that pushes the sensitivity frontier of aptamer-based mycotoxin sensors. Full article
Show Figures

Figure 1

14 pages, 12761 KiB  
Article
CO2 and UV Laser-Induced Graphene Based on Polymer Transformation: Advanced Characterizations by 2D Raman Mapping Combined with Microscopy Techniques
by Sabina Botti, Francesca Bonfigli, Alessio Bruttomesso, Federico Micciulla, Valentina Nigro, Alessandro Rufoloni and Angelo Vannozzi
Materials 2025, 18(13), 3119; https://doi.org/10.3390/ma18133119 - 1 Jul 2025
Viewed by 396
Abstract
Since its discovery, laser-induced graphene (LIG) has attracted much interest because this technique, having all the advantages of a laser processing technology, is more convenient and cost-effective than other graphene production methods. This work offers a detailed analysis of LIG structures produced by [...] Read more.
Since its discovery, laser-induced graphene (LIG) has attracted much interest because this technique, having all the advantages of a laser processing technology, is more convenient and cost-effective than other graphene production methods. This work offers a detailed analysis of LIG structures produced by UV and CO2 laser irradiation from polyimide performed with surface scanning Raman spectroscopy combined with microscopy techniques. Although UV LIG has a less ordered structure than that obtained by CO2 laser irradiation, our study indicates that UV LIG can be patterned with a resolution higher than that obtained with CO2 laser irradiation and a much smaller penetration depth into the substrate. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Multifunctional Applications)
Show Figures

Figure 1

8 pages, 1978 KiB  
Proceeding Paper
Nanoscopic Characterization of Reduced Graphene Oxide for Anticorrosion Coating of AA2024
by Ahmed Kreta, Ivan Jerman, Marjan Bele, Angelja Kjara Surca, Miran Gaberšček and Igor Muševič
Eng. Proc. 2025, 87(1), 82; https://doi.org/10.3390/engproc2025087082 - 25 Jun 2025
Viewed by 336
Abstract
Graphene, a two-dimensional carbon material, possesses exceptional properties such as high electron mobility, exceptional strength that surpasses that of steel, chemical resistance, environmental friendliness, and a large specific surface area. In this study, we used the modified Hummer process to produce graphene oxide, [...] Read more.
Graphene, a two-dimensional carbon material, possesses exceptional properties such as high electron mobility, exceptional strength that surpasses that of steel, chemical resistance, environmental friendliness, and a large specific surface area. In this study, we used the modified Hummer process to produce graphene oxide, which was applied to an aluminum alloy substrate as a corrosion-resistant coating. The aluminum alloy used in our study is AA2024, which is widely applied in industry and aircraft. The coating layer was characterized by micro-Raman spectroscopy and atomic force microscopy (AFM) before and after the reduction process. Micro-Raman spectroscopy provided information on the degree of reduction and the presence of functional groups in the coating layer. AFM images enabled the study of surface morphology and topography. After the reduction process, achieved by annealing in an argon atmosphere at 140 °C, micro-Raman spectroscopy and AFM were again used to assess structural and morphological changes. The reduction resulted in the formation of reduced graphene oxide (RGO), which exhibited improved conductivity and stability. The combination of micro-Raman spectroscopy and AFM characterization techniques provided detailed information on the properties and effectiveness of the coating layer. This research contributes to developing anti-corrosion methods using advanced materials and surface engineering techniques. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

11 pages, 1854 KiB  
Article
Aluminum-Modified Graphene Oxide Composite Adsorbent for Humic Acid Removal from Water
by Athanasia K. Tolkou, Ioannis A. Katsoyiannis and George Z. Kyzas
J. Compos. Sci. 2025, 9(7), 327; https://doi.org/10.3390/jcs9070327 - 25 Jun 2025
Viewed by 421
Abstract
Among the pollutants that affect water quality, being also a problem in water treatment facilities, is natural organic matter (NOM), the largest percentage of which is humic acid (HA). In the present work, a new aluminum-modified graphene oxide adsorbent (henceforth abbreviated GO-Al) was [...] Read more.
Among the pollutants that affect water quality, being also a problem in water treatment facilities, is natural organic matter (NOM), the largest percentage of which is humic acid (HA). In the present work, a new aluminum-modified graphene oxide adsorbent (henceforth abbreviated GO-Al) was produced for the elimination of HA. The factors affecting the adsorption process, such as pH, adsorbent dosage, initial HA concentration and contact time were examined. It was revealed that at pH 2.0 ± 0.1, by applying 1.0 g L−1 GO-Al to 5 mg L−1 HA, 91% was removed after 24 h, but equilibrium was almost reached after 30 min (82% removal). Comparable results with GO exhibited that the modification with AlCl3⋅6H2O enhanced the removal. The relative results associated slightly more with the pseudo-second-order kinetic model (PSO), and the Langmuir isotherm model, indicating that the process was closer to chemisorption. The maximum adsorption capacity (Qm) conferring to the Langmuir model was considered to be 5.91 mg g−1. Thermodynamics revealed that the process occurred spontaneously, while a adsorption–regeneration study up to 10 cycles confirmed the effectiveness of GO-Al material. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

Back to TopTop