Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = primary human hepatocytes (PHHs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2954 KiB  
Article
Effects of Obeticholic Acid Treatment on Primary Human Hepatocytes in a Novel Tri-Culture Model System
by Justin J. Odanga, Sharon M. Anderson, Edward L. LeCluyse, Sharon C. Presnell, Jingsong Chen and Jessica R. Weaver
Cells 2025, 14(13), 968; https://doi.org/10.3390/cells14130968 - 24 Jun 2025
Viewed by 556
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a growing health concern worldwide. Human cell-based in vitro culture models that retain disease-relevant phenotypic pathways and responses to assess the efficacy and liability of new therapeutics are needed. Obeticholic Acid (OCA), a Farnesoid X Receptor [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a growing health concern worldwide. Human cell-based in vitro culture models that retain disease-relevant phenotypic pathways and responses to assess the efficacy and liability of new therapeutics are needed. Obeticholic Acid (OCA), a Farnesoid X Receptor agonist, has been identified for MAFLD treatment, and clinically shown to have anti-inflammatory and anti-fibrotic effects. In this study, healthy and disease-origin primary human hepatocytes (PHHs) were cultured in TruVivo®, an all-human hepatic system for 14 days and treated with OCA to determine its’ effects on lipogenic, inflammatory, and fibrogenic pathways. Decreases in lipogenesis and triglyceride levels were measured in OCA treated healthy and diseased PHHs. Significant decreases in CYP3A4 activity and gene expression were quantified. Macrophage marker expression, pro-inflammatory cytokines and fibrotic markers were lowered in OCA treated diseased PHHs. CYP7A1 gene expression decreased, while BSEP gene expression increased in OCA treated healthy and diseased PHHs. Overall, OCA treatment reduced lipogenic, inflammatory, and fibrogenic markers in diseased PHHs. Differences in the potency and efficacy of OCA against different disease-relevant pathways were observed in healthy and diseased PHHs indicating divergence of key regulatory mechanisms between healthy versus diseased phenotypes. Full article
Show Figures

Figure 1

19 pages, 6474 KiB  
Article
Transcriptomic Profiling of iPS Cell-Derived Hepatocyte-like Cells Reveals Their Close Similarity to Primary Liver Hepatocytes
by Saqlain Suleman, Sharmin Alhaque, Andrew Guo, Aaron Zhang, Serena Fawaz, Stefany Perera, Mohammad S. Khalifa, Hassan Rashidi, David C. Hay and Michael Themis
Cells 2025, 14(12), 925; https://doi.org/10.3390/cells14120925 - 18 Jun 2025
Viewed by 533
Abstract
Human-induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) have been shown to be useful for the development of cell-based regenerative strategies and for modelling drug discovery. However, stem cell-derived HLCs are not identical in nature to primary human hepatocytes (PHHs), which could affect [...] Read more.
Human-induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) have been shown to be useful for the development of cell-based regenerative strategies and for modelling drug discovery. However, stem cell-derived HLCs are not identical in nature to primary human hepatocytes (PHHs), which could affect the cell phenotype and, potentially, model reliability. Therefore, we employed the in-depth gene expression profiling of HLCs and other important and relevant cell types, which led to the identification of clear similarities and differences between them at the transcriptional level. Through gene set enrichment analysis, we identified that genes that are critical for immune signalling pathways become downregulated upon HLC differentiation. Our analysis also found that TAV.HLCs exhibit a mild gene signature characteristic of acute lymphoblastic leukaemia, but not other selected cancers. Importantly, HLCs present significant similarity to PHHs, making them genuinely valuable for modelling human liver biology in vitro and for the development of prototype cell-based therapies for pre-clinical testing. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

11 pages, 2259 KiB  
Article
Hepatocellular Metabolic Profile: Understanding Post-Thawing Metabolic Shift in Primary Hepatocytes In Vitro
by Salvator Palmisano, Joshua D. Breidenbach, Brett R. Blackwell, Tara Harvey, Kes A. Luchini, M. Grace Thornhill, Erick S. LeBrun, Phillip Mach, Trevor Glaros and Emilio S. Rivera
Cells 2025, 14(11), 803; https://doi.org/10.3390/cells14110803 - 29 May 2025
Viewed by 507
Abstract
Primary human hepatocytes (PHHs) are widely used as in vitro models for liver function and drug metabolism studies, yet their metabolic stability post-thawing remains an open question. To better characterize early metabolic changes, we conducted a time-course experiment using liquid chromatography-tandem mass spectrometry [...] Read more.
Primary human hepatocytes (PHHs) are widely used as in vitro models for liver function and drug metabolism studies, yet their metabolic stability post-thawing remains an open question. To better characterize early metabolic changes, we conducted a time-course experiment using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to analyze metabolic shifts in PHHs cultured in suspension. Unexposed and exposed (acetaminophen-treated) samples were evaluated, and TITAN analysis was applied to determine the time point of maximal metabolic change at both individual metabolite and global metabolic profile levels. Our results indicate that the majority of metabolic shifts occur within the first five hours post-thawing. In the early culture time points, substantial metabolic overlap was observed between unexposed and exposed cells, suggesting a conserved biological response likely related to cellular recovery. However, at later time points, metabolite profiles diverged, with acetaminophen treatment-specific metabolic changes emerging, potentially reflecting differences in homeostatic restoration versus hepatotoxic responses. Our study highlights the importance of considering early post-thawing metabolic dynamics in experimental design and offers insights for optimizing hepatocyte culture protocols to better replicate in vivo physiological conditions. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Graphical abstract

25 pages, 5063 KiB  
Article
Cell Homeostasis or Cell Death—The Balancing Act Between Autophagy and Apoptosis Caused by Steatosis-Induced Endoplasmic Reticulum (ER) Stress
by Anna Stilkerich, Gerda Schicht, Lena Seidemann, René Hänsel, Adrian Friebel, Stefan Hoehme, Daniel Seehofer and Georg Damm
Cells 2025, 14(6), 449; https://doi.org/10.3390/cells14060449 - 18 Mar 2025
Viewed by 958
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver condition with potential progression to cirrhosis and impaired regeneration post-resection. A key mechanism underlying lipotoxicity is endoplasmic reticulum (ER) stress, particularly the activation of the unfolded protein response (UPR). This study investigates the interplay [...] Read more.
Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver condition with potential progression to cirrhosis and impaired regeneration post-resection. A key mechanism underlying lipotoxicity is endoplasmic reticulum (ER) stress, particularly the activation of the unfolded protein response (UPR). This study investigates the interplay between lipid accumulation, endoplasmic reticulum (ER) stress, and cellular outcomes, focusing on the balance between autophagy and apoptosis. We cultured primary human hepatocytes (PHH) in a free fatty acid (FFA)-enriched medium for 120 h, assessing lipid accumulation, metabolism, and the expression of selected UPR markers. Additionally, we investigated the effects of lipid load on cell activity and growth in proliferating HepG2 cells. We observed that FFA uptake consistently induced ER stress, shifting cellular responses toward apoptosis under high lipid loads. Donor-specific differences were evident, particularly in lipid storage, excretion, and sensitivity to lipotoxicity. Some donors exhibited limited triglyceride (TAG) storage and excretion, leading to an excess of FFA whose metabolic fate remains unclear. Proliferation was more sensitive to lipid accumulation than overall cell activity, with even low FFA concentrations impairing growth, highlighting the vulnerability of regenerative processes to steatosis. The study elucidates how ER stress pathways, such as PERK-CHOP and IRE1α-JNK, are differentially activated in response to lipid overload, tipping the balance toward apoptosis in severe cases. The limited activation of repair mechanisms, such as autophagy, further emphasizes the critical role of ER stress in determining hepatocyte fate. The donor-dependent variability highlights the need for personalized strategies to mitigate lipotoxic effects and enhance liver regeneration in steatosis-related conditions. Full article
Show Figures

Figure 1

21 pages, 73459 KiB  
Article
Impact of Post-Thaw Enrichment of Primary Human Hepatocytes on Steatosis, Inflammation, and Fibrosis in the TruVivo® System
by Justin J. Odanga, Sharon M. Anderson, Sharon C. Presnell, Edward L. LeCluyse, Jingsong Chen and Jessica R. Weaver
Pharmaceuticals 2024, 17(12), 1624; https://doi.org/10.3390/ph17121624 - 3 Dec 2024
Cited by 1 | Viewed by 1385
Abstract
Background: Liver diseases are a global health concern. Many in vitro liver models utilize cryopreserved primary human hepatocytes (PHHs), which commonly undergo post-thaw processing through colloidal silica gradients to remove debris and enrich for a viable PHH population. Post-thaw processing effects on [...] Read more.
Background: Liver diseases are a global health concern. Many in vitro liver models utilize cryopreserved primary human hepatocytes (PHHs), which commonly undergo post-thaw processing through colloidal silica gradients to remove debris and enrich for a viable PHH population. Post-thaw processing effects on healthy PHHs are partially understood, but the consequences of applying disease-origin PHHs to post-thaw density gradient separation have not been described. Methods: Using the TruVivo® system, diseased, type 2 diabetes mellitus (T2DM), and fibrotic PHHs were cultured for 14 days after initially being subjected to either low-density (permissive) or high-density (selective) gradients using Percoll-based thawing medium. Results: Changes in functionality, including albumin and urea secretion and CYP3A4 activity, were measured in diseased, T2DM, and fibrotic PHHs enriched in low Percoll compared to PHHs enriched in high Percoll. Lipogenesis increased in the PHHs enriched in low Percoll. Higher expression of CK18 and TGF-β, two fibrotic markers, and changes in expression of the macrophage markers CD68 and CD163 were also measured. Conclusions: The use of Percoll for the enrichment of PHHs post-thaw results in differences in attachment and functionality, along with changes in diseased phenotypes, in the TruVivo® system. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Figure 1

27 pages, 4562 KiB  
Article
Reproducibility and Robustness of a Liver Microphysiological System PhysioMimix LC12 under Varying Culture Conditions and Cell Type Combinations
by Alicia Y. Lim, Yuki Kato, Courtney Sakolish, Alan Valdiviezo, Gang Han, Piyush Bajaj, Jason Stanko, Stephen S. Ferguson, Remi Villenave, Philip Hewitt, Rhiannon N. Hardwick and Ivan Rusyn
Bioengineering 2023, 10(10), 1195; https://doi.org/10.3390/bioengineering10101195 - 14 Oct 2023
Cited by 8 | Viewed by 3542
Abstract
The liver is one of the key organs for exogenous and endogenous metabolism and is often a target for drug- and chemical-driven toxicity. A wide range of experimental approaches has been established to model and characterize the mechanisms of drug- and chemical-induced hepatotoxicity. [...] Read more.
The liver is one of the key organs for exogenous and endogenous metabolism and is often a target for drug- and chemical-driven toxicity. A wide range of experimental approaches has been established to model and characterize the mechanisms of drug- and chemical-induced hepatotoxicity. A number of microfluidics-enabled in vitro models of the liver have been developed, but the unclear translatability of these platforms has hindered their adoption by the pharmaceutical industry; to achieve wide use for drug and chemical safety evaluation, demonstration of reproducibility and robustness under various contexts of use is required. One of these commercially available platforms is the PhysioMimix LC12, a microfluidic device where cells are seeded into a 3D scaffold that is continuously perfused with recirculating cell culture media to mimic liver sinusoids. Previous studies demonstrated this model’s functionality and potential applicability to preclinical drug development. However, to gain confidence in PhysioMimix LC12’s robustness and reproducibility, supplementary characterization steps are needed, including the assessment of various human hepatocyte sources, contribution of non-parenchymal cells (NPCs), and comparison to other models. In this study, we performed replicate studies averaging 14 days with either primary human hepatocytes (PHHs) or induced pluripotent stem cell (iPSC)-derived hepatocytes, with and without NPCs. Albumin and urea secretion, lactate dehydrogenase, CYP3A4 activity, and metabolism were evaluated to assess basal function and metabolic capacity. Model performance was characterized by different cell combinations under intra- and inter-experimental replication and compared to multi-well plates and other liver platforms. PhysioMimix LC12 demonstrated the highest metabolic function with PHHs, with or without THP-1 or Kupffer cells, for up to 10–14 days. iPSC-derived hepatocytes and PHHs co-cultured with additional NPCs demonstrated sub-optimal performance. Power analyses based on replicate experiments and different contexts of use will inform future study designs due to the limited throughput and high cell demand. Overall, this study describes a workflow for independent testing of a complex microphysiological system for specific contexts of use, which may increase end-user adoption in drug development. Full article
(This article belongs to the Special Issue Advanced 3D Cell Culture Technologies and Formats)
Show Figures

Figure 1

14 pages, 610 KiB  
Review
Cell Culture Systems for Studying Hepatitis B and Hepatitis D Virus Infections
by Grace Sanghee Lee, Michael A. Purdy and Youkyung Choi
Life 2023, 13(7), 1527; https://doi.org/10.3390/life13071527 - 8 Jul 2023
Cited by 7 | Viewed by 6293
Abstract
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% [...] Read more.
The hepatitis B virus (HBV) and hepatitis D virus (HDV) infections cause liver disease, including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBV infection remains a major global health problem. In 2019, 296 million people were living with chronic hepatitis B and about 5% of them were co-infected with HDV. In vitro cell culture systems are instrumental in the development of therapeutic targets. Cell culture systems contribute to identifying molecular mechanisms for HBV and HDV propagation, finding drug targets for antiviral therapies, and testing antiviral agents. Current HBV therapeutics, such as nucleoside analogs, effectively suppress viral replication but are not curative. Additionally, no effective treatment for HDV infection is currently available. Therefore, there is an urgent need to develop therapies to treat both viral infections. A robust in vitro cell culture system supporting HBV and HDV infections (HBV/HDV) is a critical prerequisite to studying HBV/HDV pathogenesis, the complete life cycle of HBV/HDV infections, and consequently identifying new therapeutics. However, the lack of an efficient cell culture system hampers the development of novel antiviral strategies for HBV/HDV infections. In vitro cell culture models have evolved with significant improvements over several decades. Recently, the development of the HepG2-NTCP sec+ cell line, expressing the sodium taurocholate co-transporting polypeptide receptor (NTCP) and self-assembling co-cultured primary human hepatocytes (SACC-PHHs) has opened new perspectives for a better understanding of HBV and HDV lifecycles and the development of specific antiviral drug targets against HBV/HDV infections. We address various cell culture systems along with different cell lines and how these cell culture systems can be used to provide better tools for HBV and HDV studies. Full article
(This article belongs to the Special Issue Epidemiology and Control of Hepatitis Viruses)
Show Figures

Figure 1

12 pages, 1502 KiB  
Article
A Comparison of Primary Human Hepatocytes and Hepatoma Cell Lines to Model the Effects of Fatty Acids, Fructose and Glucose on Liver Cell Lipid Accumulation
by Zoë J. Huggett, Alison Smith, Nicola De Vivo, Dhanny Gomez, Preeti Jethwa, John M. Brameld, Andrew Bennett and Andrew M. Salter
Nutrients 2023, 15(1), 40; https://doi.org/10.3390/nu15010040 - 21 Dec 2022
Cited by 20 | Viewed by 5661
Abstract
Non-alcoholic fatty liver disease (NAFLD) begins with lipid accumulation within hepatocytes, but the relative contributions of different macronutrients is still unclear. We investigated the impact of fatty acids, glucose and fructose on lipid accumulation in primary human hepatocytes (PHH) and three different cell [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) begins with lipid accumulation within hepatocytes, but the relative contributions of different macronutrients is still unclear. We investigated the impact of fatty acids, glucose and fructose on lipid accumulation in primary human hepatocytes (PHH) and three different cell lines: HepG2 (human hepatoblastoma–derived cell line), Huh7 (human hepatocellular carcinoma cell line) and McA-RH7777 (McA, rat hepatocellular carcinoma cell line). Cells were treated for 48 h with fatty acids (0 or 200 μM), glucose (5 mM or 11 mM) and fructose (0 mM, 2 mM or 8 mM). Lipid accumulation was measured via Nile Red staining. All cell types accumulated lipid in response to fatty acids (p < 0.001). PHH and McA, but not HepG2 or Huh7 cells, accumulated more lipid with 11 mM glucose plus fatty acids (p = 0.004, fatty acid × glucose interaction, for both), but only PHH increased lipid accumulation in response to fructose (p < 0.001). Considerable variation was observed between PHH cells from different individuals. Lipid accumulation in PHH was increased by insulin (p = 0.003) with inter-individual variability. Similarly, insulin increased lipid accumulation in both HepG2 and McA cells, with a bigger response in McA in the presence of fatty acids (p < 0.001 for fatty acid × insulin). McA were more insulin sensitive than either HepG2 or Huh7 cells in terms of AKT phosphorylation (p < 0.001 insulin × cell type interaction). Hence, glucose and fructose can contribute to the accumulation of lipid in PHH with considerable inter-individual variation, but hepatoma cell lines are not good models of PHH. Full article
(This article belongs to the Special Issue Nutritional Regulation of Insulin Resistance and Lipid Metabolism)
Show Figures

Figure 1

23 pages, 2503 KiB  
Article
Critical Investigation of the Usability of Hepatoma Cell Lines HepG2 and Huh7 as Models for the Metabolic Representation of Resectable Hepatocellular Carcinoma
by Gerda Schicht, Lena Seidemann, Rene Haensel, Daniel Seehofer and Georg Damm
Cancers 2022, 14(17), 4227; https://doi.org/10.3390/cancers14174227 - 30 Aug 2022
Cited by 10 | Viewed by 5157
Abstract
Metabolic alterations in hepatocellular carcinoma (HCC) are fundamental for the development of diagnostic screening and therapeutic intervention since energy metabolism plays a central role in differentiated hepatocytes. In HCC research, hepatoma cell lines (HCLs) like HepG2 and Huh7 cells are still the gold [...] Read more.
Metabolic alterations in hepatocellular carcinoma (HCC) are fundamental for the development of diagnostic screening and therapeutic intervention since energy metabolism plays a central role in differentiated hepatocytes. In HCC research, hepatoma cell lines (HCLs) like HepG2 and Huh7 cells are still the gold standard. In this study, we characterized the metabolic profiles of primary human hepatoma cells (PHCs), HCLs and primary human hepatocytes (PHHs) to determine their differentiation states. PHCs and PHHs (HCC-PHHs) were isolated from surgical specimens of HCC patients and their energy metabolism was compared to PHHs from non-HCC patients and the HepG2 and Huh7 cells at different levels (transcript, protein, function). Our analyses showed successful isolation of PHCs with a purity of 50–73% (CK18+). The transcript data revealed that changes in mRNA expression levels had already occurred in HCC-PHHs. While many genes were overexpressed in PHCs and HCC-PHHs, the changes were mostly not translated to the protein level. Downregulated metabolic key players of PHCs revealed a correlation with malign transformation and were predominantly pronounced in multilocular HCC. Therefore, HCLs failed to reflect these expression patterns of PHCs at the transcript and protein levels. The metabolic characteristics of PHCs are closer to those of HCC-PHHs than to HCLs. This should be taken into account for future optimized tumor metabolism research. Full article
(This article belongs to the Special Issue Innovations in Early Cancer Diagnostics and Therapeutics)
Show Figures

Figure 1

11 pages, 2341 KiB  
Article
Kynurenine Is the Main Metabolite of Tryptophan Degradation by Tryptophan 2,3-Dioxygenase in HepaRG Tumor Cells
by Hani Oweira, Imad Lahdou, Stefan Mehrle, Elias Khajeh, Rajan Nikbakhsh, Omid Ghamarnejad, Peter Terness, Christoph Reißfelder, Mahmoud Sadeghi and Ali Ramouz
J. Clin. Med. 2022, 11(16), 4794; https://doi.org/10.3390/jcm11164794 - 16 Aug 2022
Cited by 6 | Viewed by 2699 | Correction
Abstract
There are two main enzymes that convert tryptophan (Trp) to kynurenine (Kyn): tryptophan-2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Kyn accumulation can promote immunosuppression in certain cancers. In this study, we investigated Trp degradation to Kyn by IDO and TDO in primary human hepatocytes [...] Read more.
There are two main enzymes that convert tryptophan (Trp) to kynurenine (Kyn): tryptophan-2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO). Kyn accumulation can promote immunosuppression in certain cancers. In this study, we investigated Trp degradation to Kyn by IDO and TDO in primary human hepatocytes (PHH) and tumoral HepaRG cells. To quantify Trp-degradation and Kyn-accumulation, using reversed-phase high-pressure liquid chromatography, the levels of Trp and Kyn were determined in the culture media of PHH and HepaRG cells. The role of IDO in Trp metabolism was investigated by activating IDO with IFN-γ and inhibiting IDO with 1-methyl-tryptophan (1-DL-MT). The role of TDO was investigated using one of two TDO inhibitors: 680C91 or LM10. Real-time PCR was used to measure TDO and IDO expression. Trp was degraded in both PHH and HepaRG cells, but degradation was higher in PHH cells. However, Kyn accumulation was higher in the supernatants of HepaRG cells. Stimulating IDO with IFN-γ did not significantly affect Trp degradation and Kyn accumulation, even though it strongly upregulated IDO expression. Inhibiting IDO with 1-DL-MT also had no effect on Trp degradation. In contrast, inhibiting TDO with 680C91 or LM10 significantly reduced Trp degradation. The expression of TDO but not of IDO correlated positively with Kyn accumulation in the HepaRG cell culture media. Furthermore, TDO degraded L-Trp but not D-Trp in HepaRG cells. Kyn is the main metabolite of Trp degradation by TDO in HepaRG cells. The accumulation of Kyn in HepaRG cells could be a key mechanism for tumor immune resistance. Two TDO inhibitors, 680C91 and LM10, could be useful in immunotherapy for liver cancers. Full article
Show Figures

Figure 1

18 pages, 805 KiB  
Article
Primary-like Human Hepatocytes Genetically Engineered to Obtain Proliferation Competence as a Capable Application for Energy Metabolism Experiments in In Vitro Oncologic Liver Models
by Andrea Scheffschick, Jonas Babel, Sebastian Sperling, Julia Nerusch, Natalie Herzog, Daniel Seehofer and Georg Damm
Biology 2022, 11(8), 1195; https://doi.org/10.3390/biology11081195 - 9 Aug 2022
Cited by 2 | Viewed by 3164
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by lipid accumulation in the liver, is the most common cause of liver diseases in Western countries. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC); however, in vitro evaluation of hepatic cancerogenesis fails due [...] Read more.
Non-alcoholic fatty liver disease (NAFLD), characterized by lipid accumulation in the liver, is the most common cause of liver diseases in Western countries. NAFLD is a major risk factor for developing hepatocellular carcinoma (HCC); however, in vitro evaluation of hepatic cancerogenesis fails due to a lack of liver models displaying a proliferation of hepatocytes. Originally designed to overcome primary human hepatocyte (PHH) shortages, upcyte hepatocytes were engineered to obtain continuous proliferation and, therefore, could be a suitable tool for HCC research. We generated upcyte hepatocytes, termed HepaFH3 cells, and compared their metabolic characteristics to HepG2 hepatoma cells and PHHs isolated from resected livers. For displaying NAFLD-related HCCs, we induced steatosis in all liver models. Lipid accumulation, lipotoxicity and energy metabolism were characterized using biochemical assays and Western blot analysis. We showed that proliferating HepaFH3 cells resemble HepG2, both showing a higher glucose uptake rate, lactate levels and metabolic rate compared to PHHs. Confluent HepaFH3 cells displayed some similarities to PHHs, including higher levels of the transaminases AST and ALT compared to proliferating HepaFH3 cells. We recommend proliferating HepaFH3 cells as a pre-malignant cellular model for HCC research, while confluent HepaFH3 cells could serve as PHH surrogates for energy metabolism studies. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Graphical abstract

15 pages, 1801 KiB  
Article
Generation of HepG2 Cells with High Expression of Multiple Drug-Metabolizing Enzymes for Drug Discovery Research Using a PITCh System
by Ryosuke Negoro, Mitsuki Tasaka, Sayaka Deguchi, Kazuo Takayama and Takuya Fujita
Cells 2022, 11(10), 1677; https://doi.org/10.3390/cells11101677 - 18 May 2022
Cited by 8 | Viewed by 4762
Abstract
HepG2 cells are an inexpensive hepatocyte model that can be used for repeated experiments, but HepG2 cells do not express major cytochrome P450s (CYPs) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1). In this study, we established CYP3A4–POR–UGT1A1–CYP1A2–CYP2C19–CYP2C9–CYP2D6 (CYPs–UGT1A1) knock-in (KI)-HepG2 cells using [...] Read more.
HepG2 cells are an inexpensive hepatocyte model that can be used for repeated experiments, but HepG2 cells do not express major cytochrome P450s (CYPs) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1). In this study, we established CYP3A4–POR–UGT1A1–CYP1A2–CYP2C19–CYP2C9–CYP2D6 (CYPs–UGT1A1) knock-in (KI)-HepG2 cells using a PITCh system to evaluate whether they could be a new hepatocyte model for pharmaceutical studies. To evaluate whether CYPs–UGT1A1 KI-HepG2 cells express and function with CYPs and UGT1A1, gene expression levels of CYPs and UGT1A1 were analyzed by using real-time PCR, and metabolites of CYPs or UGT1A1 substrates were quantified by HPLC. The expression levels of CYPs and UGT1A1 in the CYPs–UGT1A1 KI-HepG2 cells were comparable to those in primary human hepatocytes (PHHs) cultured for 48 h. The CYPs and UGT1A1 activity levels in the CYPs–UGT1A1 KI-HepG2 cells were much higher than those in the wild-type (WT)-HepG2 cells. These results suggest that the CYPs–UGT1A1 KI-HepG2 cells expressed functional CYPs and UGT1A1. We also confirmed that the CYPs–UGT1A1 KI-HepG2 cells were more sensitive to drug-induced liver toxicity than the WT-HepG2 cells. CYPs–UGT1A1 KI-HepG2 cells could be used to predict drug metabolism and drug-induced liver toxicity, and they promise to be a helpful new hepatocyte model for drug discovery research. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

23 pages, 3755 KiB  
Article
Preclinical Efficacy and Toxicity Analysis of the Pan-Histone Deacetylase Inhibitor Gossypol for the Therapy of Colorectal Cancer or Hepatocellular Carcinoma
by Mascha Mayer, Alexander Berger, Christian Leischner, Olga Renner, Markus Burkard, Alexander Böcker, Seema Noor, Timo Weiland, Thomas S. Weiss, Christian Busch, Ulrich M. Lauer, Stephan C. Bischoff and Sascha Venturelli
Pharmaceuticals 2022, 15(4), 438; https://doi.org/10.3390/ph15040438 - 1 Apr 2022
Cited by 16 | Viewed by 3956
Abstract
Gossypol, a sesquiterpenoid found in cotton seeds, exerts anticancer effects on several tumor entities due to inhibition of DNA synthesis and other mechanisms. In clinical oncology, histone deacetylase inhibitors (HDACi) are applied as anticancer compounds. In this study, we examined whether gossypol harbors [...] Read more.
Gossypol, a sesquiterpenoid found in cotton seeds, exerts anticancer effects on several tumor entities due to inhibition of DNA synthesis and other mechanisms. In clinical oncology, histone deacetylase inhibitors (HDACi) are applied as anticancer compounds. In this study, we examined whether gossypol harbors HDAC inhibiting activity. In vitro analyses showed that gossypol inhibited class I, II, and IV HDAC, displaying the capability to laterally interact with the respective catalytic center and is, therefore, classified as a pan-HDAC inhibitor. Next, we studied the effects of gossypol on human-derived hepatoma (HepG2) and colon carcinoma (HCT-116) cell lines and found that gossypol induced hyperacetylation of histone protein H3 and/or tubulin within 6 h. Furthermore, incubation with different concentrations of gossypol (5–50 µM) over a time period of 96 h led to a prominent reduction in cellular viability and proliferation of hepatoma (HepG2, Hep3B) and colon carcinoma (HCT-116, HT-29) cells. In-depth analysis of underlying mechanisms showed that gossypol induced apoptosis via caspase activation. For pre-clinical evaluation, toxicity analyses showed toxic effects of gossypol in vitro toward non-malignant primary hepatocytes (PHH), the colon-derived fibroblast cell line CCD-18Co, and the intestinal epithelial cell line CCD 841 CoN at concentrations of ≥5 µM, and embryotoxicity in chicken embryos at ≥2.5 µM. In conclusion, the pronounced inhibitory capacity of gossypol on cancer cells was characterized, and pan-HDACi activity was detected in silico, in vitro, by inhibiting individual HDAC isoenzymes, and on protein level by determining histone acetylation. However, for clinical application, further chemical optimization is required to decrease cellular toxicity. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

20 pages, 1673 KiB  
Article
IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates Virus Entry and Infection
by Massimo Palatini, Simon Franz Müller, Michael Kirstgen, Silke Leiting, Felix Lehmann, Lena Soppa, Nora Goldmann, Christin Müller, Kira Alessandra Alicia Theresa Lowjaga, Jörg Alber, Giuliano Ciarimboli, John Ziebuhr, Dieter Glebe and Joachim Geyer
Viruses 2022, 14(4), 727; https://doi.org/10.3390/v14040727 - 30 Mar 2022
Cited by 22 | Viewed by 5040
Abstract
The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this [...] Read more.
The Na+/taurocholate co-transporting polypeptide (NTCP, gene symbol SLC10A1) is both a physiological bile acid transporter and the high-affinity hepatic receptor for the hepatitis B and D viruses (HBV/HDV). Virus entry via endocytosis of the virus/NTCP complex involves co-factors, but this process is not fully understood. As part of the innate immunity, interferon-induced transmembrane proteins (IFITM) 1–3 have been characterized as virus entry-restricting factors for many viruses. The present study identified IFITM3 as a novel protein–protein interaction (PPI) partner of NTCP based on membrane yeast-two hybrid and co-immunoprecipitation experiments. Surprisingly, IFITM3 knockdown significantly reduced in vitro HBV infection rates of NTCP-expressing HuH7 cells and primary human hepatocytes (PHHs). In addition, HuH7-NTCP cells showed significantly lower HDV infection rates, whereas infection with influenza A virus was increased. HBV-derived myr-preS1 peptide binding to HuH7-NTCP cells was intact even under IFITM3 knockdown, suggesting that IFITM3-mediated HBV/HDV infection enhancement occurs in a step subsequent to the viral attachment to NTCP. In conclusion, IFITM3 was identified as a novel NTCP co-factor that significantly affects in vitro infection with HBV and HDV in NTCP-expressing hepatoma cells and PHHs. While there is clear evidence for a direct PPI between IFITM3 and NTCP, the specific mechanism by which this PPI facilitates the infection process remains to be identified in future studies. Full article
(This article belongs to the Special Issue Viral Entry Inhibitors 2022)
Show Figures

Figure 1

16 pages, 4607 KiB  
Article
Transcriptomics Reveals Discordant Lipid Metabolism Effects between In Vitro Models Exposed to Elafibranor and Liver Samples of NAFLD Patients after Bariatric Surgery
by Joost Boeckmans, Alexandra Gatzios, Anja Heymans, Matthias Rombaut, Vera Rogiers, Joery De Kock, Tamara Vanhaecke and Robim M. Rodrigues
Cells 2022, 11(5), 893; https://doi.org/10.3390/cells11050893 - 4 Mar 2022
Cited by 10 | Viewed by 4766
Abstract
Background and aims: Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in [...] Read more.
Background and aims: Non-alcoholic steatohepatitis (NASH) is a life-threatening stage of non-alcoholic fatty liver disease (NAFLD) for which no drugs have been approved. We have previously shown that human-derived hepatic in vitro models can be used to mimic key cellular mechanisms involved in the progression of NASH. In the present study, we first characterize the transcriptome of multiple in vitro NASH models. Subsequently, we investigate how elafibranor, which is a peroxisome proliferator-activated receptor (PPAR)-α/δ agonist that has recently failed a phase 3 clinical trial as a potential anti-NASH compound, modulates the transcriptome of these models. Finally, we compare the elafibranor-induced gene expression modulation to transcriptome data of patients with improved/resolved NAFLD/NASH upon bariatric surgery, which is the only proven clinical NASH therapy. Methods: Human whole genome microarrays were used for the transcriptomics evaluation of hepatic in vitro models. Comparison to publicly available clinical datasets was conducted using multiple bioinformatic application tools. Results: Primary human hepatocytes (PHH), HepaRG, and human skin stem cell-derived hepatic progenitors (hSKP-HPC) exposed to NASH-inducing triggers exhibit up to 35% overlap with datasets of liver samples from NASH patients. Exposure of the in vitro NASH models to elafibranor partially reversed the transcriptional modulations, predicting an inhibition of toll-like receptor (TLR)-2/4/9-mediated inflammatory responses, NFκB-signaling, hepatic fibrosis, and leukocyte migration. These transcriptomic changes were also observed in the datasets of liver samples of patients with resolved NASH. Peroxisome Proliferator Activated Receptor Alpha (PPARA), PPARG Coactivator 1 Alpha (PPARGC1A), and Sirtuin 1 (SIRT1) were identified as the major common upstream regulators upon exposure to elafibranor. Analysis of the downstream mechanistic networks further revealed that angiopoietin Like 4 (ANGPTL4), pyruvate dehydrogenase kinase 4 (PDK4), and perilipin 2 (PLIN2), which are involved in the promotion of hepatic lipid accumulation, were also commonly upregulated by elafibranor in all in vitro NASH models. Contrarily, these genes were not upregulated in liver samples of patients with resolved NASH. Conclusion: Transcriptomics comparison between in vitro NASH models exposed to elafibranor and clinical datasets of NAFLD patients after bariatric surgery reveals commonly modulated anti-inflammatory responses, but discordant modulations of key factors in lipid metabolism. This discordant adverse effect of elafibranor deserves further investigation when assessing PPAR-α/δ agonism as a potential anti-NASH therapy. Full article
(This article belongs to the Special Issue The Role of PPARs in Disease II)
Show Figures

Figure 1

Back to TopTop