Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,296)

Search Parameters:
Keywords = price relations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4506 KiB  
Article
Interpretable Machine Learning Framework for Corporate Financialization Prediction: A SHAP-Based Analysis of High-Dimensional Data
by Yanhe Wang, Wei Wei, Zhuodong Liu, Jiahe Liu, Yinzhen Lv and Xiangyu Li
Mathematics 2025, 13(15), 2526; https://doi.org/10.3390/math13152526 - 6 Aug 2025
Abstract
High-dimensional prediction problems with complex non-linear feature interactions present significant algorithmic challenges in machine learning, particularly when dealing with imbalanced datasets and multicollinearity issues. This study proposes an innovative Shapley Additive Explanations (SHAP)-enhanced machine learning framework that integrates SHAP with advanced ensemble methods [...] Read more.
High-dimensional prediction problems with complex non-linear feature interactions present significant algorithmic challenges in machine learning, particularly when dealing with imbalanced datasets and multicollinearity issues. This study proposes an innovative Shapley Additive Explanations (SHAP)-enhanced machine learning framework that integrates SHAP with advanced ensemble methods for interpretable financialization prediction. The methodology simultaneously addresses high-dimensional feature selection using 40 independent variables (19 CSR-related and 21 financialization-related), multicollinearity issues, and model interpretability requirements. Using a comprehensive dataset of 25,642 observations from 3776 Chinese A-share companies (2011–2022), we implement nine optimized machine learning algorithms with hyperparameter tuning via the Hippopotamus Optimization algorithm and five-fold cross-validation. XGBoost demonstrates superior performance with 99.34% explained variance, achieving an RMSE of 0.082 and R2 of 0.299. SHAP analysis reveals non-linear U-shaped relationships between key predictors and financialization outcomes, with critical thresholds at approximately 10 for CSR_SocR, 1.5 for CSR_S, and 5 for CSR_CV. SOE status, EPU, ownership concentration, firm size, and housing prices emerge as the most influential predictors. Notable shifts in factor importance occur during the COVID-19 pandemic period (2020–2022). This work contributes a scalable, interpretable machine learning architecture for high-dimensional financial prediction problems, with applications in risk assessment, portfolio optimization, and regulatory monitoring systems. Full article
Show Figures

Figure 1

19 pages, 790 KiB  
Article
How Does the Power Generation Mix Affect the Market Value of US Energy Companies?
by Silvia Bressan
J. Risk Financial Manag. 2025, 18(8), 437; https://doi.org/10.3390/jrfm18080437 - 6 Aug 2025
Abstract
To remain competitive in the decarbonization process of the economy worldwide, energy companies must preserve their market value to attract new investors and remain resilient throughout the transition to net zero. This article examines the market value of US energy companies during the [...] Read more.
To remain competitive in the decarbonization process of the economy worldwide, energy companies must preserve their market value to attract new investors and remain resilient throughout the transition to net zero. This article examines the market value of US energy companies during the period 2012–2024 in relation to their power generation mix. Panel regression analyses reveal that Tobin’s q and price-to-book ratios increase significantly for solar and wind power, while they experience moderate increases for natural gas power. In contrast, Tobin’s q and price-to-book ratios decline for nuclear and coal power. Furthermore, accounting-based profitability, measured by the return on assets (ROA), does not show significant variation with any type of power generation. The findings suggest that market investors prefer solar, wind, and natural gas power generation, thereby attributing greater value (that is, demanding lower risk compensation) to green companies compared to traditional ones. These insights provide guidance to executives, investors, and policy makers on how the power generation mix can influence strategic decisions in the energy sector. Full article
(This article belongs to the Special Issue Linkage Between Energy and Financial Markets)
Show Figures

Figure 1

22 pages, 2208 KiB  
Article
Macroeconomic Effects of Oil Price Shocks in the Context of Geopolitical Events: Evidence from Selected European Countries
by Mariola Piłatowska and Andrzej Geise
Energies 2025, 18(15), 4165; https://doi.org/10.3390/en18154165 - 6 Aug 2025
Abstract
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as [...] Read more.
For a long time, the explanation of the various determinants of oil price fluctuations and their impact on economic activity has been based on the supply and demand mechanism. However, with various volatile changes in the international situation in recent years, such as threats to public health and an increase in regional conflicts, special attention has been paid to the geopolitical context as an additional driver of oil price fluctuations. This study examines the relationship between oil price changes and GDP growth and other macroeconomic variables from the perspective of the vulnerability of oil-importing and oil-exporting countries to unexpected oil price shocks, driven by tense geopolitical events, in three European countries (Norway, Germany, and Poland). We apply the Structural Vector Autoregressive (SVAR) model and orthogonalized impulse response functions, based on quarterly data, in regard to two samples: the first spans 1995Q1–2019Q4 (pre-2020 sample), with relatively gradual changes in oil prices, and the second spans 1995Q1–2024Q2 (whole sample), with sudden fluctuations in oil prices due to geopolitical developments. A key finding of this research is that vulnerability to unpredictable oil price shocks related to geopolitical tensions is higher than in regard to expected gradual changes in oil prices, both in oil-importing and oil-exporting countries. Different causality patterns and stronger responses in regard to GDP growth during the period, including in regard to tense geopolitical events in comparison to the pre-2020 sample, lead to the belief that economies are not more resilient to oil price shocks as has been suggested by some studies, which referred to periods that were not driven by geopolitical events. Our research also suggests that countries implementing policies to reduce oil dependency and promote investment in alternative energy sources are better equipped to mitigate the adverse effects of oil price shocks. Full article
(This article belongs to the Special Issue Energy and Environmental Economic Theory and Policy)
Show Figures

Figure 1

28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 208
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 285
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

16 pages, 263 KiB  
Article
Hospitality in Crisis: Evaluating the Downside Risks and Market Sensitivity of Hospitality REITs
by Davinder Malhotra and Raymond Poteau
Int. J. Financial Stud. 2025, 13(3), 140; https://doi.org/10.3390/ijfs13030140 - 1 Aug 2025
Viewed by 223
Abstract
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to [...] Read more.
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to explore their unique cyclical and macroeconomic sensitivities. This study looks at the risk-adjusted performance of Hospitality Real Estate Investment Trusts (REITs) in relation to more general REIT indexes and the S&P 500 Index. The study reveals that monthly returns of Hospitality REITs increasingly move in tandem with the stock markets during financial crises, which reduces their historical function as portfolio diversifiers. Investing in Hospitality REITs exposes one to the hospitality sector; however, these investments carry notable risks and provide little protection, particularly during economic upheavals. Furthermore, the study reveals that Hospitality REITs underperform on a risk-adjusted basis relative to benchmark indexes. The monthly returns of REITs show significant volatility during the post-COVID-19 era, which causes return-to-risk ratios to be below those of benchmark indexes. Estimates from multi-factor models indicate negative alpha values across conditional models, indicating that macroeconomic variables cause unremunerated risks. This industry shows great sensitivity to market beta and size and value determinants. Hospitality REITs’ susceptibility comes from their showing the most possibility for exceptional losses across asset classes under Value at Risk (VaR) and Conditional Value at Risk (CvaR) downside risk assessments. The findings have implications for investors and portfolio managers, suggesting that Hospitality REITs may not offer consistent diversification benefits during downturns but can serve a tactical role in procyclical investment strategies. Full article
12 pages, 500 KiB  
Review
Beyond the Pill: Mapping Process-Oriented Decision Support Models in Pharmaceutical Policy
by Foteini Theiakou, Catherine Kastanioti, Dimitris Zavras and Dimitrios Rekkas
Healthcare 2025, 13(15), 1861; https://doi.org/10.3390/healthcare13151861 - 30 Jul 2025
Viewed by 242
Abstract
Background: The quality of decision-making processes is increasingly recognized as critical to public trust and policy sustainability. Objectives: This narrative review aims to identify and describe process-focused decision support models (DSMs) applied in pharmaceutical policy, and to examine their potential contributions [...] Read more.
Background: The quality of decision-making processes is increasingly recognized as critical to public trust and policy sustainability. Objectives: This narrative review aims to identify and describe process-focused decision support models (DSMs) applied in pharmaceutical policy, and to examine their potential contributions to improving procedural quality in decisions related to pricing, reimbursement, and access to medicines. Methods: Relevant peer-reviewed and gray literature published between 2000 and 2025 was considered, drawing from key databases (e.g., PubMed and Scopus) and international policy reports (e.g., WHO, ISPOR, and HTA agencies). Studies were included if they provided insights into DSMs addressing at least one dimension of decision process quality. Results: Findings are synthesized narratively and organized by tool type, application context, and key quality dimensions. Frequently referenced tools included the Quality of Decision-Making Orientation Scheme (QoDoS), WHO-INTEGRATE, and AGREE II. QoDoS emerged as the only tool applied across regulatory, HTA, and industry settings, evaluating both individual- and organizational-level practices. WHO-INTEGRATE highlighted equity and legitimacy considerations but lacked a structured format. Overall, most tools demonstrated benefits in promoting internal consistency, transparency, and stakeholder engagement; however, their adoption remains limited, especially in low- and middle-income countries. Conclusions: Process-focused DSMs offer promising avenues for enhancing transparency, consistency, and legitimacy in pharmaceutical policy. Further exploration is needed to standardize evaluation approaches and expand the use of DSMs in diverse health systems. Full article
Show Figures

Figure 1

21 pages, 6098 KiB  
Article
Beyond a Single Story: The Complex and Varied Patterns of Park Accessibility Across China’s Emerging Cities
by Mengqi Liu and Toru Terada
Land 2025, 14(8), 1552; https://doi.org/10.3390/land14081552 - 28 Jul 2025
Viewed by 201
Abstract
China’s rapid urbanization has driven tremendous socioeconomic development while posing new forms of social–spatial inequalities that challenge environmental sustainability and spatial justice. This study investigates urban park-accessibility patterns across 10 s-tier provincial capital cities in China, examining how these patterns relate to housing-price [...] Read more.
China’s rapid urbanization has driven tremendous socioeconomic development while posing new forms of social–spatial inequalities that challenge environmental sustainability and spatial justice. This study investigates urban park-accessibility patterns across 10 s-tier provincial capital cities in China, examining how these patterns relate to housing-price dynamics to reveal diverse manifestations of social–spatial (in)justice. Using comprehensive spatial analysis grounded in distributive justice principles, we measure park accessibility through multiple metrics: distance to the nearest park, park size, and the number of parks within a 15 min walk from residential communities. Our findings reveal significant variation in park accessibility across these cities, with distinctive patterns emerging in the relationship between housing prices and park access that reflect different forms of social–spatial exclusion and inclusion. While most cities demonstrate an unbalanced spatial distribution of parks, they exhibit different forms of this disparity. Some cities show consistent park access across housing-price categories, while others display correlations between high housing prices and superior park accessibility. We argue that these divergent patterns reflect each city’s unique combination of economic development trajectory, politically strategic positioning within national urban hierarchies, and geographical constraints. Through this comparative analysis of second-tier cities, this study contributes to broader understandings of social–spatial (in)justice and urban environmental inequalities within China’s urbanization process, highlighting the need for place-specific approaches to achieving equitable access to urban amenities. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

25 pages, 1658 KiB  
Article
Energy-Related Carbon Emissions in Mega City in Developing Country: Patterns and Determinants Revealed by Hong Kong
by Fei Wang, Changlong Sun, Si Chen, Qiang Zhou and Changjian Wang
Sustainability 2025, 17(15), 6854; https://doi.org/10.3390/su17156854 - 28 Jul 2025
Viewed by 235
Abstract
Cities serve as the primary arenas for achieving the strategic objectives of “carbon peak and carbon neutrality”. This study employed the LMDI method to systematically analyze the evolution trend of energy-related carbon emissions in Hong Kong and their influencing factors from 1980 to [...] Read more.
Cities serve as the primary arenas for achieving the strategic objectives of “carbon peak and carbon neutrality”. This study employed the LMDI method to systematically analyze the evolution trend of energy-related carbon emissions in Hong Kong and their influencing factors from 1980 to 2023. The main findings are as follows: (1) Hong Kong’s energy consumption structure remains dominated by coal and oil. Influenced by energy prices, significant shifts in this structure occurred across different periods. Imported electricity from mainland China, in particular, has exerted a promoting effect on the optimization of its energy consumption mix. (2) Economic output and population concentration are the primary drivers of increased carbon emissions. However, the contribution of economic growth to carbon emissions has gradually weakened in recent years due to a lack of new growth drivers. (3) Energy consumption intensity, energy consumption structure, and carbon intensity are the primary influencing factors in curbing carbon emissions. Among these, the carbon reduction impact of energy consumption intensity is the most significant. Hong Kong should continue to adopt a robust strategy for controlling total energy consumption to effectively mitigate carbon emissions. Additionally, it should remain vigilant regarding the potential implications of future energy price fluctuations. It is also essential to sustain cross-border energy cooperation, primarily based on electricity imports from the Pearl River Delta, while simultaneously expanding international and domestic supply channels for natural gas. Full article
(This article belongs to the Special Issue Low Carbon Energy and Sustainability—2nd Edition)
Show Figures

Figure 1

25 pages, 837 KiB  
Article
DASF-Net: A Multimodal Framework for Stock Price Forecasting with Diffusion-Based Graph Learning and Optimized Sentiment Fusion
by Nhat-Hai Nguyen, Thi-Thu Nguyen and Quan T. Ngo
J. Risk Financial Manag. 2025, 18(8), 417; https://doi.org/10.3390/jrfm18080417 - 28 Jul 2025
Viewed by 522
Abstract
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive [...] Read more.
Stock price forecasting remains a persistent challenge in time series analysis due to complex inter-stock relationships and dynamic textual signals such as financial news. While Graph Neural Networks (GNNs) can model relational structures, they often struggle with capturing higher-order dependencies and are sensitive to noise. Moreover, sentiment signals are typically aggregated using fixed time windows, which may introduce temporal bias. To address these issues, we propose DASF-Net (Diffusion-Aware Sentiment Fusion Network), a multimodal framework that integrates structural and textual information for robust prediction. DASF-Net leverages diffusion processes over two complementary financial graphs—one based on industry relationships, the other on fundamental indicators—to learn richer stock representations. Simultaneously, sentiment embeddings extracted from financial news using FinBERT are aggregated over an empirically optimized window to preserve temporal relevance. These modalities are fused via a multi-head attention mechanism and passed to a temporal forecasting module. DASF-Net integrates daily stock prices and news sentiment, using a 3-day sentiment aggregation window, to forecast stock prices over daily horizons (1–3 days). Experiments on 12 large-cap S&P 500 stocks over four years demonstrate that DASF-Net outperforms competitive baselines, achieving up to 91.6% relative reduction in Mean Squared Error (MSE). Results highlight the effectiveness of combining graph diffusion and sentiment-aware features for improved financial forecasting. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

12 pages, 1067 KiB  
Article
Consumer Perception and Willingness to Purchase Chicken Meat from Algae-Fed Broilers: A Survey in Flanders (Belgium)
by Sofie Van Nerom, Filip Van Immerseel, Johan Robbens and Evelyne Delezie
Phycology 2025, 5(3), 33; https://doi.org/10.3390/phycology5030033 - 27 Jul 2025
Viewed by 194
Abstract
The demand for sustainable animal production is increasing. Microalgae such as Chlorella and Spirulina show promise as sustainable and functional ingredients in animal (poultry) feed. However, little is known about consumer perceptions regarding the use of algae in broiler diets and potential effects [...] Read more.
The demand for sustainable animal production is increasing. Microalgae such as Chlorella and Spirulina show promise as sustainable and functional ingredients in animal (poultry) feed. However, little is known about consumer perceptions regarding the use of algae in broiler diets and potential effects of algae on chicken meat. Residents of Flanders (Belgium) were surveyed to evaluate consumer knowledge, attitudes and willingness to buy chicken meat produced with algae-supplemented feed. Demographic data were collected, and both descriptive and inferential statistics were applied to assess influencing factors (n = 275 respondents who purchase chicken meat). While most respondents (69.6%) had tasted macroalgae (seaweed), only 11.4% and 24.6% indicated having tasted Chlorella and Spirulina before, respectively. Health, taste and safety were the most important drivers for consuming algae. Meat quality was the most important factor when purchasing chicken meat, while organic production was least valued. Regarding algae-fed chicken, 72.5% expressed willingness to purchase meat labeled as such, and 83.7% would buy algae-fed chicken regardless of its color. Sustainability beliefs significantly influenced willingness to accept a yellower meat color (β = 0.42 to 0.66, p < 0.001). Educational level and age also played a role, with higher-educated consumers showing greater acceptance. The influence of age was also related to the price of the meat, with consumers over 30 expressing a greater willingness to pay more than young people (under 30). Despite limited general knowledge about microalgae, the consumers surveyed are open to the idea of algae-fed chicken meat, particularly when it is framed as more sustainable. Clear ingredient labeling and consumer education may further support market acceptance. Full article
Show Figures

Figure 1

26 pages, 1579 KiB  
Article
Forecasting Infrastructure Needs, Environmental Impacts, and Dynamic Pricing for Electric Vehicle Charging
by Osama Jabr, Ferheen Ayaz, Maziar Nekovee and Nagham Saeed
World Electr. Veh. J. 2025, 16(8), 410; https://doi.org/10.3390/wevj16080410 - 22 Jul 2025
Viewed by 296
Abstract
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on [...] Read more.
In recent years, carbon dioxide (CO2) emissions have increased at the fastest rates ever recorded. This is a trend that contradicts global efforts to stabilise greenhouse gas (GHG) concentrations and prevent long-term climate change. Over 90% of global transport relies on oil-based fuels. The continued use of diesel and petrol raises concerns related to oil costs, supply security, GHG emissions, and the release of air pollutants and volatile organic compounds. This study explored electric vehicle (EV) charging networks by assessing environmental impacts through GHG and petroleum savings, developing dynamic pricing strategies, and forecasting infrastructure needs. A substantial dataset of over 259,000 EV charging records from Palo Alto, California, was statistically analysed. Machine learning models were applied to generate insights that support sustainable and economically viable electric transport planning for policymakers, urban planners, and other stakeholders. Findings indicate that GHG and gasoline savings are directly proportional to energy consumed, with conversion rates of 0.42 kg CO2 and 0.125 gallons per kilowatt-hour (kWh), respectively. Additionally, dynamic pricing strategies such as a 20% discount on underutilised days and a 15% surcharge during peak hours are proposed to optimise charging behaviour and improve station efficiency. Full article
Show Figures

Figure 1

24 pages, 2758 KiB  
Article
A Techno-Economic Analysis of Integrating an Urban Biorefinery Process Within a Wastewater Treatment Plant to Produce Sustainable Wood Adhesives
by Blake Foret, William M. Chirdon, Rafael Hernandez, Dhan Lord B. Fortela, Emmanuel Revellame, Daniel Gang, Jalel Ben Hmida, William E. Holmes and Mark E. Zappi
Sustainability 2025, 17(15), 6679; https://doi.org/10.3390/su17156679 - 22 Jul 2025
Viewed by 404
Abstract
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal [...] Read more.
Societies are aiming to have a higher ecological consciousness in wastewater treatment operations and achieve a more sustainable future. With this said, global demands for larger quantities of resources and the consequent waste generated will inevitably lead to the exhaustion of current municipal wastewater treatment works. The utilization of biosolids (particularly microbial proteins) from wastewater treatment operations could generate a sustainable bio-adhesive for the wood industry, reduce carbon footprint, mitigate health concerns related to the use of carcinogenic components, and support a more circular economic option for wastewater treatment. A techno-economic analysis for three 10 MGD wastewater treatment operations producing roughly 11,300 dry pounds of biosolids per day, in conjunction with co-feedstock defatted soy flour protein at varying ratios (i.e., 0%, 15%, and 50% wet weight), was conducted. Aspen Capital Cost Estimator V12 was used to design and estimate installed equipment additions for wastewater treatment plant integration into an urban biorefinery process. Due to the mechanical attributes and market competition, the chosen selling prices of each adhesive per pound were set for analysis as USD 0.75 for Plant Option P1, USD 0.85 for Plant Option P2, and USD 1.00 for Plant Option P3. Over a 20-year life, each plant option demonstrated economic viability with high NPVs of USD 107.9M, USD 178.7M, and USD 502.2M and internal rates of return (IRRs) of 24.0%, 29.0%, and 44.2% respectively. The options examined have low production costs of USD 0.14 and USD 0.19 per pound, minimum selling prices of USD 0.42–USD 0.51 per pound, resulting in between 2- and 4-year payback periods. Sensitivity analysis shows the effects biosolid production fluctuations, raw material market price, and adhesive selling price have on economics. The results proved profitable even with large variations in the feedstock and raw material prices, requiring low market selling prices to reach the hurdle rate of examination. This technology is economically enticing, and the positive environmental impact of waste utilization encourages further development and analysis of the bio-adhesive process. Full article
Show Figures

Figure 1

28 pages, 3894 KiB  
Review
Where Business Meets Location Intelligence: A Bibliometric Analysis of Geomarketing Research in Retail
by Cristiana Tudor, Aura Girlovan and Cosmin-Alin Botoroga
ISPRS Int. J. Geo-Inf. 2025, 14(8), 282; https://doi.org/10.3390/ijgi14080282 - 22 Jul 2025
Viewed by 489
Abstract
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of [...] Read more.
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of GIS integration into academic marketing literature remains ambiguous. Clarifying this uncertainty is beneficial for advancing theoretical understanding and ensuring retail strategies fully leverage robust, data-driven spatial intelligence. To examine the intellectual development of the field, co-occurrence analysis, topic mapping, and citation structure visualization were performed on 4952 peer-reviewed articles using the Bibliometrix R package (version 4.3.3) within R software (version 4.4.1). The results demonstrate that although GIS-based methods have been effectively incorporated into fields like site selection and spatial segmentation, traditional marketing research has not yet entirely adopted them. One of the study’s key findings is the distinction between “author keywords” and “keywords plus,” where researchers concentrate on novel topics like omnichannel retail, artificial intelligence, and logistics. However, “Keywords plus” still refers to more traditional terms such as pricing, customer satisfaction, and consumer behavior. This discrepancy presents a misalignment between current research trends and indexed classification practices. Although the mainstream retail research lacks terminology connected to geomarketing, a theme evolution analysis reveals a growing focus on technology-driven and sustainability-related concepts associated with the Retail 4.0 and 5.0 paradigms. These findings underscore a conceptual and structural deficiency in the literature and indicate the necessity for enhanced integration of GIS and spatial decision support systems (SDSS) in retail marketing. Full article
Show Figures

Figure 1

21 pages, 1074 KiB  
Article
Modeling a Financial Controlling System for Managing Transfer Pricing Operations
by Oleksii Kalivoshko, Volodymyr Kraievskyi, Bohdan Hnatkivskyi, Alla Savchenko, Nikolay Kiktev, Valentyna Borkovska, Irina Kliopova, Krzysztof Mudryk and Pawel Pysz
Sustainability 2025, 17(14), 6650; https://doi.org/10.3390/su17146650 - 21 Jul 2025
Viewed by 464
Abstract
The management of transfer pricing operations is considered from the perspective of modeling financial and accounting processes for various organizations, using agricultural enterprises as an example. It is demonstrated that the execution of transfer pricing operations between related parties—which may function as responsibility [...] Read more.
The management of transfer pricing operations is considered from the perspective of modeling financial and accounting processes for various organizations, using agricultural enterprises as an example. It is demonstrated that the execution of transfer pricing operations between related parties—which may function as responsibility centers within an organizational holding structure—serves as a managerial lever influencing the financial income and expenses of individual business units. It is revealed that the developed model of managerial accounting for transfer pricing operations, grounded in tax compliance and the balancing of stakeholder interests, is based on two key aspects: first, to ensure the balanced development of the company’s business units, a list of key performance indicators (KPIs) is developed and integrated into a balanced scorecard (BSC), promoting the sustainable and stable operation and growth of the company; second, with access to this list of KPIs, the manager of each business unit can exert indirect influence over a segment of the final product’s value chain by selecting transfer prices that adhere to the arm’s length principle. The practical application of the proposed model is illustrated using previously formed economic operations from the research base. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop