Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = pressure–sinkage model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7967 KiB  
Article
Study on the High-Speed Penetration and Shear Failure Mechanism of Beach Sand
by Jianzhong Zhu, Jiangquan Li, Yun Kong, Mingming Dong, Yuqiong Li and Meng Zou
Materials 2025, 18(9), 1922; https://doi.org/10.3390/ma18091922 - 24 Apr 2025
Viewed by 311
Abstract
In this paper, the contact parameters of beach sand are calibrated based on the discrete element method and the optimal design method, and the obtained parameters by calibration are used as input for the angle of repose simulation. The relative error between angle [...] Read more.
In this paper, the contact parameters of beach sand are calibrated based on the discrete element method and the optimal design method, and the obtained parameters by calibration are used as input for the angle of repose simulation. The relative error between angle of repose simulation results and experimental results is 3.27%. Based on the penetration and shear tests, simulation models were constructed to study the pressure shear failure mechanism of beach sand under high-speed conditions. The high-speed penetration simulation shows that with the increase of the penetration rate, the influence area of the sinkage plate gradually increases, and the stress of sand particles also increases. When the penetration rate increased from 0.5 m/s to 8 m/s, the pressure on the plate increased 12.7 times, indicating that the bearing capacity of the sand increased significantly with the increase of the penetration rate. The high-speed shear simulation shows that in the stable shear stage, the average shear torque initially increases slightly with the increase of speed, and then decreases significantly when the speed exceeds 4 m/s. This is because as the shear rate increases, the disturbance of the soil by the shear plate increases, the velocity of soil particles increases, resulting in a decrease in the number of soil particles in contact with the shear plate, thereby reducing the shear torque. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

14 pages, 3430 KiB  
Article
Agricultural Tire Test: Straw Cover Effect on Reducing Soil Compaction by Cargo Vehicles
by Alberto Kazushi Nagaoka, Aldir Carpes Marques Filho and Kléber Pereira Lanças
AgriEngineering 2024, 6(3), 3016-3029; https://doi.org/10.3390/agriengineering6030173 - 21 Aug 2024
Cited by 1 | Viewed by 1077
Abstract
Agricultural cargo vehicles are responsible for applying severe soil pressures. However, the ground straw cover can attenuate the loads applied by wheels to the soil surface. This research evaluated the effect of three tires, p1—Radial Very Flex, p2—Radial Improved Flex, and a p3—Bias [...] Read more.
Agricultural cargo vehicles are responsible for applying severe soil pressures. However, the ground straw cover can attenuate the loads applied by wheels to the soil surface. This research evaluated the effect of three tires, p1—Radial Very Flex, p2—Radial Improved Flex, and a p3—Bias Ply tire, on three amounts of straw on the soil surface (0, 15, and 30 Mg ha−1). We adopted a completely randomized design (CRD) with a rigid surface for three replications for the total contact area and punctual area claws. The soil bin test verified the deformable surface, tread marks, and soil penetration resistance (SPR). The tire’s claw design determines its punctual contact area, and the construction model determines the total contact area. The contact area in the soil bin increased linearly due to a increase in straw covering, reducing sinkage; p2 to 30 Mg ha−1 straw shows the most significant contact area, p1 and p3 showed no difference. A straw increase from 0 to 30 Mg ha−1 increased the contact areas by 25.5, 38.0, and 20.0% for p1, p2, and p3, respectively. Compared to the rigid surface, the p1 and p3 contact areas in the soil bin increased 6.2, 6.8, and 7.8 times in bare soil, 15, and 30 Mg ha−1; for p2, this increase was up to 4.2, 4.5, and 5.9 times on the same surfaces. Keeping the straw on the soil improves its physical quality by reducing the SPR, so the straw has a buffer function in the wheel–soil relationship. Full article
Show Figures

Figure 1

17 pages, 6194 KiB  
Article
Construction of a Discrete Elemental Model for Clayey Soil Considering Pressure–Sinkage Nonlinear Relationship to Investigate Stress Transfer
by Zhuohuai Guan, Dong Jiang, Min Zhang, Haitong Li, Mei Jin and Tao Jiang
AgriEngineering 2024, 6(3), 2732-2748; https://doi.org/10.3390/agriengineering6030159 - 7 Aug 2024
Cited by 1 | Viewed by 927
Abstract
The discrete element method (DEM) has been extensively utilized to investigate the mechanical properties of granules, particularly their microscopic behavior, overcoming limitations in field tests such as cost, time consumption, and soil condition restrictions. To ensure the development of reliable DEM simulations, proper [...] Read more.
The discrete element method (DEM) has been extensively utilized to investigate the mechanical properties of granules, particularly their microscopic behavior, overcoming limitations in field tests such as cost, time consumption, and soil condition restrictions. To ensure the development of reliable DEM simulations, proper contact model selection and parameter calibration are essential. In this research, a DEM parameter calibration method that could represent the nonlinear relationship between clayey soil pressure and sinkage at different moisture contents was proposed. Firstly, the sinking modulus K and the soil deformation exponent n were identified to reflect the nonlinear pressure–sinkage relationship. Then, sensitive DEM parameters on the soli pressure–sinkage relationship were investigated and calibrated, and the effect of moisture content on them was explored. Finally, the transfer of soil internal stress during subsidence was analyzed using the constructed discrete element model. The average error of the sinking modulus K and the soil deformation exponent n between the DEM and the experimental result at four moisture contents were 4.7% and 4.9%, respectively. The relative error of soil internal stress between simulation and experiment was 6.7%, 4.4%, and 9.7% at depths of 50 mm, 100 mm, and 150 mm, respectively. The soil particle trajectory, soil internal stress distribution, and variations during plate pressure–sinkage progress were analyzed by the constructed DEM model. The results demonstrated good agreement with theoretical models and experimental findings. The proposed clayey soil DEM modeling process that considers the pressure–sinkage nonlinear relationship at different moisture contents can be applied in machine-soil research. Full article
Show Figures

Figure 1

15 pages, 6568 KiB  
Article
Planing Hull Hydrodynamic Performance Prediction Using LincoSim Virtual Towing Tank
by Ermina Begovic, Carlo Bertorello, Raffaele Ponzini and Francesco Salvadore
J. Mar. Sci. Eng. 2024, 12(5), 794; https://doi.org/10.3390/jmse12050794 - 9 May 2024
Cited by 2 | Viewed by 1753
Abstract
This work shows the performance of LincoSim, a web-based virtual towing tank enabling automated and standardized calm water computational fluid dynamics (CFD) data sampling, extending previous published applications to the case of a high-speed hull. The calculations are performed for a 1:10 scale [...] Read more.
This work shows the performance of LincoSim, a web-based virtual towing tank enabling automated and standardized calm water computational fluid dynamics (CFD) data sampling, extending previous published applications to the case of a high-speed hull. The calculations are performed for a 1:10 scale model of a 43 ft powerboat hull form in the Froude number range from 0.3 to 2.0. The counterpart physical model is the experimental fluid dynamics (EFD) campaign performed at the University of Naples Federico II, where the resistance, sinkage and trim data have been measured. The EFD/CFD data comparison is performed and shown with a discussion of the spotted differences. The average percentage differences between the EFD and CFD data for the whole speed range are 1.84, 6.87 and 6.94 for the resistance, dynamic trim, and sinkage, respectively. These results confirm the maturity of the standardized and automated CFD modeling for calm water hydrodynamic analysis included in LincoSim, even at very high Froude numbers. The wetted length of the keel and chine and the wetted surface are calculated from numerical data using the advanced post-processing. Finally, as a work in progress, we test a first comparison for the same hull of the EFD and CFD data, considering two seakeeping conditions for head waves at a given wavelength for two velocity conditions. Also, this kind of analysis confirms the tight correlation between the measured and computed outcomes. This synergic interplay of EFD and CFD can link the advantages of both methods to support hull design but also requires experiment planning and final data analysis to obtain physical parameters not easily measurable in laboratory, such as the wetted surface, wetted lengths, proper viscous contribution, and pressure distribution both in calm water and in waves. Full article
(This article belongs to the Special Issue CFD Applications in Ship and Offshore Hydrodynamics)
Show Figures

Figure 1

31 pages, 8383 KiB  
Article
Evaluation of Ground Pressure, Bearing Capacity, and Sinkage in Rigid-Flexible Tracked Vehicles on Characterized Terrain in Laboratory Conditions
by Omer Rauf, Yang Ning, Chen Ming and Ma Haoxiang
Sensors 2024, 24(6), 1779; https://doi.org/10.3390/s24061779 - 10 Mar 2024
Cited by 4 | Viewed by 2453
Abstract
Trafficability gives tracked vehicles adaptability, stability, and propulsion for various purposes, including deep-sea research in rough terrain. Terrain characteristics affect tracked vehicle mobility. This paper investigates the soil mechanical interaction dynamics between rubber-tracked vehicles and sedimental soils through controlled laboratory-simulated experiments. Focusing on [...] Read more.
Trafficability gives tracked vehicles adaptability, stability, and propulsion for various purposes, including deep-sea research in rough terrain. Terrain characteristics affect tracked vehicle mobility. This paper investigates the soil mechanical interaction dynamics between rubber-tracked vehicles and sedimental soils through controlled laboratory-simulated experiments. Focusing on Bentonite and Diatom sedimental soils, which possess distinct shear properties from typical land soils, the study employs innovative user-written subroutines to characterize mechanical models linked to the RecurDyn simulation environment. The experiment is centered around a dual-tracked crawler, which in itself represents a fully independent vehicle. A new three-dimensional multi-body dynamic simulation model of the tracked vehicle is developed, integrating the moist terrain’s mechanical model. Simulations assess the vehicle’s trafficability and performance, revealing optimal slip ratios for maximum traction force. Additionally, a mathematical model evaluates the vehicle’s tractive trafficability based on slip ratio and primary design parameters. The study offers valuable insights and a practical simulation modeling approach for assessing trafficability, predicting locomotion, optimizing design, and controlling the motion of tracked vehicles across diverse moist terrain conditions. The focus is on the critical factors influencing the mobility of tracked vehicles, precisely the sinkage speed and its relationship with pressure. The study introduces a rubber-tracked vehicle, pressure, and moisture sensors to monitor pressure sinkage and moisture, evaluating cohesive soils (Bentonite/Diatom) in combination with sand and gravel mixtures. Findings reveal that higher moisture content in Bentonite correlates with increased track slippage and sinkage, contrasting with Diatom’s notable compaction and sinkage characteristics. This research enhances precision in terrain assessment, improves tracked vehicle design, and advances terrain mechanics comprehension for off-road exploration, offering valuable insights for vehicle design practices and exploration endeavors. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

14 pages, 13584 KiB  
Article
A Numerical Study on the Influence of Caterpillars to the Resistance Performance of an Amphibious Vehicle
by Febriani Rohma Dhana, Jong-Chun Park and Hyeon-Kyu Yoon
J. Mar. Sci. Eng. 2023, 11(2), 286; https://doi.org/10.3390/jmse11020286 - 27 Jan 2023
Cited by 7 | Viewed by 2181
Abstract
A computational fluid dynamic (CFD) simulation is performed to evaluate the resistance performance of a self-propelled amphibious vessel with caterpillars to be operated as a marine debris collection vessel at hard-to-reach areas. This study focuses on the influence of the addition of caterpillars [...] Read more.
A computational fluid dynamic (CFD) simulation is performed to evaluate the resistance performance of a self-propelled amphibious vessel with caterpillars to be operated as a marine debris collection vessel at hard-to-reach areas. This study focuses on the influence of the addition of caterpillars on the vessel to the resistance performance. To capture the free surface model, the volume of fluid (VOF) method was adopted, and to express the sinkage and trim acting on the ship the Dynamic Fluid-body Interaction (DFBI) model was applied. A series of numerical simulations for resistance performance were carried out in the range of Froude number (Fn) of 0.12–0.32 for the vessels with and without caterpillars. A model test was carried out independently to verify the numerical simulation of resistance, and it indicated that the present simulation is valid with relative errors of less than 2% over the entire speed range. In subsequence, the resistance performance of the ship due to the addition of the caterpillars was evaluated, and an increase of nearly 40% at the design speed of Fn = 0.27 could be observed. In addition, in the present amphibious vessel, it was found that the ratio of the pressure resistance occupied in the total resistance was dominant, reaching around 81~92% for both cases. Full article
Show Figures

Figure 1

29 pages, 13040 KiB  
Article
Numerical Study on Multiple Parameters of Sinkage Simulation between the Track Plate of the Deep-Sea Mining Vehicle and the Seafloor Soil
by Pengfei Sun, Haining Lu, Jianmin Yang, Liwen Deng, Mingyue Liu and Shuang Li
J. Mar. Sci. Eng. 2022, 10(11), 1680; https://doi.org/10.3390/jmse10111680 - 7 Nov 2022
Cited by 12 | Viewed by 2664
Abstract
The seafloor soil is characterized by high water content, strong compressibility, and low shear strength. Deep-sea mining vehicles (DSMV) are prone to sinking when walking on the surface of the soil, which will cause significant reduction in traction performance. Therefore, it is necessary [...] Read more.
The seafloor soil is characterized by high water content, strong compressibility, and low shear strength. Deep-sea mining vehicles (DSMV) are prone to sinking when walking on the surface of the soil, which will cause significant reduction in traction performance. Therefore, it is necessary to study the sinkage performance. The track is usually considered the travelling mechanism of the DSMV, and the track plate is an important part of the movement system. The study of the interaction between the track plate and the soil is of great significance to the study of the DSMV’s sinkage performance. In this study, firstly, based on the in situ seafloor soil samples of 1000 m in a region of the South China Sea collected by a box sampler, the physical and mechanical parameters of soil were measured by indoor geotechnical instruments. Secondly, an elastoplastic soil numerical model similar to that of in situ soil was established. Based on coupled Eulerian-Lagrangian (CEL) method, a numerical model of the interaction between the track plate and soil was established. Considering the dynamic process, the structure of the track plate and the physical and mechanical properties of the soil, the numerical simulation were carried out under different conditions, such as different dynamic loading, the plate structural parameters and the soil physical and mechanical properties. It is found that the plate-sinkage curve were significantly influenced by these factors. The findings are as follows, firstly, with the increase in the pressure loading rate, the soil sinkage decreasing at the same pressure. On the other hand, with the increase in velocity, soil flow was accelerated, and the nonlinear relationship between resistance and velocity became more obvious; the L/B ratio of different track plates affects the variation law of the curve, and the maximum sinkage gradually decreases as the ratio of L/B increases; with the increase in the grouser height, the maximum sinkage gradually decreases, and the pressure-sinkage curve changes obviously with the grouser type; and different soil physical and mechanical properties affect the variation of pressure-sinkage curve. Innovatively, the heterogeneous soil stress distribution mode was obtained through the fitting function and Python secondary development. This study can provide a reference for studying the sinkage performance of the DSMV. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 12214 KiB  
Article
Numerical Study on Attitude and Resistance of a Side-Damaged Ship during Steady Flooding
by Wen Xue, Zhiliang Gao and Sangming Xu
J. Mar. Sci. Eng. 2022, 10(10), 1440; https://doi.org/10.3390/jmse10101440 - 6 Oct 2022
Cited by 5 | Viewed by 1953
Abstract
The computational fluid dynamics method is used to analyze the attitude and resistance of a side-damaged frigate DTMB-5415 during steady flooding phase. The volume of fluid method is used to capture the interface between water and air. The shear stress transport k- [...] Read more.
The computational fluid dynamics method is used to analyze the attitude and resistance of a side-damaged frigate DTMB-5415 during steady flooding phase. The volume of fluid method is used to capture the interface between water and air. The shear stress transport k-ω model is employed to include the turbulence effect. The dynamic overlapping grid method is utilized to deal with the mesh update due to the ship motion in the simulation. First, the resistance, floating position and wave profile of an intact ship for different forward speeds are calculated. By comparing the results with experimental data, the calculation method is verified. Then, the resistances, attitudes and flow fields for the ship in intact, side-damaged (symmetrical and asymmetric flooding) and damage-repaired conditions are calculated and compared. For the side-damaged condition, the main change of the ship’s attitude is that the ship’s sinkage increases as the forward speed increases. Compared with symmetrical flooding, the ship’s heel increases during asymmetric flooding, while the sinkage decreases. For symmetrical flooding, the resistance of the ship increases significantly compared to the intact ship case. The increased resistance is mainly caused by the increase of ship sinkage. The existence of opening that affects the flow field causes additional increase of ship resistance. The pressure resistance is the main component of increased resistance, which is similar to the asymmetric flooding case. Full article
(This article belongs to the Special Issue Hydrodynamic Analysis on Ship Performance)
Show Figures

Figure 1

18 pages, 6405 KiB  
Article
Study on the Pressure–Sinkage Process and Constitutive Model of Deep-Sea Sediment
by Dingbang Wei, Huade Cao and Jianxin Xia
J. Mar. Sci. Eng. 2022, 10(7), 883; https://doi.org/10.3390/jmse10070883 - 27 Jun 2022
Cited by 8 | Viewed by 2129
Abstract
The driving performance of subsea mining vehicles is greatly affected by the pressure–sinkage characteristics of deep-sea sediment. Therefore, it is of great importance to analyze the microscopic properties of deep-sea sediment and establish the corresponding pressure–sinkage model for the safe operation of subsea [...] Read more.
The driving performance of subsea mining vehicles is greatly affected by the pressure–sinkage characteristics of deep-sea sediment. Therefore, it is of great importance to analyze the microscopic properties of deep-sea sediment and establish the corresponding pressure–sinkage model for the safe operation of subsea mining vehicles. Hence, the present paper focuses on the physical properties of deep-sea sediment to provide a preliminary understanding of its pressure–sinkage process and evolution according to the solid–liquid two-phase flow characteristics and particle flow mechanism. In addition, the stress loading time and the rheological theory are applied in order to introduce a four-element model that describes the various pressure–sinkage stages that correspond to each stage of deep-sea sediment evolution. On this basis, the parameters of the pressure–sinkage constitutive model are determined by a specific calculation method. Moreover, a new pressure–sinkage constitutive model of deep-sea sediment that considers the time-variable mechanical properties is established in order to describe the full sinkage process. Finally, research results from the existing literature and experimental data are used to verify the rationality and correctness of the model. The results show that the proposed pressure–sinkage constitutive model is in good agreement with experimental data and is effective in describing the evolution of the mechanical properties and the trend in the sinkage rate of deep-sea sediment at various stages. A comparison with the Kelvin model indicates that the proposed pressure–sinkage constitutive model provides superior accuracy with the use of fewer parameters. Consequently, this study can provide a theoretical basis and technical support for the design of subsea mining vehicles. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 4682 KiB  
Article
A Modified Pressure–Sinkage Model for Studying the Effect of a Hard Layer in Sandy Loam Soil
by Nihal D. Salman, György Pillinger, Muammel M. Hanon and Péter Kiss
Appl. Sci. 2021, 11(12), 5499; https://doi.org/10.3390/app11125499 - 14 Jun 2021
Cited by 5 | Viewed by 2870
Abstract
The applicability of the typical pressure–sinkage models used to characterize the soil’s bearing properties is limited to homogeneous soils (infinite thickness) that have no hard layer. At a given depth, a hard layer can have a considerable impact on the soil’s load-bearing capacity. [...] Read more.
The applicability of the typical pressure–sinkage models used to characterize the soil’s bearing properties is limited to homogeneous soils (infinite thickness) that have no hard layer. At a given depth, a hard layer can have a considerable impact on the soil’s load-bearing capacity. It is thus necessary to alter the pressure–sinkage equation by taking this condition into account when assessing the load-bearing capacity. The present paper aims to determine a simple, high-fidelity model, in terms of soil characterization, that can account for the hard layer affection. To assess hard layer affection in this paper, a plate sinkage test (bevameter) was conducted on sandy loam soil. To this end, the soil was prepared by considering three bulk densities and two soil thickness levels at 7–9% moisture content levels. According to the results, this paper put forth a new perspective and related equations for characterizing bearing performance. The sinkage modulus (k) is an intrinsic soil parameter that has a determined unit of N/cm2 and is significant for managing the bearing performance. The results showed that the new modulus sinkage model incorporates the main factor of the rigid layer effect involving high fidelity that the conventional models have failed to account for. Full article
(This article belongs to the Special Issue Advanced Sensing Technologies for Precision Agriculture)
Show Figures

Figure 1

24 pages, 16515 KiB  
Article
Numerical Investigation of the Resistance of a Zero-Emission Full-Scale Fast Catamaran in Shallow Water
by Guangyu Shi, Alexandros Priftis, Yan Xing-Kaeding, Evangelos Boulougouris, Apostolos D. Papanikolaou, Haibin Wang and Geoff Symonds
J. Mar. Sci. Eng. 2021, 9(6), 563; https://doi.org/10.3390/jmse9060563 - 23 May 2021
Cited by 16 | Viewed by 4027
Abstract
This paper numerically investigates the resistance at full-scale of a zero-emission, high-speed catamaran in both deep and shallow water, with the Froude number ranging from 0.2 to 0.8. The numerical methods are validated by two means: (a) Comparison with available model tests; (b) [...] Read more.
This paper numerically investigates the resistance at full-scale of a zero-emission, high-speed catamaran in both deep and shallow water, with the Froude number ranging from 0.2 to 0.8. The numerical methods are validated by two means: (a) Comparison with available model tests; (b) a blind validation using two different flow solvers. The resistance, sinkage, and trim of the catamaran, as well as the wave pattern, longitudinal wave cuts and crossflow fields, are examined. The total resistance curve in deep water shows a continuous increase with the Froude number, while in shallow water, a hump is witnessed near the critical speed. This difference is mainly caused by the pressure component of total resistance, which is significantly affected by the interaction between the wave systems created by the demihulls. The pressure resistance in deep water is maximised at a Froude number around 0.58, whereas the peak in shallow water is achieved near the critical speed (Froude number ≈ 0.3). Insight into the underlying physics is obtained by analysing the wave creation between the demihulls. Profoundly different wave patterns within the inner region are observed in deep and shallow water. Specifically, in deep water, both crests and troughs are generated and moved astern as the increase of the Froude number. The maximum pressure resistance is accomplished when the secondary trough is created at the stern, leading to the largest trim angle. In contrast, the catamaran generates a critical wave normal to the advance direction in shallow water, which significantly elevates the bow and creates the highest trim angle, as well as pressure resistance. Moreover, significant wave elevations are observed between the demihulls at supercritical speeds in shallow water, which may affect the decision for the location of the wet deck. Full article
(This article belongs to the Special Issue Hydrodynamic Design of Ships)
Show Figures

Figure 1

17 pages, 9214 KiB  
Article
Construction and Experimental Verification of Sloped Terrain Soil Pressure-Sinkage Model
by Guanting Pan, Jingbin Sun, Xiaole Wang, Fuzeng Yang and Zhijie Liu
Agriculture 2021, 11(3), 243; https://doi.org/10.3390/agriculture11030243 - 12 Mar 2021
Cited by 10 | Viewed by 3073
Abstract
The construction of a scientific and effective soil pressure-sinkage model under sloped terrain condition has important guiding significance for the investigation of the soil compaction effect. It is also important for the theoretical calculation of driving resistance and design optimization of the undercarriage [...] Read more.
The construction of a scientific and effective soil pressure-sinkage model under sloped terrain condition has important guiding significance for the investigation of the soil compaction effect. It is also important for the theoretical calculation of driving resistance and design optimization of the undercarriage structure of hillside metal-tracked tractors (HMTs). The classic Bekker’s pressure-sinkage model does not consider the influence of the soil water content, bulk density, slope angle, and other factors; therefore, it cannot be directly used to investigate the relationship between the soil compaction and its sinkage under sloped terrain conditions. To solve this problem, this study first verified that the soil water content and bulk density exert significant effects on the pressure–sinkage relationship under flat terrain condition. Secondly, a pressure-sinkage test was carried out using the quadratic rotation orthogonal combination design method, and the soil water content, density, and slope angle were considered. The pressure-sinkage curves of sloped terrain soils from Yangling and Yangxian in Shaanxi Province, and Huining and Jingning in Gansu Province were obtained. Then the pressure–sinkage parameters (sinkage exponent, cohesive modulus, and frictional modulus) were calculated using the weighted least-squares method. Thirdly, the mathematical relationship between the parameters and the soil water content, bulk density, and slope angle was obtained. Then Bekker’s model was modified to obtain the pressure–sinkage model of sloped terrain. Finally, the control variable method under slope angle of 10°, soil water content of 10%, and bulk density of 2 mg·m−3 were used to validate the model. The results revealed that the root-mean-square error between the calculated pressure value of the model and the measured value of the film pressure sensor was 1.614, 1.601, and 0.822, respectively. In the dynamic operation of a hillside tractor prototype, the calculated pressures between the supporting wheels were close to the measured values. It indicates that the modified soil pressure–sinkage model is more suitable for calculating the force at the bottom of the track between the supporting wheels. It can also provide an important theoretical basis for accurately calculating the pressure–sinkage parameters of sloped terrain soil. Additionally, this approach could provide theoretical and technical support for the rational arrangement of HMT undercarriages to reduce the soil sinkage and driving resistance. Full article
Show Figures

Figure 1

26 pages, 8189 KiB  
Article
Numerical Prediction of Hydrodynamic Performance of Planing Trimaran with a Wave-Piercing Bow
by Guangsheng Su, Hailong Shen and Yumin Su
J. Mar. Sci. Eng. 2020, 8(11), 897; https://doi.org/10.3390/jmse8110897 - 10 Nov 2020
Cited by 15 | Viewed by 4794
Abstract
The central hull is the most important structure in the planing trimaran. In order to gain insight into the relationship between hydrodynamic performance and main hull shape, experimental tests and numerical simulations were carried out for volume Froude Number (FrΔ) [...] Read more.
The central hull is the most important structure in the planing trimaran. In order to gain insight into the relationship between hydrodynamic performance and main hull shape, experimental tests and numerical simulations were carried out for volume Froude Number (FrΔ) ranging from 1.31 to 4.98. Dynamic sinkage and trim in the Dynamic Fluid Body Interaction (DFBI) six-degree-of-freedom model were considered. A validation study carried out by comparison of experimental test results with numerical results showed good consistency. To analyze the process of tunnel penetration and pressure change at the bottom of the boat, numerical simulation results for free surface, bottom streamline, and pressure distribution around the hull are given. A large triangular high-pressure area was observed in the front of the main hull for all volume Froude numbers. Consequently, the central drainage body, in reference to the profile of single planing craft with distinctive resistance performance, was redesigned into a wave-piercing shape. Total resistance, sinkage, and trim angle of the new model were then predicted by numerical method. The results show that the central drainage body has a significant impact on the hydrodynamic performance of the planing trimaran. Furthermore, the wave-piercing shaped main hull has a drag reduction effect. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 5795 KiB  
Article
Mechanical Performances of Typical Robot Feet Intruding into Sands
by Dianlei Han, Rui Zhang, Hua Zhang, Zhenyu Hu and Jianqiao Li
Energies 2020, 13(8), 1867; https://doi.org/10.3390/en13081867 - 11 Apr 2020
Cited by 9 | Viewed by 3060
Abstract
Four kinds of feet with typical structures, referred to as the hemispherical foot, the semicylindrical foot, the rectangular foot and the circular foot, respectively, were designed and manufactured to study the foot–terrain interaction mechanics for legged robots. Three kinds of quartz sand were [...] Read more.
Four kinds of feet with typical structures, referred to as the hemispherical foot, the semicylindrical foot, the rectangular foot and the circular foot, respectively, were designed and manufactured to study the foot–terrain interaction mechanics for legged robots. Three kinds of quartz sand were selected to study how particle size, shape and compactness affected the physical properties of the substrate and the intrusion performance of mechanical feet. The media with smaller particle sizes had higher bulk densities and lower angles of stability, but no obvious rule was found for particle shapes of quartz sand with different sizes. The intrusion resistive forces and pressures of the hemispherical foot on these three kinds of quartz sand were all less compared with the other three mechanical feet. The particle disturbance areas and motion trends were compared under these four kinds of mechanical feet using discrete element method simulations. The intrusion resistive forces of these mechanical feet first increased and then decreased with the increasing particle sizes of the quartz sand. Moreover, the intrusion resistive forces of these mechanical feet on spherical particles were smaller compared with irregular particles. The corresponding resistive forces of the mechanical feet were characterized based on the compactness of the quartz sand. According to the intrusion test data, the classic pressure–sinkage model was modified, and the relationships between intrusion resistive force and mechanical foot depth were obtained. Full article
(This article belongs to the Special Issue DEM of Multiphase Flows and Powder Processing)
Show Figures

Graphical abstract

Back to TopTop