Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = preforming pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9897 KB  
Article
Experimental Investigation of Synergistic Enhanced Oil Recovery by Infill Well Pattern and Chemical Flooding After Polymer Flooding
by Xianmin Zhang, Junzhi Yu, Lijie Liu, Xilei Liu, Xuan Lu and Qihong Feng
Gels 2025, 11(8), 660; https://doi.org/10.3390/gels11080660 - 19 Aug 2025
Cited by 1 | Viewed by 760
Abstract
Well pattern infill adjustment combined with chemical flooding is an important technical approach for significantly improving oil recovery in high-water-cut reservoirs after polymer flooding. Current research predominantly focuses on the evaluation of oil displacement potential through either well pattern infilling or chemical flooding [...] Read more.
Well pattern infill adjustment combined with chemical flooding is an important technical approach for significantly improving oil recovery in high-water-cut reservoirs after polymer flooding. Current research predominantly focuses on the evaluation of oil displacement potential through either well pattern infilling or chemical flooding alone, while systematic experimental investigations and mechanism studies on the synergistic effect of well pattern infilling and chemical flooding remain insufficient. To overcome the limitations of single adjustment measures, this study proposes a synergistic improved oil recovery (IOR) strategy integrating branched preformed particle gel (B-PPG) heterogeneous phase composite flooding (HPCF) with well pattern infill adjustment. Two-dimensional visual physical simulation experiments are conducted to evaluate the synergistic oil displacement effects of different displacement systems and well pattern adjustment strategies after polymer flooding and to elucidate the synergistic IOR mechanisms under the coupling of dense well patterns and chemical flooding. The experimental results demonstrate that, under well pattern infill conditions, the HPCF system exhibits significant water control and oil enhancement effects during the chemical flooding stage, achieving a 29.95% increase in stage recovery compared to the water flooding stage. The system effectively blocks high-permeability channels while enhancing displacement in low-permeability zones through a coupling effect, thereby significantly expanding the displacement sweep volume, improving displacement uniformity, and efficiently mobilizing the remaining oil in low-permeability and residual oil-rich areas. Meanwhile, well pattern infill adjustment optimizes the injection–production well pattern layout, shortens the inter-well spacing, and effectively increases the displacement pressure differential between injection and production wells. This induces disturbances and reconfiguration of the streamline field, disrupts the original high-permeability channel-dominated flow regime, further expands the sweep range of the remaining oil, and substantially improves overall oil recovery. The findings of this study enrich and advance the theoretical framework of water control and potential tapping, as well as synergistic IOR mechanisms, in high-water-cut and strongly heterogeneous reservoirs, providing a reliable theoretical and technical basis for the efficient development and remaining oil recovery in such reservoirs during the late production stage. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Figure 1

16 pages, 4484 KB  
Article
Microscale Flow Simulation of Resin in RTM Process for Optical Fiber-Embedded Composites
by Tianyou Lu, Bo Ruan, Zhanjun Wu and Lei Yang
Polymers 2025, 17(15), 2076; https://doi.org/10.3390/polym17152076 - 29 Jul 2025
Viewed by 596
Abstract
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product [...] Read more.
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product is highly dependent on the resin flow and impregnation effects. The embedding of optical fibers can affect the microscopic flow and impregnation behavior of the resin; therefore, it is necessary to investigate the specific impact of optical fiber embedding on the resin flow and impregnation of fiber bundles. Due to the difficulty of directly observing this process at the microscopic scale through experiments, numerical simulation has become a key method for studying this issue. This paper focuses on the resin micro-flow in RTM processes for intelligent composites with embedded optical fibers. Firstly, a steady-state analysis of the resin flow and impregnation process was conducted using COMSOL 6.0 obtaining the velocity and pressure field distribution characteristics under different optical fiber embedding conditions. Secondly, the dynamic process of resin flow and impregnation of fiber bundles at the microscopic scale was simulated using Fluent 2022R2. This study comprehensively analyzes the impact of different optical fiber embedding configurations on resin flow and impregnation characteristics, determining the impregnation time and porosity after impregnation under different optical fiber embedding scenarios. Additionally, this study reveals the mechanisms of pore formation and their distribution patterns. The research findings provide important theoretical guidance for optimizing the RTM molding process parameters for intelligent composite materials. Full article
(This article belongs to the Special Issue Constitutive Modeling of Polymer Matrix Composites)
Show Figures

Figure 1

22 pages, 4496 KB  
Article
Non-Isothermal Process of Liquid Transfer Molding: Transient 3D Simulations of Fluid Flow Through a Porous Preform Including a Sink Term
by João V. N. Sousa, João M. P. Q. Delgado, Ricardo S. Gomez, Hortência L. F. Magalhães, Felipe S. Lima, Glauco R. F. Brito, Railson M. N. Alves, Fernando F. Vieira, Márcia R. Luiz, Ivonete B. Santos, Stephane K. B. M. Silva and Antonio G. B. Lima
J. Manuf. Mater. Process. 2025, 9(7), 243; https://doi.org/10.3390/jmmp9070243 - 18 Jul 2025
Viewed by 886
Abstract
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent [...] Read more.
Resin Transfer Molding (RTM) is a widely used composite manufacturing process where liquid resin is injected into a closed mold filled with a fibrous preform. By applying this process, large pieces with complex shapes can be produced on an industrial scale, presenting excellent properties and quality. A true physical phenomenon occurring in the RTM process, especially when using vegetable fibers, is related to the absorption of resin by the fiber during the infiltration process. The real effect is related to the slowdown in the advance of the fluid flow front, increasing the mold filling time. This phenomenon is little explored in the literature, especially for non-isothermal conditions. In this sense, this paper does a numerical study of the liquid injection process in a closed and heated mold. The proposed mathematical modeling considers the radial, three-dimensional, and transient flow, variable injection pressure, and fluid viscosity, including the effect of liquid fluid absorption by the reinforcement (fiber). Simulations were carried out using Computational Fluid Dynamic tools. The numerical results of the filling time were compared with experimental results, and a good approximation was obtained. Further, the pressure, temperature, velocity, and volumetric fraction fields, as well as the transient history of the fluid front position and injection fluid volumetric flow rate, are presented and analyzed. Full article
Show Figures

Figure 1

13 pages, 880 KB  
Review
Inclusions, Nitrogen Occurrence Modes, and C-N Isotopic Compositions of Diamonds as Indicators for Exploring the Genesis Mechanism of Diamond: A Review
by Xiao-Xia Wang, Yang-Yang Wang, Xiaodong Yao, Tianyin Chang, Xiang Li, Xiaomin Wang and Zihao Zhao
Minerals 2025, 15(7), 728; https://doi.org/10.3390/min15070728 - 12 Jul 2025
Viewed by 541
Abstract
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, [...] Read more.
Diamond, a crucial carbon phase in the deep Earth, forms under ultrahigh-pressure (UHP, P > 4 GPa) conditions and serves as an important indicator mineral for the UHP environment. Based on their host rocks, diamonds are classified into mantle-derived diamonds, UHP metamorphic diamonds, impact diamonds, etc. While carbon constitutes the primary component of diamonds, nitrogen represents one of the most significant impurity elements. The study of the occurrence mode of nitrogen and the C-N isotope composition is essential for exploring the formation mechanism of diamond. Nitrogen primarily exists in diamonds as either isolated atoms (N) or aggregated forms (N2 or N4), with the dominant mode being controlled by temperature and residence time in the mantle. As temperature and residence time increase, isolated nitrogen progressively transforms into aggregated forms. As a result, mantle-derived diamonds typically contain nitrogen predominantly as N2 or N4, whereas metamorphic diamonds and impact diamonds mainly retain isolated N. Global C-N isotopic composition of over 4400 diamonds reveals a wide compositional range, with δ13C ranging from −38.5‰ to +5.0‰, and δ15N from −39.4‰ to +15.0‰. These values significantly exceed the typical mantle δ13C and δ15N values of −5‰ ± 3‰, indicating that the diamond formation may be influenced by subducted crustal materials. During crystallization, diamonds can encapsulate surrounding materials as inclusions, which are divided into three types based on their formation sequence relative to the host diamond: preformed, syngenetic, and epigenetic. Syngenetic inclusions are particularly valuable for constraining crystallization conditions and the genesis of diamonds. Furthermore, geochronology studies of radioactive isotope-bearing syngenetic inclusions are helpful to clarify the age of diamond formation. Usually, mantle-derived diamonds exhibit Archean age, whereas metamorphic diamonds are associated with subduction, showing younger ages that could be associated with metamorphic events. Therefore, the formation conditions and genesis of diamonds can be clearly constrained through integrating investigations of inclusions, nitrogen occurrence modes, and C-N isotopic compositions. The characteristics of occurrence modes, inclusions, and C-N isotope compositions of different types of diamonds are systematically reviewed in this paper, providing critical insights into their genesis and contributing to a deeper understanding of diamond formation processes in Earth’s interior. Full article
Show Figures

Figure 1

18 pages, 3522 KB  
Article
Modeling the Manufacturing Process of Thin-Walled Composite Parts by Vacuum Infusion Using Controlled External Pressures
by Shun-Hsyung Chang, Igor Zhilyaev, Sergey Shevtsov and Natalie Snezhina
J. Compos. Sci. 2025, 9(6), 268; https://doi.org/10.3390/jcs9060268 - 28 May 2025
Cited by 1 | Viewed by 1004
Abstract
This study considered the molding process of a thin-walled composite structure, imported from a CAD model, with the requirements of the uniformity of the mechanical properties and wall thickness. The developed numerical process model, which includes both the vacuum infusion and post-infusion stages, [...] Read more.
This study considered the molding process of a thin-walled composite structure, imported from a CAD model, with the requirements of the uniformity of the mechanical properties and wall thickness. The developed numerical process model, which includes both the vacuum infusion and post-infusion stages, takes into account the entire complex of processes evolving in a spreading liquid resin, as well as in a porous preform. The controlled process parameters are the temperature and the magnitudes and times of pressure applied to the open surface of the preform and in the vacuum line. The low thickness of the preform walls and the fixation of its inner surface on an open composite mold allow the mechanical part of the problem to be simplified, thus considering only the preform deformation normal to the opened surface, which provides a significant reduction in the simulation time and the ability to effectively optimize the process. The examples associated with the three control modes considered here show that the presented model’s description of the process, with the toolkit for selecting the controlled parameters, eliminates critical situations such as the formation of dry spots, the premature blocking of the vacuum port, or the uneven distribution and insufficient amount of the reinforcing component in the preform. This is due to the appropriately described process dynamics up to the moment of a sharp increase in viscosity and the hardening of the resin. This approach additionally provides access to process parameters that would be inaccessible in a full-scale experiment. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

30 pages, 9711 KB  
Article
A Hybrid Artificial Neural Network Approach for Modeling the Behavior of Polyethylene Terephthalate (PET) Under Conditions Applicable to Stretch Blow Molding
by Fei Teng, Gary Menary, Shiyong Yan, James Nixon and John Boyet Stevens
Polymers 2025, 17(8), 1067; https://doi.org/10.3390/polym17081067 - 15 Apr 2025
Viewed by 611
Abstract
Stretch blow molding (SBM) is widely utilized in industrial applications, yet the deformation characteristics of materials during this process are intricate and challenging to precisely articulate. To accurately forecast the stress–strain response of polyethylene terephthalate (PET) in SBM, a hybrid Artificial Neural Network [...] Read more.
Stretch blow molding (SBM) is widely utilized in industrial applications, yet the deformation characteristics of materials during this process are intricate and challenging to precisely articulate. To accurately forecast the stress–strain response of polyethylene terephthalate (PET) in SBM, a hybrid Artificial Neural Network (ANN)-based constitutive model has been developed. The model has been created by combining a physical-based function for capturing the small-strain behavior in parallel with an ANN-based model for capturing the temperature-dependent large-strain nonlinear viscoelastic behavior. The architecture of the ANN has been designed to ensure stability in a load-controlled scenario, thus making it suitable for use in FEA simulations of stretch blow molding. Data for training the model have been generated by a new semi-automatic experimental rig which is able to produce 850 stress–strain curves over a wide range of process conditions (temperature range 95–115 °C and strain rates ranging from 1/s to 100/s) directly from blowing preforms using a combination of high-speed video, digital image correlation and sensors for pressure and force. The model has already been implemented in the commercial FEA package Abaqus via a VUMAT subroutine, with its performance validated by comparing the prediction of the evolution of preform shape during blowing vs. high-speed images. In conclusion, the developed hybrid ANN model, when integrated into Abaqus, offers a more accurate simulation of SBM processes, contributing to improved design efficiency and product quality. Full article
Show Figures

Figure 1

27 pages, 11346 KB  
Article
Heat Transfer Analysis in Double Diaphragm Preforming Process of Dry Woven Carbon Fibres
by Srikara Dandangi, Sadegh Ghanei, Mohammad Ravandi, Jamal Naser and Adriano Di Pietro
Energies 2025, 18(6), 1471; https://doi.org/10.3390/en18061471 - 17 Mar 2025
Cited by 1 | Viewed by 710
Abstract
Double diaphragm forming (DDF) represents an efficient manufacturing technique leveraging vacuum pressure and heat to form composite material stacks between flexible diaphragms. This study focuses on the critical role of thermal management during preforming, essential for material integrity, defect mitigation, and process efficiency. [...] Read more.
Double diaphragm forming (DDF) represents an efficient manufacturing technique leveraging vacuum pressure and heat to form composite material stacks between flexible diaphragms. This study focuses on the critical role of thermal management during preforming, essential for material integrity, defect mitigation, and process efficiency. A comprehensive three-dimensional finite element model (FEM) is developed to investigate the heat transfer dynamics in DDF, incorporating temperature-dependent material properties such as specific heat and thermal conductivity under compaction and varying density conditions. A novel approach is introduced to predict thermal contact conductance (TCC) across multilayer carbon fabric interfaces, validated using four laminate configurations. The resulting effective thermal conductivity of the laminates is applied in production-scale simulations, enabling accurate predictions of temperature distributions, which are corroborated by experimental data. The findings highlight the significant impact of mesoscale interactions, such as yarn-level deformation and surface asperities, on TCC variation. The study provides an enhanced understanding of heat transfer mechanisms in DDF, offering insights to optimise process parameters, improve product quality, and advance manufacturing capabilities for complex geometries. Full article
(This article belongs to the Special Issue Advanced Analysis of Heat Transfer and Energy Conversion 2024)
Show Figures

Figure 1

10 pages, 5980 KB  
Article
Fabrication of SiC–Aluminum Composites via Binder Jetting 3D Printing and Infiltration: A Feasibility Study
by Fahim Khan, Jackson Sanders, Md Shakil Arman, Mostafa Meraj Pasha, Stephen Kachur and Zhijian Pei
J. Compos. Sci. 2025, 9(3), 111; https://doi.org/10.3390/jcs9030111 - 27 Feb 2025
Cited by 2 | Viewed by 2196
Abstract
The objective of this study is to demonstrate the feasibility of producing SiC–aluminum composites by the binder jetting 3D printing of SiC preforms and spontaneous infiltration by aluminum. SiC preforms fabricated using binder jetting 3D printing were subjected to several post-processing steps (including [...] Read more.
The objective of this study is to demonstrate the feasibility of producing SiC–aluminum composites by the binder jetting 3D printing of SiC preforms and spontaneous infiltration by aluminum. SiC preforms fabricated using binder jetting 3D printing were subjected to several post-processing steps (including curing, depowdering, debinding, and sintering). Sintering was conducted at 1700 °C, and aluminum infiltrating was conducted at 1000 °C, with both carried out in a controlled nitrogen environment under a pressure of 25 psi. The bulk density of the sintered SiC preforms was increased by 14% after infiltration. X-ray diffraction and energy-dispersive X-ray spectroscopy confirmed the presence of aluminum in the SiC matrix. This paper is the first to report fabricating SiC–aluminum composites by binder jetting and infiltrating, providing a new approach to producing these composites with potential applications in the aerospace and automotive industries. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Graphical abstract

11 pages, 4920 KB  
Article
Process Monitoring for Vacuum-Assisted Resin Infusion by Using Carbon Nanotube-Based Sensors
by Yi Shi, Beibei Wang, Kui Du, Yanan Liu, Ruiqi Kang, Shaokai Wang, Jiayu Zhang, Yizhuo Gu and Min Li
Polymers 2025, 17(4), 459; https://doi.org/10.3390/polym17040459 - 9 Feb 2025
Cited by 2 | Viewed by 1637
Abstract
This paper developed a carbon nanotube (CNT)-coated aramid fiber sensor, which was successfully used to monitor the resin flow front and sense the fluid pressure difference during the (VARI) process. The electrical resistance change of the CNT-coated fiber sensor was compared with that [...] Read more.
This paper developed a carbon nanotube (CNT)-coated aramid fiber sensor, which was successfully used to monitor the resin flow front and sense the fluid pressure difference during the (VARI) process. The electrical resistance change of the CNT-coated fiber sensor was compared with that of buckypaper materials. The results show that the electrical resistances of CNT sensors show rapid growth successively along the infusion direction once the flow front reaches the sensor position during resin infusion in the VARI process. The electrical resistance of CNT-coated fiber sensors may increase by as much as 12 times after full impregnation. For the thicker preform, the resistance change ΔR/R0 of sensors on the top surface is closely related to fluid pressure, and bigger fluid pressure close to the inlet may result in a larger ΔR/R0. Two competitive factors affecting the electrical resistance of a CNT-coated sensor are revealed: aramid fiber tow swelling due to resin impregnation, and the compaction effect arising from resin pressure on the CNT network. In addition, the sensors on the top surface show a bigger ΔR/R0 than the bottom ones, and as the preform thickness decreases, these sensors tend to show smaller ΔR/R0. Full article
(This article belongs to the Special Issue Advances in Carbon/Polymer Composites: Preparation and Application)
Show Figures

Figure 1

54 pages, 16154 KB  
Article
Effect of rPET Content and Preform Heating/Cooling Conditions in the Stretch Blow Molding Process on Microcavitation and Solid-State Post-Condensation of vPET-rPET Blend: Part II—Statistical Analysis and Interpretation of Tests
by Paweł Wawrzyniak, Waldemar Karaszewski, Marta Safandowska and Rafał Idczak
Materials 2025, 18(1), 36; https://doi.org/10.3390/ma18010036 - 25 Dec 2024
Viewed by 961
Abstract
This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles’ microscopic characteristics. Key metrics such as viscosity, density, crystallinity, [...] Read more.
This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles’ microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results. The first part of the work details the experimental design and statistical methods. Positron annihilation lifetime spectroscopy (PALS) and amorphous phase density analysis revealed reduced free volume size, a substantial increase in free volume quantity, and a transformation toward ellipsoidal geometries, highlighting significant structural changes in the material. At the same time, the intrinsic viscosity (IV) and PALS studies indicate that the solid-state post-condensation effect (SSPC) is linked with microcavitation through post-condensation product diffusion. The conclusions, which resulted from the microstructure analysis, affected the material’s mechanical strength and were validated by pressure resistance tests of the bottles. Full article
Show Figures

Graphical abstract

20 pages, 6847 KB  
Article
Applying Resin Radial Injection for Manufacturing Fiber-Reinforced Polymer Composite: Advanced Mathematical Modeling and Simulation
by Joel S. Oliveira, Laura H. Carvalho, João M. P. Q. Delgado, Antonio G. B. Lima, Antonildo S. Pereira, Célia M. R. Franco and Francisco S. Chaves
Polymers 2024, 16(24), 3525; https://doi.org/10.3390/polym16243525 - 18 Dec 2024
Cited by 2 | Viewed by 1217
Abstract
Recently, the liquid composite molding technique (LCM) has been used for producing fiber-reinforced polymer composites, since it allows the molding of complex parts, presenting good surface finishing and control of the mechanical properties of the product at the end of the process. Studies [...] Read more.
Recently, the liquid composite molding technique (LCM) has been used for producing fiber-reinforced polymer composites, since it allows the molding of complex parts, presenting good surface finishing and control of the mechanical properties of the product at the end of the process. Studies in this area have been focused on resin transfer molding (RTM), specifically on the resin rectilinear infiltration through the porous preform inserted in the closed cavity neglecting the sorption effect of the polymeric fluid by the reinforcement. Thus, the objective of this work is to predict resin radial flow in porous media (fibrous preform), including the effect of resin sorption by fibers considering a one-dimensional approach. For correct prediction of the flow behavior inside the porous media, an advanced modeling approach composed of the mass conservation equation and Darcy’s law is used, and the solution of the coupled equation is obtained. Transient results of the flow front location, velocity and pressure within the mold during the resin infiltration are shown, the effects of different parameters for resin (viscosity), reinforcement (sorption term, permeability and porosity) and process (injection pressure and injection radius) are analyzed, and an in-depth discussion is performed. Full article
Show Figures

Figure 1

21 pages, 10455 KB  
Article
Experimental Evaluation of a Recrosslinkable CO2-Resistant Micro-Sized Preformed Particle Gel for CO2 Sweep Efficiency Improvement in Reservoirs with Super-K Channels
by Adel Alotibi, Tao Song, Ali Al Brahim, Baojun Bai and Thomas Schuman
Gels 2024, 10(12), 765; https://doi.org/10.3390/gels10120765 - 24 Nov 2024
Cited by 3 | Viewed by 1181
Abstract
A recrosslinkable CO2-resistant branched preformed particle gel (CO2-BRPPG) was developed for controlling CO2 injection conformance, particularly in reservoirs with super-permeable channels. Previous work focused on a millimeter-sized CO2-BRPPG in open fractures, but its performance in high-permeability [...] Read more.
A recrosslinkable CO2-resistant branched preformed particle gel (CO2-BRPPG) was developed for controlling CO2 injection conformance, particularly in reservoirs with super-permeable channels. Previous work focused on a millimeter-sized CO2-BRPPG in open fractures, but its performance in high-permeability channels with pore throat networks remained unexplored. This study used a sandpack model to evaluate a micro-sized CO2-BRPPG under varying conditions of salinity, gel concentration, and pH. At ambient conditions, the equilibrium swelling ratio (ESR) of the gel reached 76 times its original size. This ratio decreased with increasing salinity but remained stable at low pH values, demonstrating the gel’s resilience in acidic environments. Rheological tests revealed shear-thinning behavior, with gel strength improving as salinity increased (the storage modulus rose from 113 Pa in 1% NaCl to 145 Pa in 10% NaCl). Injectivity tests showed that lower gel concentrations reduced the injection pressure, offering flexibility in deep injection treatments. Gels with higher swelling ratios had lower injection pressures due to increased strength and reduced deformability. The gel maintained stable plugging performance during two water-alternating-CO2 cycles, but a decline was observed in the third cycle. It also demonstrated a high CO2 breakthrough pressure of 177 psi in high salinity conditions (10% NaCl). The permeability reduction for water and CO2 was influenced by gel concentration and salinity, with higher salinity increasing the permeability reduction and higher gel concentrations decreasing it. These findings underscore the effectiveness of the CO2-BRPPG in improving CO2 sweep efficiency and managing CO2 sequestration in reservoirs with high permeability. Full article
Show Figures

Figure 1

24 pages, 5037 KB  
Article
Effect of rPET Content and Preform Heating/Cooling Conditions in the Stretch Blow Molding Process on Microcavitation and Solid-State Post-Condensation of vPET-rPET Blend: Part I—Research Methodology and Results
by Paweł Wawrzyniak, Waldemar Karaszewski and Artur Różański
Materials 2024, 17(21), 5233; https://doi.org/10.3390/ma17215233 - 27 Oct 2024
Cited by 3 | Viewed by 2706
Abstract
Polyethylene terephthalate (PET) is widely used in bottle production due to its cost-effectiveness and low environmental impact. The first part of this article describes the research and statistical analysis methodology of the influence of the virgin PET (vPET) and recycled PET (rPET) content [...] Read more.
Polyethylene terephthalate (PET) is widely used in bottle production due to its cost-effectiveness and low environmental impact. The first part of this article describes the research and statistical analysis methodology of the influence of the virgin PET (vPET) and recycled PET (rPET) content in the vPET-rPET blend, as well as the preform heating/cooling conditions in the stretch blow molding (SBM) process on the microscopic bottle properties. Microscopic properties such as crystallinity, density, viscosity, relaxation degree of the amorphous phase, and microcavitation in PET were examined. This study reveals that microcavity and solid-state post-condensation effects occur during PET deformation in the SBM process. The increase in free volume, indicating microcavitation, was confirmed by measuring positron annihilation lifetime spectroscopy (PALS). PALS and density of the amorphous phase studies prove a reduction in the dimensions of the free volumes, with a simultaneous significant increase in their number and ellipsoidization. It can be associated with crystallite rotation in a temperature-dependent non-crystalline matrix. The occurrence of solid-state post-condensation effects was confirmed by measuring the intrinsic viscosity. The conclusions resulting from the analysis of the microstructure affecting the mechanical strength of the material were validated by pressure resistance tests of the bottles. Full article
Show Figures

Graphical abstract

17 pages, 9263 KB  
Article
Development and Manufacturing of a Fibre Reinforced Thermoplastic Composite Spar Produced by Oven Vacuum Bagging
by Helena Rocha, Agnieszka Rocha, Joana Malheiro, Bruno Sousa, Andreia Vilela, Filipa Carneiro and Paulo Antunes
Polymers 2024, 16(15), 2216; https://doi.org/10.3390/polym16152216 - 3 Aug 2024
Cited by 1 | Viewed by 2277
Abstract
The limited recyclability of fibre-reinforced thermoset composites has fostered the development of alternative thermoplastic-based composites and their manufacturing processes. The most common thermoplastic-based composites are often costly due to their availability in the form of prepreg materials and to the high pressure and [...] Read more.
The limited recyclability of fibre-reinforced thermoset composites has fostered the development of alternative thermoplastic-based composites and their manufacturing processes. The most common thermoplastic-based composites are often costly due to their availability in the form of prepreg materials and to the high pressure and temperatures required for their manufacturing. Yet, the manufacturing of economic and recyclable composites, made of semi-preg composite materials using traditional composite manufacturing technologies, has only been proved at a laboratory scale through the manufacturing of flat plates. This work reports the manufacturing of a real structural part, a wing spar section with complex geometry, made of commingled polyamide 12 (PA12) fibres and carbon fibres (CFs) semi-preg and by oven vacuum bagging (OVB). The composite layup was studied using finite element analysis, and processing simulation assisted in the determination of the PA12/CF preform for OVB. Processing of two forms of semi-preg materials was first evaluated and optimised. The material selection for part manufacturing was mainly defined by the materials’ processability. The spar section was manufactured in two OVB stages and was then mechanically tested. The mechanical test showed a linear strain response of the prototype up to the maximum load and validated the optimised layup configuration of the composite structure. Full article
Show Figures

Figure 1

15 pages, 5233 KB  
Article
Thermophysical Characterization of Materials for Energy-Efficient Double Diaphragm Preforming
by Srikara Dandangi, Mohammad Ravandi, Jamal Naser and Adriano Di Pietro
Energies 2024, 17(15), 3758; https://doi.org/10.3390/en17153758 - 30 Jul 2024
Cited by 1 | Viewed by 1891
Abstract
The Double Diaphragm Preforming (DDPF) process uses vacuum pressure and heat to pre-shape dry carbon fabric reinforcements between flexible diaphragms in liquid composite molding (LCM). Accurate modeling of heat transfer within DDPF requires knowledge of the thermophysical properties of the constituent materials under [...] Read more.
The Double Diaphragm Preforming (DDPF) process uses vacuum pressure and heat to pre-shape dry carbon fabric reinforcements between flexible diaphragms in liquid composite molding (LCM). Accurate modeling of heat transfer within DDPF requires knowledge of the thermophysical properties of the constituent materials under processing conditions. This study investigates the thermal conductivity of silicone diaphragms and carbon fabrics with embedded thermoplastic binder webs, utilizing transient plane source (TPS) and modified transient plane source (MTPS) methods, respectively. Additionally, the specific heat of silicone, carbon fibers (both chopped and powdered), and binder were measured using differential scanning calorimetry (DSC). Mixed samples comprising chopped fibers with 1.8 wt% binder and powdered fibers with 3.6 wt% binder was also analyzed with DSC. This study also examined the influence of reheating cycles on the specific heat of carbon fiber—3.6 wt% binder samples—and the effect of compaction and vacuum on the thermal conductivity of carbon fabrics with an embedded binder. While silicone exhibited linear-specific heat behavior, the thermoplastic binder showed non-linearity due to phase change. The combined carbon fiber-binder samples demonstrated slight non-linear specific heat variations depending on reheating cycles. The thermal conductivity of the fabric preforms decreased with the addition of thermoplastic binder and under vacuum-compaction conditions. The established temperature-dependent specific heat relationships and thermal conductivity provide valuable data for optimizing DDPF preforming parameters and enhancing energy efficiency in composite manufacturing. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

Back to TopTop