Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = prediction of carbon trading price

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2297 KB  
Article
Decarbonizing Coastal Shipping: Voyage-Level CO2 Intensity, Fuel Switching and Carbon Pricing in a Distribution-Free Causal Framework
by Murat Yildiz, Abdurrahim Akgundogdu and Guldem Elmas
Sustainability 2026, 18(2), 723; https://doi.org/10.3390/su18020723 - 10 Jan 2026
Viewed by 130
Abstract
Coastal shipping plays a critical role in meeting maritime decarbonization targets under the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII) and the European Union Emissions Trading System (EU ETS); however, operators currently lack robust tools to forecast route-specific carbon intensity and evaluate [...] Read more.
Coastal shipping plays a critical role in meeting maritime decarbonization targets under the International Maritime Organization’s (IMO) Carbon Intensity Indicator (CII) and the European Union Emissions Trading System (EU ETS); however, operators currently lack robust tools to forecast route-specific carbon intensity and evaluate the causal benefits of fuel switching. This study developed a distribution-free causal forecasting framework for voyage-level Carbon Dioxide (CO2) intensity using an enriched panel of 1440 real-world voyages across four Nigerian coastal routes (2022–2024). We employed a physics-informed monotonic Light Gradient Boosting Machine (LightGBM) model trained under a strict leave-one-route-out (LORO) protocol, integrated with split-conformal prediction for uncertainty quantification and Causal Forests for estimating heterogeneous treatment effects. The model predicted emission intensity on completely unseen corridors with a Mean Absolute Error (MAE) of 40.7 kg CO2/nm, while 90% conformal prediction intervals achieved 100% empirical coverage. While the global average effect of switching from heavy fuel oil to diesel was negligible (≈−0.07 kg CO2/nm), Causal Forests revealed significant heterogeneity, with effects ranging from −74 g to +29 g CO2/nm depending on route conditions. Economically, targeted diesel use becomes viable only when carbon prices exceed ~100 USD/tCO2. These findings demonstrate that effective coastal decarbonization requires moving beyond static baselines to uncertainty-aware planning and targeted, route-specific fuel strategies rather than uniform fleet-wide policies. Full article
(This article belongs to the Special Issue Sustainable Maritime Logistics and Low-Carbon Transportation)
Show Figures

Figure 1

30 pages, 3551 KB  
Article
Research on Bayesian Hierarchical Spatio-Temporal Model for Pricing Bias of Green Bonds
by Yiran Liu and Hanshen Li
Sustainability 2026, 18(1), 455; https://doi.org/10.3390/su18010455 - 2 Jan 2026
Viewed by 200
Abstract
Driven by carbon neutrality policies, the cumulative issuance volume of the global green bond market has surpassed $2.5 trillion over the past five years, with China, as the second largest issuer, accounting for 15%. However, there exists a yield difference of up to [...] Read more.
Driven by carbon neutrality policies, the cumulative issuance volume of the global green bond market has surpassed $2.5 trillion over the past five years, with China, as the second largest issuer, accounting for 15%. However, there exists a yield difference of up to 0.8% for bonds with the same credit rating across different policy regions, and the premium level fluctuates dramatically with market cycles, severely restricting the efficiency of green resource allocation. This study innovatively constructs a Bayesian hierarchical spatiotemporal model framework to systematically analyze pricing deviations through a three-level data structure: the base level quantifies the impact of bond micro-characteristics (third-party certification reduces financing costs by 0.15%), the temporal level captures market dynamics using autoregressive processes (premium volatility increases by 50% during economic recessions), and the spatial level reveals policy regional dependencies using conditional autoregressive models (carbon trading pilot provinces and cities form premium sinkholes). The core breakthroughs are: 1. Designing spatiotemporal interaction terms to explicitly model the policy diffusion process, with empirical evidence showing that the green finance reform pilot zone policy has a radiation radius of 200 km within three years, leading to a 0.10% increase in premiums in neighboring provinces; 2. Quantifying the posterior distribution of parameters using the Markov Chain Monte Carlo algorithm, demonstrating that the posterior mean of the policy effect in pilot provinces is −0.211%, with a half-life of 0.75 years, and the residual effect in non-pilot provinces is only −0.042%; 3. Establishing a hierarchical shrinkage prior mechanism, which reduces prediction error by 41% compared to traditional models in out-of-sample testing. Key findings include: the contribution of policy pilots is −0.192%, surpassing the effect of issuer credit ratings, and a 10 yuan/ton increase in carbon price can sustainably reduce premiums by 0.117%. In 2021, the “dual carbon” policy contributed 32% to premium changes through spatiotemporal interaction channels. The research results provide quantitative tools for issuers to optimize financing timing, investors to identify cross-regional arbitrage, and regulators to assess policy coordination, promoting the transformation of the green bond market from an efficiency priority to equitable allocation paradigm. Full article
Show Figures

Figure 1

32 pages, 1486 KB  
Article
Optimal Carbon Emission Reduction Strategies Considering the Carbon Market
by Wenlin Huang and Daming Shan
Mathematics 2026, 14(1), 68; https://doi.org/10.3390/math14010068 - 24 Dec 2025
Viewed by 208
Abstract
In this study, we develop a stochastic optimal control model for corporate carbon management that synergistically combines emission reduction initiatives with carbon trading mechanisms. The model incorporates two control variables: the autonomous emission reduction rate and initial carbon allowance purchases, while accounting for [...] Read more.
In this study, we develop a stochastic optimal control model for corporate carbon management that synergistically combines emission reduction initiatives with carbon trading mechanisms. The model incorporates two control variables: the autonomous emission reduction rate and initial carbon allowance purchases, while accounting for both deterministic and stochastic carbon pricing scenarios. The solution is obtained through a two-step optimization procedure that addresses each control variable sequentially. In the first step, the problem is transformed into a Hamilton–Jacobi–Bellman (HJB) equation in the sense of viscosity solution. A key aspect of the methodology is deriving the corresponding analytical solution based on this equation’s structure. The second-step optimization results are shown to depend on the relationship between the risk-free interest rate and carbon price dynamics. Furthermore, we employ daily closing prices from 16 July 2021, to 31 December 2024, as the sample dataset to calibrate the parameters governing carbon allowance price evolution. The marginal abatement cost (MAC) curve is calibrated using data derived from the Emissions Prediction and Policy Analysis (EPPA) model, enabling the estimation of the emission reduction efficiency parameter. Additional policy-related parameters are obtained from relevant regulatory documents. The numerical results demonstrate how enterprises can implement the model’s outputs to inform carbon emission reduction decisions in practice and offer enterprises a decision-support tool that integrates theoretical rigor and practical applicability for achieving emission targets in the carbon market. Full article
Show Figures

Figure 1

49 pages, 9827 KB  
Article
A Novel Hybrid Model Using Demand Concentration Curves, Chaotic AFDB-SFS Algorithm and Bi-LSTM Networks for Heating Oil Price Prediction
by Seçkin Karasu
Electronics 2025, 14(24), 4814; https://doi.org/10.3390/electronics14244814 - 7 Dec 2025
Viewed by 354
Abstract
Nowadays, renewable energy sources are gaining importance, yet global energy demand is primarily met by burning fossil fuels. Fluctuations in fossil fuel availability, driven by geopolitical tensions, supply–demand changes, and natural disasters, can lead to sudden energy price spikes or supply shortages, adversely [...] Read more.
Nowadays, renewable energy sources are gaining importance, yet global energy demand is primarily met by burning fossil fuels. Fluctuations in fossil fuel availability, driven by geopolitical tensions, supply–demand changes, and natural disasters, can lead to sudden energy price spikes or supply shortages, adversely affecting the global economy. Despite its negative impact on carbon emissions and climate change, Heating Oil (HO) offers advantages over other fossil fuels in efficiency, reliability, and availability. Accurate time series prediction models for HO are crucial for stakeholders. This study proposes a novel hybrid model, integrating the Chaotic Adaptive Fitness-Distance Balance-based Stochastic Fractal Search (AFDB-SFS) algorithm with a Bidirectional Long-Short Term Memory (Bi-LSTM) network, for HO close price prediction. The dataset comprises daily observations of five financial time series (close, open, high, low, and volume) over 4260 trading days, yielding a total of 21,300 data points (4260 days × 5 variables). During the feature extraction stage, financial signal processing methods such as Demand Concentration Curve (DCC) and traditional technical indicators are utilized. A total of 189 features are extracted at appropriate intervals for each indicator. Due to the large number of features, the AFDB-SFS algorithm then efficiently identifies the most compatible feature subsets, optimizing the Bi-LSTM model based on three criteria: maximizing R2, minimizing RMSE, and minimizing feature count. Experimental results demonstrate the proposed hybrid model’s superior performance, achieving high accuracy (R2 of 0.9959 and RMSE of 0.0364), outperforming contemporary models in the literature. Furthermore, the model is successfully implemented on the Jetson Orin Nano Developer Platform, enabling real-time, high-frequency HO price predictions with ultra-low latency (1.01 ms for Bi-LSTM), showcasing its practical utility for edge computing applications in commodity markets. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

36 pages, 1860 KB  
Article
Carbon Trading Price Forecasting Based on Multidimensional News Text and Decomposition–Ensemble Model: The Case Study of China’s Pilot Regions
by Xu Wang, Yingjie Liu, Zhenao Guo, Tengfei Yang, Xu Gong and Zhichong Lyu
Forecasting 2025, 7(4), 72; https://doi.org/10.3390/forecast7040072 - 28 Nov 2025
Viewed by 708
Abstract
Accurately predicting carbon trading price is challenging due to pronounced nonlinearity, non-stationarity, and sensitivity to diverse factors, including macroeconomic conditions, market sentiment, and climate policy. This study proposes a novel hybrid forecasting framework that integrates multidimensional news text analysis, ICEEMDAN (Improved Complete Ensemble [...] Read more.
Accurately predicting carbon trading price is challenging due to pronounced nonlinearity, non-stationarity, and sensitivity to diverse factors, including macroeconomic conditions, market sentiment, and climate policy. This study proposes a novel hybrid forecasting framework that integrates multidimensional news text analysis, ICEEMDAN (Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) decomposition, and machine learning to predict carbon prices in China’s pilot trading prices. We first extract a market sentiment index from news texts in the WiseSearch News Database using a customized Chinese carbon-market dictionary. In addition, a price trend index and topic intensity index are derived using Latent Dirichlet Allocation (LDA) and Convolutional Neural Networks (CNN), respectively. All feature sequences are subsequently decomposed and reconstructed using sample-entropy-based ICEEMDAN approach. The resulting multi-frequency components were then used as inputs for a range of machine-learning models to evaluate predictive performance. The empirical results demonstrate that the incorporation of multidimensional text information on China’s carbon market, combined with financial features, yields a substantial gain in prediction accuracy. Our integrated decomposition-ensemble framework achieves optimal performance by employing dedicated models—BiGRU, XGBoost, and BiLSTM for the high-frequency, low-frequency, and trend components, respectively. This approach provides policymakers, regulators, and investors with a more reliable tool for forecasting carbon prices and supports more informed decision-making, offering a promising pathway for effective carbon-price prediction. Full article
Show Figures

Figure 1

27 pages, 3330 KB  
Article
Agent-Based Energy Market Modeling with Machine Learning and Econometric Forecasting for the Net-Zero Emissions Transition
by Burak Gokce and Gulgun Kayakutlu
Energies 2025, 18(21), 5655; https://doi.org/10.3390/en18215655 - 28 Oct 2025
Viewed by 893
Abstract
The transition of Türkiye’s energy market toward net-zero emissions by 2053 requires modeling approaches capable of capturing complex interactions and long-term uncertainties. In this study, a long-term agent-based modeling (ABM) framework was developed, integrating econometric demand forecasting with a seasonal autoregressive integrated moving [...] Read more.
The transition of Türkiye’s energy market toward net-zero emissions by 2053 requires modeling approaches capable of capturing complex interactions and long-term uncertainties. In this study, a long-term agent-based modeling (ABM) framework was developed, integrating econometric demand forecasting with a seasonal autoregressive integrated moving average (SARIMA) model and machine learning (ML)-based day-ahead market (DAM) price prediction. Of the ML models tested, CatBoost achieved the highest accuracy, outperforming XGBoost and Random Forest, and supported investment analysis through net present value (NPV) calculations. The framework represents major market actors—including generation units, investors, and the market operator—while also incorporating the impact of Türkiye’s first nuclear power plant (NPP) under construction and the potential introduction of a carbon emissions trading scheme (ETS). All model components were validated against historical data, confirming robust forecasting and market replication performance. Hourly simulations were conducted until 2053 under alternative policy and demand scenarios. The results show that renewable generation expands steadily, led by onshore wind and solar photovoltaic (PV), while nuclear capacity, ETS implementation, and demand assumptions significantly reshape prices, generation mix, and carbon emissions. The nuclear plant lowers market prices, whereas an ETS substantially raises them, with both policies contributing to emission reductions. These scenario results were connected to actionable policy recommendations, outlining how renewable expansion, ETS design, nuclear development, and energy efficiency measures can jointly support Türkiye’s 2053 net-zero target. The proposed framework provides an ex-ante decision-support framework for policymakers, investors, and market participants, with future extensions that can include other energy markets, storage integration, and enriched scenario design. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

18 pages, 2243 KB  
Article
Study on the Nonlinear Volatility Correlation Characteristics Between China’s Carbon and Energy Markets
by Tian Zhang and Shaohui Zou
Risks 2025, 13(10), 205; https://doi.org/10.3390/risks13100205 - 17 Oct 2025
Viewed by 641
Abstract
The energy sector, as a major source of carbon emissions, has a significant impact on the operation of the carbon market and the management of carbon emissions. With the introduction of the “dual carbon” goals, the Chinese government has actively implemented measures to [...] Read more.
The energy sector, as a major source of carbon emissions, has a significant impact on the operation of the carbon market and the management of carbon emissions. With the introduction of the “dual carbon” goals, the Chinese government has actively implemented measures to reduce carbon emissions, making the carbon market an important tool for emission reduction. Therefore, characterizing the inter-market relationships helps enhance decision-making for market participants and promotes sustainable economic development. This study selects the price of the Chinese carbon emission trading market, which began trading on 16 July 2021, as a representative of the carbon market price. In terms of energy market selection, the prices of electricity, new energy, and coal are chosen as representatives of the energy market. From the perspective of the nonlinear dependency structure between market prices, a “carbon ↔ electricity ↔ new energy ↔ coal market” multi-to-multi interaction model is constructed, and the MSVAR model is employed to study the nonlinear dependency characteristics between market prices under interactive influences. The results show that there is a significant nonlinear dependency structure between the four market prices, especially between the carbon market and the new energy market. These market prices exhibit different behavioral characteristics under different states, with non-stationary states being the most common. There is a strong positive correlation between the electricity market and new energy market prices, while the relationship between the carbon market and other market prices is relatively weaker. The relevant conclusions provide valuable insights for policymakers and investors, helping them better understand and predict future market dynamics. Full article
Show Figures

Figure 1

14 pages, 319 KB  
Article
Carbon Price Prediction and Risk Assessment Considering Energy Prices Based on Uncertain Differential Equations
by Di Gao, Bingqing Wu, Chengmei Wei, Hao Yue, Jian Zhang and Zhe Liu
Mathematics 2025, 13(17), 2834; https://doi.org/10.3390/math13172834 - 3 Sep 2025
Viewed by 892
Abstract
Against the backdrop of escalating atmospheric carbon dioxide concentrations, carbon emission trading systems (ETS) have emerged as pivotal policy instruments, with China’s ETS playing a prominent role globally. The carbon price, central to ETS functionality, guides resource allocation and corporate strategies. Due to [...] Read more.
Against the backdrop of escalating atmospheric carbon dioxide concentrations, carbon emission trading systems (ETS) have emerged as pivotal policy instruments, with China’s ETS playing a prominent role globally. The carbon price, central to ETS functionality, guides resource allocation and corporate strategies. Due to unexpected events, political conflicts, limited access to data information, and insufficient cognitive levels of market participants, there are epistemic uncertainties in the fluctuations of carbon and energy prices. Existing studies often lack effective handling of these epistemic uncertainties in energy prices and carbon prices. Therefore, the core objective of this study is to reveal the dynamic linkage patterns between energy prices and carbon prices, and to quantify the impact mechanism of epistemic uncertainties on their relationship with the help of uncertain differential equations. Methodologically, a dynamic model of carbon and energy prices was constructed, and analytical solutions were derived and their mathematical properties were analyzed to characterize the linkage between carbon and energy prices. Furthermore, based on the observation data of coal prices in Qinhuangdao Port and national carbon prices, the unknown parameters of the proposed model were estimated, and uncertain hypothesis tests were conducted to verify the rationality of the proposed model. Results showed that the mean squared error of the established model for fitting the linkage relationship between carbon and energy prices was 0.76, with the fitting error controlled within 3.72%. Moreover, the prediction error was 1.88%. Meanwhile, the 5% value at risk (VaR) of the logarithmic return rate of carbon prices was predicted to be 0.0369. The research indicates that this methodology provides a feasible framework for capturing the uncertain interactions in the carbon-energy market. The price linkage mechanism revealed by it helps market participants optimize their risk management strategies and provides more accurate decision-making references for policymakers. Full article
(This article belongs to the Special Issue Uncertainty Theory and Applications)
Show Figures

Figure 1

23 pages, 1276 KB  
Article
Data-Driven Assessment of Carbon Emission and Optimization of Carbon Emission Reduction in the Ceramic Industry
by Xingbin Huang and Weihua He
Entropy 2025, 27(8), 872; https://doi.org/10.3390/e27080872 - 18 Aug 2025
Viewed by 1247
Abstract
By integrating statistical modeling and data analysis techniques, we systematically assess the carbon emission performance of the ceramic industry and propose targeted emission reduction pathways. Firstly, the entropy weight TOPSIS model is employed to quantitatively evaluate the carbon emission performance of the three [...] Read more.
By integrating statistical modeling and data analysis techniques, we systematically assess the carbon emission performance of the ceramic industry and propose targeted emission reduction pathways. Firstly, the entropy weight TOPSIS model is employed to quantitatively evaluate the carbon emission performance of the three major Chinese ceramic production areas: Foshan, Jingdezhen, and Zibo. Through data-driven quantitative analysis, it is disclosed that the carbon emission intensity in Foshan is significantly higher than that in the other two regions (with a relative closeness degree of 0.5185). The key issues identified include high energy consumption in the production process, a high reliance on raw coal, and insufficient investment in environmental protection. Furthermore, through the XGBoost-SHAP combined modeling, the key drivers of carbon emissions are precisely identified from multi-dimensional data. It is found that the elasticity coefficient of raw coal in the carbon emission proportion is as high as 25.84%, while the potential for substitution with natural gas is remarkable. Based on statistical prediction techniques, a carbon emission trend model under the scenario of energy structure optimization is constructed, predicting that after reaching a peak in 2017, Foshan’s carbon emissions will continue to decline, with the proportion of raw coal dropping to 48% and that of natural gas rising to 10%, thereby verifying the feasibility of the green transformation. Additionally, a multi-agent carbon trading simulation model is constructed to explore the emission reduction behaviors of enterprises under different carbon price scenarios. This study not only achieves precise quantitative analysis of carbon emissions through statistical method innovation but also verifies the feasible paths of low-carbon transformation through data modeling. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

30 pages, 1703 KB  
Article
A Three-Stage Stochastic–Robust Scheduling for Oxy-Fuel Combustion Capture Involved Virtual Power Plants Considering Source–Load Uncertainties and Carbon Trading
by Jiahong Wang, Xintuan Wang and Bingkang Li
Sustainability 2025, 17(16), 7354; https://doi.org/10.3390/su17167354 - 14 Aug 2025
Viewed by 724
Abstract
Driven by the “dual carbon” goal, virtual power plants (VPPs) are the core vehicle for integrating distributed energy resources, but the multiple uncertainties in wind power, electricity/heat load, and electricity price, coupled with the impact of carbon-trading cost, make it difficult for traditional [...] Read more.
Driven by the “dual carbon” goal, virtual power plants (VPPs) are the core vehicle for integrating distributed energy resources, but the multiple uncertainties in wind power, electricity/heat load, and electricity price, coupled with the impact of carbon-trading cost, make it difficult for traditional scheduling methods to balance the robustness and economy of VPPs. Therefore, this paper proposes an oxy-fuel combustion capture (OCC)-VPP architecture, integrating an OCC unit to improve the energy efficiency of the system through the “electricity-oxygen-carbon” cycle. Ten typical scenarios are generated by Latin hypercube sampling and K-means clustering to describe the uncertainties of source and load probability distribution, combined with the polyhedral uncertainty set to delineate the boundary of source and load fluctuations, and the stepped carbon-trading mechanism is introduced to quantify the cost of carbon emission. Then, a three-stage stochastic–robust scheduling model is constructed. The simulation based on the arithmetic example of OCC-VPP in North China shows that (1) OCC-VPP significantly improves the economy through the synergy of electric–hydrogen production and methanation (52% of hydrogen is supplied with heat and 41% is methanated), and the cost of carbon sequestration increases with the prediction error, but the carbon benefit of stepped carbon trading is stabilized at the base price of 320 DKK/ton; (2) when the uncertainty is increased from 0 to 18, the total cost rises by 45%, and the cost of purchased gas increases by the largest amount, and the cost of energy abandonment increases only by 299.6 DKK, which highlights the smoothing effect of energy storage; (3) the proposed model improves the solution speed by 70% compared with stochastic optimization, and reduces cost by 4.0% compared with robust optimization, which balances economy and robustness efficiently. Full article
Show Figures

Figure 1

25 pages, 1488 KB  
Article
DKWM-XLSTM: A Carbon Trading Price Prediction Model Considering Multiple Influencing Factors
by Yunlong Yu, Xuan Song, Guoxiong Zhou, Lingxi Liu, Meixi Pan and Tianrui Zhao
Entropy 2025, 27(8), 817; https://doi.org/10.3390/e27080817 - 31 Jul 2025
Cited by 1 | Viewed by 1066
Abstract
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage [...] Read more.
Forestry carbon sinks play a crucial role in mitigating climate change and protecting ecosystems, significantly contributing to the development of carbon trading systems. Remote sensing technology has become increasingly important for monitoring carbon sinks, as it allows for precise measurement of carbon storage and ecological changes, which are vital for forecasting carbon prices. Carbon prices fluctuate due to the interaction of various factors, exhibiting non-stationary characteristics and inherent uncertainties, making accurate predictions particularly challenging. To address these complexities, this study proposes a method for predicting carbon trading prices influenced by multiple factors. We introduce a Decomposition (DECOMP) module that separates carbon price data and its influencing factors into trend and cyclical components. To manage non-stationarity, we propose the KAN with Multi-Domain Diffusion (KAN-MD) module, which efficiently extracts relevant features. Furthermore, a Wave-MH attention module, based on wavelet transformation, is introduced to minimize interference from uncertainties, thereby enhancing the robustness of the model. Empirical research using data from the Hubei carbon trading market demonstrates that our model achieves superior predictive accuracy and resilience to fluctuations compared to other benchmark methods, with an MSE of 0.204% and an MAE of 0.0277. These results provide reliable support for pricing carbon financial derivatives and managing associated risks. Full article
Show Figures

Figure 1

31 pages, 2756 KB  
Article
Digital Twins and Network Resilience in the EU ETS: Analysing Structural Shifts in Carbon Trading
by Cláudia R. R. Eirado, Douglas Silveira and Daniel O. Cajueiro
Sustainability 2025, 17(15), 6924; https://doi.org/10.3390/su17156924 - 30 Jul 2025
Viewed by 929
Abstract
The European Union Emissions Trading System (EU ETS) and its underlying market structure play a central role in the EU’s climate policy. This study analyses how the network of trading relationships within the EU ETS has evolved from a hub-dominated architecture to one [...] Read more.
The European Union Emissions Trading System (EU ETS) and its underlying market structure play a central role in the EU’s climate policy. This study analyses how the network of trading relationships within the EU ETS has evolved from a hub-dominated architecture to one marked by structural change and the emergence of new trading dynamics. Using transaction data from Phases I–IV, we apply complex network analysis to assess changes in connectivity, centrality, and community structure. We then construct a Digital Twin of the EU ETS, integrating graph neural networks and logistic regression models to simulate the entry of new participants and predict future trading links. The results indicate shifts in network composition and connectivity, especially in Phase IV, where regulatory innovations and institutional mechanisms appear to play a key role. While our analysis focuses on structural dynamics, these patterns may have broader implications for market performance and policy effectiveness. These findings underscore the importance of monitoring the evolving trading network alongside price signals to support a resilient, efficient, and environmentally credible carbon market. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

24 pages, 4175 KB  
Article
Joint Planning of Renewable Energy and Electric Vehicle Charging Stations Based on a Carbon Pricing Optimization Mechanism
by Shanli Wang, Bing Fang, Jiayi Zhang, Zewei Chen, Mingzhe Wen, Huanxiu Xiao and Mengyao Jiang
Energies 2025, 18(13), 3462; https://doi.org/10.3390/en18133462 - 1 Jul 2025
Cited by 1 | Viewed by 1028
Abstract
The integration of renewable energy and electric vehicle (EV) charging stations into distribution systems presents critical challenges, including the inherent variability of renewable generation, the complex behavioral patterns of EV users, and the need for effective carbon emission mitigation. To address these challenges, [...] Read more.
The integration of renewable energy and electric vehicle (EV) charging stations into distribution systems presents critical challenges, including the inherent variability of renewable generation, the complex behavioral patterns of EV users, and the need for effective carbon emission mitigation. To address these challenges, this paper proposes a novel distribution system planning method based on the carbon pricing optimization mechanism. First, to address the strong randomness and volatility of renewable energy, a prediction model for renewable energy output considering climatic conditions is established to characterize the output features of wind and solar power. Subsequently, a charging station model is constructed based on the behavioral characteristics of electric vehicle users. Then, an optimized carbon trading price mechanism incorporating the carbon price growth rate is introduced into the carbon emission cost accounting. Based on this, a joint planning model for the power and transportation systems is developed, aiming to minimize the total economic cost while accounting for renewable energy integration and electric vehicle charging station deployment. In the case study, the proposed model is validated using the actual operational data of a specific region and a modified IEEE 33-node system, demonstrating the rationality and effectiveness of the model. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

33 pages, 10136 KB  
Article
Carbon Price Forecasting Using a Hybrid Deep Learning Model: TKMixer-BiGRU-SA
by Yuhong Li, Nan Yang, Guihong Bi, Shiyu Chen, Zhao Luo and Xin Shen
Symmetry 2025, 17(6), 962; https://doi.org/10.3390/sym17060962 - 17 Jun 2025
Cited by 3 | Viewed by 2347
Abstract
As a core strategy for carbon emission reduction, carbon trading plays a critical role in policy guidance and market stability. Accurate forecasting of carbon prices is essential, yet remains challenging due to the nonlinear, non-stationary, noisy, and uncertain nature of carbon price time [...] Read more.
As a core strategy for carbon emission reduction, carbon trading plays a critical role in policy guidance and market stability. Accurate forecasting of carbon prices is essential, yet remains challenging due to the nonlinear, non-stationary, noisy, and uncertain nature of carbon price time series. To address this, this paper proposes a novel hybrid deep learning framework that integrates dual-mode decomposition and a TKMixer-BiGRU-SA model for carbon price prediction. First, external variables with high correlation to carbon prices are identified through correlation analysis and incorporated as inputs. Then, the carbon price series is decomposed using Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) to extract multi-scale features embedded in the original data. The core prediction model, TKMixer-BiGRU-SA Net, comprises three integrated branches: the first processes the raw carbon price and highly relevant external time series, and the second and third process multi-scale components obtained from VMD and EWT, respectively. The proposed model embeds Kolmogorov–Arnold Networks (KANs) into the Time-Series Mixer (TSMixer) module, replacing the conventional time-mapping layer to form the TKMixer module. Each branch alternately applies the TKMixer along the temporal and feature-channel dimensions to capture dependencies across time steps and variables. Hierarchical nonlinear transformations enhance higher-order feature interactions and improve nonlinear modeling capability. Additionally, the BiGRU component captures bidirectional long-term dependencies, while the Self-Attention (SA) mechanism adaptively weights critical features for integrated prediction. This architecture is designed to uncover global fluctuation patterns in carbon prices, multi-scale component behaviors, and external factor correlations, thereby enabling autonomous learning and the prediction of complex non-stationary and nonlinear price dynamics. Empirical evaluations using data from the EU Emission Allowance (EUA) and Hubei Emission Allowance (HBEA) demonstrate the model’s high accuracy in both single-step and multi-step forecasting tasks. For example, the eMAPE of EUA predictions for 1–4 step forecasts are 0.2081%, 0.5660%, 0.8293%, and 1.1063%, respectively—outperforming benchmark models and confirming the proposed method’s effectiveness and robustness. This study provides a novel approach to carbon price forecasting with practical implications for market regulation and decision-making. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

17 pages, 718 KB  
Article
Carbon Intensity and Sustainable Development Analysis of the Transportation Infrastructure Industry in China: An MLP Network Approach
by Guandong Liu and Haicheng Xu
Urban Sci. 2025, 9(6), 205; https://doi.org/10.3390/urbansci9060205 - 3 Jun 2025
Viewed by 1651
Abstract
Transportation infrastructure systems sit at the nexus of urban economic development and emission mitigation. The primary objective is to identify and quantify the key factors influencing CI, with a focus on both the conventional and emerging indicators through an innovative MLP neural network [...] Read more.
Transportation infrastructure systems sit at the nexus of urban economic development and emission mitigation. The primary objective is to identify and quantify the key factors influencing CI, with a focus on both the conventional and emerging indicators through an innovative MLP neural network developed using the data of 20 Chinese transportation enterprises that have a business focus on the construction and operation sector from 2018 to 2022. The hypothesis is that integrating unconventional indicators—such as business model entropy and green revenue share—alongside traditional metrics can significantly enhance the predictive accuracy for CI. The results show that business model entropy explains 42.6% of carbon intensity (Cl) variability through green revenue diversification pathways, while emissions trading system (ETS) exposure accounts for 51.83% of decarbonization outcomes via price-signaling effects. The analysis reveals that a critical operational threshold–renewable energy capacity below 75% fails to significantly reduce Cl, and capex/revenue ratios exceeding 73.58% indicate carbon lock-in risks. These findings enable policymakers to prioritize industries with sub-75% renewable adoption while targeting capex-intensive sectors for circular economy interventions. The novelty of this work lies in the application of advanced machine-learning techniques to a comprehensive, multi-source dataset, enabling a nuanced analysis of CI drivers and offering actionable insights for policymakers and industry stakeholders aiming to decarbonize transport infrastructure. Full article
(This article belongs to the Collection Urban Agenda)
Show Figures

Figure 1

Back to TopTop