Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = precision finishing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3386 KB  
Article
Effect of Grain Size on Polycrystalline Copper Finish Quality of Ultra-Precision Cutting
by Chuandong Zhang, Xinlei Yue, Kaiyuan You and Wei Wang
Micromachines 2025, 16(10), 1133; https://doi.org/10.3390/mi16101133 - 30 Sep 2025
Abstract
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical [...] Read more.
Polycrystalline copper optics are widely utilized in infrared systems due to their exceptional electrical and thermal conductivity combined with favorable machining characteristics. The grain size profoundly influences both surface quality consistency and fundamental material removal behavior during processing. This investigation employs multiscale numerical modeling to simulate nanoscale cutting processes in polycrystalline copper with controlled grain structures, coupled with experimental ultra-precision machining validation. Comprehensive analysis of stress distribution, subsurface damage formation, and cutting force evolution reveals that refined grain structures promote more homogeneous plastic deformation, resulting in superior surface finish with reduced roughness and diminished grain boundary step formation. However, the enhanced grain boundary density in fine-grained specimens necessitates increased cutting energy input. These findings establish critical process–structure–property relationships essential for advancing precision manufacturing of copper-based optical systems. Full article
(This article belongs to the Special Issue Ultra-Precision Micro Cutting and Micro Polishing)
18 pages, 7712 KB  
Article
Prediction Model and Experimental Verification of Surface Roughness of Single Crystal Diamond Chemical Mechanical Polishing Based on Archimedes Optimization Algorithm
by Zhaoze Li, Xiaoguang Guo, Guanghui Fan, Yueming Deng, Renke Kang and Xuefei Wang
Micromachines 2025, 16(10), 1121; https://doi.org/10.3390/mi16101121 - 30 Sep 2025
Abstract
Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including [...] Read more.
Chemical mechanical polishing (CMP) is a critical technique for fabricating ultra-smooth and high-quality surfaces of single crystal diamond (SCD), where processing parameters profoundly influence polishing performance. To achieve superior diamond surface finishes, this study first investigates the effects of key process parameters, including oxidant concentration, catalyst type, and abrasive particle size, on surface quality through single-factor experiments. Subsequently, an Archimedes optimization algorithm (AOA)-based prediction model for diamond CMP surface roughness (Sa) is developed and validated experimentally. Results reveal that high-concentration oxidants, fine-particle abrasives, and dual-catalyst polishing systems synergistically enhance surface quality. The AOA-based prediction model demonstrates a root-mean-square error (RMSE) of 0.006 and a correlation coefficient (R) of 0.98 between the predicted and experimental Sa values. Under the conditions of a dual-catalyst type, 35% oxidant concentration, and 500 nm abrasive particle size, the model predicts a surface roughness of 0.128 nm, with an experimental value of 0.125 nm and a relative error of less than 3%. These findings highlight the capability of the model to accurately forecast surface roughness across diverse process parameters, offering a novel predictive framework for precision CMP of SCD. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 4th Edition)
Show Figures

Figure 1

22 pages, 4299 KB  
Article
Motion Control of Gallium-Based Liquid Metal Droplets in Abrasive Suspensions Within a Flow Channel
by Yapeng Ma, Baoqi Feng, Kaixiang Li and Lei Zhang
Actuators 2025, 14(9), 456; https://doi.org/10.3390/act14090456 - 18 Sep 2025
Viewed by 263
Abstract
Gallium-based room-temperature liquid metal is a promising multifunctional material for microfluidics and precision machining due to its high mobility and deformability. However, precise motion control of gallium-based liquid metal droplets, especially in abrasive particle-laden fluids, remains challenging. This study presents a hybrid control [...] Read more.
Gallium-based room-temperature liquid metal is a promising multifunctional material for microfluidics and precision machining due to its high mobility and deformability. However, precise motion control of gallium-based liquid metal droplets, especially in abrasive particle-laden fluids, remains challenging. This study presents a hybrid control framework for regulating droplet motion in a one-dimensional PMMA channel filled with NaOH-based SiC abrasive suspensions. A dynamic model incorporating particle size and concentration effects on the damping coefficient was established. The system combines a setpoint controller, high-resolution voltage source, and vision feedback to guide droplets to target positions with high accuracy. Experimental validation and MATLAB simulations confirm that the proposed dynamic damping control strategy ensures stable, rapid, and precise positioning of droplets, minimizing motion fluctuations. This approach offers new insights into the manipulation of gallium-based liquid metal droplets for targeted material removal in micro-manufacturing, with potential applications in microelectronics and high-precision surface finishing. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

13 pages, 3489 KB  
Article
Methods for Enhancing the Formation of Hydroxyl Radicals When Polishing Single Crystal SiC
by Dong Shi, Kaiping Feng and Tianchen Zhao
Materials 2025, 18(18), 4276; https://doi.org/10.3390/ma18184276 - 12 Sep 2025
Viewed by 280
Abstract
To enhance the formation of hydroxyl radicals (•OH) when polishing single crystal silicon carbide (SiC), this study proposes a catalytic-assisted polishing approach based on a Fe3O4/ZnO/graphite hybrid system. Firstly, methyl orange degradation experiments were conducted using Fe3O [...] Read more.
To enhance the formation of hydroxyl radicals (•OH) when polishing single crystal silicon carbide (SiC), this study proposes a catalytic-assisted polishing approach based on a Fe3O4/ZnO/graphite hybrid system. Firstly, methyl orange degradation experiments were conducted using Fe3O4/ZnO/graphite hybrid catalysts. Secondly, a resin-based abrasive tool embedded with the Fe3O4/ZnO/graphite hybrid was developed. Subsequently, polishing experiments under dry, water, and hydrogen peroxide conditions were performed based on the abrasive tool. The corresponding surface roughness (Sa) were 26.51 nm, 12.955 nm and 4.593 nm, separately. The material removal rate were 0.733 mg/h (1.586 μm/h), 2.800 mg/h (6.057 μm/h) and 4.733 mg/h (10.239 μm/h), respectively. The results demonstrate that the Fe3O4/ZnO/graphite hybrid synergistically enhanced •OH generation through Fenton reactions and tribocatalysis of ZnO. Therefore, the increased •OH productivity contributes to SiC oxidation and SiO2 removal, improving both polishing efficiency and surface finish. The catalytic-assisted polishing provides a novel approach for the high-efficiency ultra-precision machining for SiC. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

25 pages, 1543 KB  
Article
Precision Feeding on Pig Fattening Farms: Can Simplified Implementation Enhance Productivity and Reduce Pollutant Emissions?
by Gema Montalvo, María Rodríguez, Carlos Piñeiro, Salvador Calvet, María J. Sanz and Paloma Garcia-Rebollar
Agriculture 2025, 15(18), 1935; https://doi.org/10.3390/agriculture15181935 - 12 Sep 2025
Viewed by 566
Abstract
This study evaluated a simplified precision feeding (PF) strategy on pig fattening farms to assess its effects on economic performance and pollutant emissions. PF in pig production can reduce nitrogen (N) intake, excretion, and slurry-related environmental impacts, yet its implementation is difficult due [...] Read more.
This study evaluated a simplified precision feeding (PF) strategy on pig fattening farms to assess its effects on economic performance and pollutant emissions. PF in pig production can reduce nitrogen (N) intake, excretion, and slurry-related environmental impacts, yet its implementation is difficult due to the need for daily diet adjustments to match pigs’ changing requirements. This work tested a simplified PF approach: two commercial feeds, a nutrient-rich pre-grower and a nutrient-poor finisher, were blended weekly based on the lysine needs of two groups of pigs, defined by initial body weight. During the fattening period, blend feeding (BF) sustained growth and feed intake at levels comparable to those with conventional three-phase feeding, but heavy pigs under BF showed reduced feed efficiency. Nitrogen excretion and slurry ammonia (NH3) emissions did not differ significantly, but BF increased methane and carbon dioxide emissions in the slurry from heavy pigs. The results show that simplified PF can provide economic benefits without compromising performance, but BF formulation should also address potential NH3 and greenhouse gas emissions during slurry storage. The integration of artificial intelligence-driven tools for real-time diet adjustments at the farm level would be of great interest to enhance sustainability and efficiency, because the economic benefits of PF application were evident. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

29 pages, 7118 KB  
Article
Chemical Mechanical Polishing of Zerodur® Using Silica and Ceria Nanoparticles: Toward Ultra-Smooth Optical Surfaces
by Houda Bellahsene, Saad Sene, Gautier Félix, Nicolas Fabregue, Michel Marcos, Arnaud Uhart, Jean-Charles Dupin, Erwan Oliviero, Joulia Larionova, Marc Ferrari and Yannick Guari
Nanomaterials 2025, 15(18), 1391; https://doi.org/10.3390/nano15181391 - 10 Sep 2025
Viewed by 391
Abstract
This study investigates hyperpolishing of Zerodur® substrates via chemical-mechanical polishing (CMP) using silica (SiO2) and ceria (CeO2) nanoparticles as controlled nano-abrasives. A pre-polishing stress-mirror stage was combined with systematic use of nanoparticles of variable size to evaluate surface-state [...] Read more.
This study investigates hyperpolishing of Zerodur® substrates via chemical-mechanical polishing (CMP) using silica (SiO2) and ceria (CeO2) nanoparticles as controlled nano-abrasives. A pre-polishing stress-mirror stage was combined with systematic use of nanoparticles of variable size to evaluate surface-state evolution via optical rugosimeter, HRSEM, cross-sectional HRTEM, and XPS. A set of hexagonal mirrors with a circumscribed diameter of 30 mm was polished for one hour with each nanoparticle type. All tested slurries significantly improved surface quality, with both the smallest (37 nm) and largest (209 nm) SiO2 particles achieving similar final roughness, though larger particles showed a slight performance advantage that could be offset by longer polishing with smaller particles. CeO2 nanoparticles (30 nm) produced even better process efficiency and surface finishes than 37 nm SiO2, demonstrating higher chemical-mechanical polishing efficiency with CeO2. Sequential polishing strategies, first with 209 nm SiO2, then with 37 nm SiO2 and 30 nm CeO2, also enhanced surface quality, confirming trends from single-particle trials. One of the most effective protocols was adapted and scaled up to 135 mm Zerodur® mirrors with spherical and plano geometries, representative of precision optical components. The strategic approach adopted to achieve a high-quality surface finish in a reduced processing time relies on the sequential use of nanoparticles acting as complementary nano-abrasives. Indeed, applying two hours of polishing with 209 nm SiO2 followed by two hours with 37 nm SiO2 yielded exceptional results, with area roughness (Sa) values of 1 Å for spherical and 0.9 Å for plano surfaces. These results demonstrate the capability of nanoparticle-assisted CMP to produce sub-nanometric surface finishes and offer a robust, scalable approach for high-end optical manufacturing. Full article
Show Figures

Graphical abstract

36 pages, 9288 KB  
Article
Robotic Contact on Complex Curved Surfaces Using Adaptive Trajectory Planning Through Precise Force Control
by Hosham Wahballa, Abubker Ahmed, Ghazally I. Y. Mustafa, Mohammednour Gibreel and Lei Weining
Machines 2025, 13(9), 794; https://doi.org/10.3390/machines13090794 - 2 Sep 2025
Viewed by 560
Abstract
This paper presents a control method for achieving precise robotic contact on complex and curved surfaces in manufacturing and automation. The method combines smooth trajectory planning with contact force control to improve finishing accuracy while reducing processing time. It integrates a Bézier curve [...] Read more.
This paper presents a control method for achieving precise robotic contact on complex and curved surfaces in manufacturing and automation. The method combines smooth trajectory planning with contact force control to improve finishing accuracy while reducing processing time. It integrates a Bézier curve with a simplified hexic polynomial implemented through a position-based impedance controller that is enhanced by a novel force corrector unit. The model is referred to as the Adaptive Bézier–Based Impedance Constant Force Controller (ABBIFC), where the Bézier curve length is calculated using Simpson’s rule, and surface orientations are interpolated using quadratic quaternions. A hexic polynomial velocity profile ensures consistent motion speed throughout the process. This method effectively regulates both contact force and positional accuracy, resulting in high-quality surface finishes. Simulation studies and real-time polishing experiments demonstrate the system’s capability to accurately track path, speed, and force, with significantly reduced force errors. This approach advances robotic automation in applications such as polishing, grinding, and other surface finishing tasks by ensuring smooth motion and precise force control. Full article
(This article belongs to the Special Issue Advances and Challenges in Robotic Manipulation)
Show Figures

Figure 1

15 pages, 16310 KB  
Article
Long GHz-Burst Laser Surface Polishing of AlSl 316L Stainless Steel Parts Manufactured by Short GHz-Burst Laser Ablation
by Théo Guilberteau, Florent Husson, Manon Lafargue, John Lopez, Marc Faucon, Laura Gemini and Inka Manek-Hönninger
Nanomaterials 2025, 15(17), 1343; https://doi.org/10.3390/nano15171343 - 1 Sep 2025
Viewed by 803
Abstract
GHz-burst laser polishing is as a promising technique for improving the surface quality of metallic materials, offering key advantages over conventional methods. In this study, two distinct approaches are investigated: a single-step polishing process, and a double-step process consisting of an initial laser [...] Read more.
GHz-burst laser polishing is as a promising technique for improving the surface quality of metallic materials, offering key advantages over conventional methods. In this study, two distinct approaches are investigated: a single-step polishing process, and a double-step process consisting of an initial laser milling step followed by a finishing/polishing pass. This distinction is critical in evaluating the performance of GHz-burst regimes under different surface conditions and roughness levels. Initial proof-of-concept trials confirm that GHz-burst irradiation can significantly reduce the surface roughness with minimal thermal damage, provided that process parameters are carefully optimized. Further analysis of spot-to-spot overlap reveals that the deposited energy density plays a crucial role in achieving uniform surface quality without inducing surface defects. The number of passes is also studied, showing that while multiple passes can improve surface finish, the benefit strongly depends on the initial roughness state of the substrate. Scalability is demonstrated by increasing both the repetition rate and scan speed proportionally while maintaining processing quality across larger areas. These results support the viability of GHz-burst laser polishing for high-throughput manufacturing. Applications in aerospace, biomedical implants, and precision optics highlight the technique’s potential for industrial adoption in demanding surface finishing contexts. Full article
Show Figures

Figure 1

28 pages, 1314 KB  
Review
A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions
by Ke Wang, Lian Ding, Farid Dailami and Jason Matthews
Machines 2025, 13(9), 772; https://doi.org/10.3390/machines13090772 - 28 Aug 2025
Viewed by 1099
Abstract
The final phase of the manufacturing process for any artefact involves their surface finishing operations. This phase entails the precise removal of small volumes of material to achieve a specific surface roughness, which is essential for ensuring the artefact’s post-production performance and endurance. [...] Read more.
The final phase of the manufacturing process for any artefact involves their surface finishing operations. This phase entails the precise removal of small volumes of material to achieve a specific surface roughness, which is essential for ensuring the artefact’s post-production performance and endurance. For certain tooling, such as molds and dies, the finishing operation can be particularly significant, often equating to fifty percent of the total production time and a fifth of the overall manufacturing cost. In recent years, collaborative robotics has come to the fore. These advanced systems allow manufacturers to harness the positive attributes of robots, such as their repeatability, endurance, and strength, while simultaneously leveraging the unique benefits of human workers, including their process knowledge, problem-solving abilities, and adaptability. This co-operation between human and robotic capabilities has opened new avenues for efficiency and precision in the finishing process. This paper investigates the current advancements in collaborative robotic finishing, providing a comprehensive overview of the latest technologies and methodologies. It also highlights existing research gaps that need to be addressed to further enhance the effectiveness of these systems. Additionally, the paper suggests potential areas for future investigation, aiming to drive continued innovation and improvement in the field of collaborative robotic finishing operations. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

25 pages, 8437 KB  
Review
Advances in Wire EDM Technology for Cutting Silicon Carbide Ceramics: A Review
by Mohammad Ghasemian Fard, Jana Petru and Sergej Hloch
Materials 2025, 18(17), 3955; https://doi.org/10.3390/ma18173955 - 23 Aug 2025
Viewed by 830
Abstract
Silicon carbide (SiC) ceramics have gained significant attention in advanced engineering applications because of their superior mechanical properties, resistance to wear and corrosion, and thermal stability. However, the precision machining of these materials is extremely challenging because of their intrinsic hardness and brittleness. [...] Read more.
Silicon carbide (SiC) ceramics have gained significant attention in advanced engineering applications because of their superior mechanical properties, resistance to wear and corrosion, and thermal stability. However, the precision machining of these materials is extremely challenging because of their intrinsic hardness and brittleness. Wire Electrical Discharge Machining (WEDM) has become increasingly popular as a viable technique for processing SiC ceramics because of its ability to produce intricate geometries and high-quality surface finishes. In this review paper, a comprehensive overview of WEDM technology applied to SiC ceramics is presented, emphasizing the influence of process parameters, wire materials, and dielectric fluids on cutting efficiency and quality. This research explores recent experimental findings related to Wire Electrical Discharge Machining (WEDM) and highlights the challenges in reducing material damage. It also presents strategies to improve machining performance. Additionally, potential future directions are discussed, providing a roadmap for further research and the application of WEDM in processing silicon carbide (SiC) and its variants, including solid silicon carbide (SSiC) and silicon-infiltrated silicon carbide (SiSiC). Full article
(This article belongs to the Special Issue Non-conventional Machining: Materials and Processes)
Show Figures

Figure 1

22 pages, 6013 KB  
Article
Improving Surface Roughness of 42CrMo4 Low Alloy Steel Shafts by Applying Varying Feed in the Multi-Pass Slide Burnishing Process
by Frezgi Tesfom Kebede, Csaba Felho and István Sztankovics
Appl. Sci. 2025, 15(16), 9063; https://doi.org/10.3390/app15169063 - 17 Aug 2025
Viewed by 569
Abstract
Burnishing is a critical surface finishing process that uses a hard tool to apply pressure on the surface, lasting one or multiple passes to plastically deform surface asperities on high-performance alloys like 42CrMo4 steel. But the conventional method fails to efficiently enhance surface [...] Read more.
Burnishing is a critical surface finishing process that uses a hard tool to apply pressure on the surface, lasting one or multiple passes to plastically deform surface asperities on high-performance alloys like 42CrMo4 steel. But the conventional method fails to efficiently enhance surface properties by selecting specifically the values of feed in all passes that follow the same path, missing uneven asperities. In this study, surfaces are burnished with multiple passes by changing the feed in each pass, hypothesizing that the approach can optimize the plastic deformation mechanism. By applying this approach, the tool’s path is deviated from its previous path to enhance the surface integrity by targeting residual surface anomalies. Controlled four levels of forces (60, 90, 120, 150 N), four feed levels (0.02, 0.08, 0.14, and 0.2 mm/rev), and three levels of passes (2, 3, 4) were applied on the proposed method and the conventional method to evaluate and compare their effects. Experimental results confirmed better surface roughness by the varying feed approach, demonstrating its efficacy in enhancing finishing quality through controlled plastic deformation. The analyzed Sa, Ssk, Sku, Sk, Spk, and Svk showed changed topography by both methods, specifically 0.02 mm/rev feed in the old and feed combination in the feed-varying method, which included 0.02 mm/rev, produced smoother surfaces, but the highest elapsed time. The findings generally highlight the potential of adaptive feed strategies to overcome limitations of conventional burnishing, offering a viable solution for precision finishing of high-performance alloys. Full article
Show Figures

Figure 1

23 pages, 7663 KB  
Review
Advances in 3D Printing: Microfabrication Techniques and Forming Applications
by Di Pan, Fanghui Jia, Muyuan Zhou, Hao Liu, Jingru Yan, Lisong Zhu, Ming Yang and Zhengyi Jiang
Micromachines 2025, 16(8), 940; https://doi.org/10.3390/mi16080940 - 15 Aug 2025
Viewed by 828
Abstract
Stainless steel is essential in high-performance industries due to its strength, corrosion resistance, and biocompatibility. However, conventional manufacturing methods limit material efficiency, design complexity, and customization. Additive manufacturing (AM) has emerged as a powerful alternative, enabling the production of stainless-steel components with complex [...] Read more.
Stainless steel is essential in high-performance industries due to its strength, corrosion resistance, and biocompatibility. However, conventional manufacturing methods limit material efficiency, design complexity, and customization. Additive manufacturing (AM) has emerged as a powerful alternative, enabling the production of stainless-steel components with complex geometries, tailored microstructures, and integrated functionalities. Key AM methodologies, including laser powder bed fusion (L-PBF), binder jetting, and directed energy deposition (DED), are evaluated for their effectiveness in producing stainless-steel components with optimal performance characteristics. This review highlights innovations in stainless-steel AM, focusing on microfabrication, multi-material approaches, and post-processing strategies such as heat treatment, hot isostatic pressing (HIP), and surface finishing. It also examines the impact of process parameters on microstructure, mechanical anisotropy, and defects. Emerging trends include AM-specific alloy design, functionally graded structures, and AI-based control. Applications span biomedical implants, micro-tooling, energy systems, and automotive parts, with emphasis on microfabrication for biomedical micromachines and precision microforming. Full article
Show Figures

Figure 1

31 pages, 6204 KB  
Article
Optimization and Validation of CO2 Laser-Machining Parameters for Wood–Plastic Composites (WPCs)
by Sharizal Ahmad Sobri, Teoh Ping Chow, Tan Koon Tatt, Mohd Hisham Nordin, Andi Hermawan, Mohd Hazim Mohamad Amini, Mohd Natashah Norizan, Norshah Afizi Shuaib and Wan Omar Ali Saifuddin Wan Ismail
Polymers 2025, 17(16), 2216; https://doi.org/10.3390/polym17162216 - 13 Aug 2025
Viewed by 691
Abstract
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate [...] Read more.
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate and assist-gas pressure. Using a 1500 W CO2 laser, a full factorial experimental design was employed to cut 18 mm thick WPC panels at varying feed rates (1000–3000 mm/min) and gas pressures (1–3 bar). Statistical analyses including MANOVA and linear regression were conducted to evaluate their effects on key machining responses: cutting depth, heat-affected zone (HAZ) width, cut-edge quality, and surface finish. Results indicated that feed rate significantly influences both cutting depth and thermal damage, while gas pressure plays a major role in improving surface quality and reducing HAZ. Optimal combinations were identified for various performance goals, and validation trials at the selected parameters confirmed alignment with predicted outcomes. The optimized settings yielded high-quality cuts with reduced HAZ and enhanced surface characteristics. This study demonstrates the effectiveness of a statistical optimization approach in refining CO2 laser-cutting conditions for WPCs, offering insights for improved process control and sustainable manufacturing applications. This study also introduces a multi-objective optimization approach that verifies the interaction effects of feed rate and assist-gas pressure, enabling precise and efficient CO2 laser cutting of 18 mm thick WPCs. Full article
Show Figures

Graphical abstract

16 pages, 7134 KB  
Article
The Impact of an Object’s Surface Material and Preparatory Actions on the Accuracy of Optical Coordinate Measurement
by Danuta Owczarek, Ksenia Ostrowska, Jerzy Sładek, Adam Gąska, Wiktor Harmatys, Krzysztof Tomczyk, Danijela Ignjatović and Marek Sieja
Materials 2025, 18(15), 3693; https://doi.org/10.3390/ma18153693 - 6 Aug 2025
Viewed by 513
Abstract
Optical coordinate measurement is a universal technique that aligns with the rapid development of industrial technologies and new materials. Nevertheless, can this technique be consistently effective when applied to the precise measurement of all types of materials? As shown in this article, an [...] Read more.
Optical coordinate measurement is a universal technique that aligns with the rapid development of industrial technologies and new materials. Nevertheless, can this technique be consistently effective when applied to the precise measurement of all types of materials? As shown in this article, an analysis of optical measurement systems reveals that some materials cause difficulties during the scanning process. This article details the matting process, resulting, as demonstrated, in lower measurement uncertainty values compared to the pre-matting state, and identifies materials for which applying a matting spray significantly improves the measurement quality. The authors propose a classification of materials into easy-to-scan and hard-to-scan groups, along with specific procedures to improve measurements, especially for the latter. Tests were conducted in an accredited Laboratory of Coordinate Metrology using an articulated arm with a laser probe. Measured objects included spheres made of ceramic, tungsten carbide (including a matte finish), aluminum oxide, titanium nitride-coated steel, and photopolymer resin, with reference diameters established by a high-precision Leitz PMM 12106 coordinate measuring machine. Diameters were determined from point clouds obtained via optical measurements using the best-fit method, both before and after matting. Color measurements using a spectrocolorimeter supplemented this study to assess the effect of matting on surface color. The results revealed correlations between the material type and measurement accuracy. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

20 pages, 8312 KB  
Article
Experimental Investigation of Magnetic Abrasive Finishing for Post-Processing Additive Manufactured Inconel 939 Parts
by Michał Marczak, Dorota A. Moszczyńska and Aleksander P. Wawrzyszcz
Appl. Sci. 2025, 15(15), 8233; https://doi.org/10.3390/app15158233 - 24 Jul 2025
Viewed by 523
Abstract
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a [...] Read more.
This study explores the efficacy of magnetic abrasive finishing (MAF) with planetary kinematics for post-processing Inconel 939 components fabricated by laser powder bed fusion (LPBF). Given the critical limitations in surface quality of LPBF-produced parts—especially in hard-to-machine superalloys like Inconel 939—there is a pressing need for advanced, adaptable finishing techniques that can operate effectively on complex geometries. This research focuses on optimizing the process parameters—eccentricity, rotational speed, and machining time—to enhance surface integrity following preliminary vibratory machining. Custom-designed samples underwent sequential machining, including heat treatment and 4 h vibratory machining, before MAF was applied under controlled conditions using ferromagnetic Fe-Si abrasives. Surface roughness measurements demonstrated a significant reduction, achieving Ra values from 1.21 µm to below 0.8 µm in optimal conditions, representing more than a fivefold improvement compared to the as-printed state (5.6 µm). Scanning Electron Microscopy (SEM) revealed progressive surface refinement, with MAF effectively removing adhered particles left by prior processing. Statistical analysis confirmed the dominant influence of eccentricity on the surface profile parameters, particularly Rz. The findings validate the viability of MAF as a precise, controllable, and complementary finishing method for LPBF-manufactured Inconel 939 components, especially for geometrically complex or hard-to-reach surfaces. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

Back to TopTop