Long GHz-Burst Laser Surface Polishing of AlSl 316L Stainless Steel Parts Manufactured by Short GHz-Burst Laser Ablation
Abstract
1. Introduction
2. Materials and Methods
2.1. Laser System
2.2. Machining Workstation
2.3. Methods and Definition
2.4. Experimental Setup Used for Roughness Measurement
2.5. Gas Cover
2.6. Base Surface
3. Results and Discussion
3.1. GHz-Burst for Efficient and Smooth Laser Ablation
3.1.1. Ablation Comparison: Short vs. Long GHz-Bursts
3.1.2. Second Step: Polishing
3.2. Ghz-Burst for Direct Polishing
3.2.1. Influence of the Spot-to-Spot (S-2-S) Overlap
3.2.2. Influence of the Number of Passes
3.2.3. Scalability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, Z.; Zhang, Z.; Zhao, F.; Fan, C.; Feng, J.; Zhou, H.; Meng, F.; Zhuang, X.; Wang, J. Advanced polishing methods for atomic-scale surfaces: A review. Mater. Today Sustain. 2024, 27, 100841. [Google Scholar] [CrossRef]
- Wang, B.; He, J.; Yu, J.; Pei, R.; Dai, C. Application of high efficiency polishing technology in manufacturing aero-engine components. Jingangshi Moliao Moju Gongcheng/Diamond Abrasives Eng. 2018, 38, 75–80. [Google Scholar] [CrossRef]
- Aslanidis, D.; Roebben, G.; Bruninx, J.; Van Moorleghem, W. Electropolishing for Medical Devices: Relatively New…Fascinatingly Diverse. Mater. Sci. Forum 2002, 394–395, 169–172. [Google Scholar] [CrossRef]
- Filatov, Y.D. Polishing of Precision Surfaces of Optoelectronic Device Elements Made of Glass, Sitall, and Optical and Semiconductor Crystals: A Review. J. Superhard Mater. 2020, 42, 30–48. [Google Scholar] [CrossRef]
- Xie, M.; Pan, Y.; An, Z.; Huang, S.; Dong, M. Review on Surface Polishing Methods of Optical Parts. Adv. Mater. Sci. Eng. 2022, 2022, 23269. [Google Scholar] [CrossRef]
- The Influence of Polishing on the Mechanical Properties of Zirconia—A Systematic Review. Oral 2023, 3, 101–122. [CrossRef]
- Chen, L.; Richter, B.; Zhang, X.; Bertsch, K.B.; Thoma, D.J.; Pfefferkorn, F.E. Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion. Mater. Sci. Eng. A 2021, 802, 140579. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X. Modification the surface quality and mechanical properties by laser polishing of Al/PLA part manufactured by fused deposition modeling. Appl. Surf. Sci. 2019, 492, 765–775. [Google Scholar] [CrossRef]
- Chang, L.; Man, Z.; Ye, L. A study on the mechanical polishing technique by using shear thickening fluids. J. Micromech. Mol. Phys. 2021, 6, 25–29. [Google Scholar] [CrossRef]
- Zhao, G.; Wei, Z.; Wang, W.; Feng, D.; Xu, A.; Liu, W.; Song, Z. Review on modeling and application of chemical mechanical polishing. Nanotechnol. Rev. 2020, 9, 182–189. [Google Scholar] [CrossRef]
- Zhu, X.; Ding, J.; Mo, Z.; Jiang, X.; Sun, J.; Fu, H.; Gui, Y.; Ban, B.; Wang, L.; Chen, J. Evaluation of chemical mechanical polishing characteristics using mixed abrasive slurry: A study on polishing behavior and material removal mechanism. Appl. Surf. Sci. 2025, 679, 161157. [Google Scholar] [CrossRef]
- Deng, J.; Lu, J.; Yan, Q.; Pan, J. Basic research on chemical mechanical polishing of single-crystal SiC—Electro–Fenton: Reaction mechanism and modelling of hydroxyl radical generation using condition response modelling. J. Environ. Chem. Eng. 2021, 9, 104954. [Google Scholar] [CrossRef]
- Xu, Y.; Mao, Y.; Ijaz, M.H.; Ibrahim, M.E.; Le, S.; Wang, F.; Jiang, J.; Chi, D.; An, M.; Song, S. Review—Principles and Applications of Electrochemical Polishing. J. Electrochem. Soc. 2024, 171, 093506. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, F.; Jiang, Z.; Tian, Z.; Qiu, T.; Zhang, T.; Wen, Q.; Lu, X.; Lu, J.; Huang, H. Energy beam-based direct and assisted polishing techniques for diamond: A review. Int. J. Extrem. Manuf. 2024, 6, 012004. [Google Scholar] [CrossRef]
- Yadav, H.N.S.; Kumar, M.; Das, M. Plasma polishing processes applied on optical materials: A review. J. Micromanufacturing 2021, 6, 27–39. [Google Scholar] [CrossRef]
- Nestler, K.; Böttger-Hiller, F.; Adamitzki, W.; Glowa, G.; Zeidler, H.; Schubert, A. Plasma Electrolytic Polishing – An Overview of Applied Technologies and Current Challenges to Extend the Polishable Material Range. Procedia CIRP 2016, 42, 503–507. [Google Scholar] [CrossRef]
- Gisario, A.; Barletta, M.; Veniali, F. Laser polishing: A review of a constantly growing technology in the surface finishing of components made by additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1433–1472. [Google Scholar] [CrossRef]
- Gaidys, M.; Žemaitis, A.; Gečys, P.; Gedvilas, M. Efficient Surface Polishing Using Burst and Biburst Mode Ultrafast Laser Irradiation. RSC Adv. 2023, 13, 3586–3591. [Google Scholar] [CrossRef]
- Hafiz, A.M.K.; Bordatchev, E.V.; Tutunea-Fatan, R.O. Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel. Appl. Surf. Sci. 2012, 261, 806–814. [Google Scholar] [CrossRef]
- Obeidi, M.A.; Mussatto, A.; Dogu, M.N.; Sreenilayam, S.P.; McCarthy, E.; Ahad, I.U.; Keaveney, S.; Brabazon, D. Laser surface polishing of Ti-6Al-4V parts manufactured by laser powder bed fusion. Surf. Coat. Technol. 2022, 434, 128179. [Google Scholar] [CrossRef]
- Arnaud, C.; Almirall, A.; Loumena, C.; Kling, R. Potential of Structuring and Polishing with Fiber Laser on Homogeneous Metals. J. Laser Appl. 2017, 29, 022501. [Google Scholar] [CrossRef]
- Temmler, A.; Willenborg, E.; Wissenbach, K. Design surfaces by laser remelting. Phys. Procedia 2011, 12, 419–430. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. Mater. Sci. Process. 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Dematteo Caulier, O.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Javaux Léger, C.; Kling, R.; Hönninger, C.; Lopez, J.; Tikhonchuk, V.; et al. Femtosecond laser pulse train interaction with dielectric materials. Appl. Phys. Lett. 2015, 107, 181110. [Google Scholar] [CrossRef]
- Metzner, D.; Lickschat, P.; Kreisel, C.; Lampke, T.; Weißmantel, S. Study on laser ablation of glass using MHz to GHz burst pulses. Appl. Phys. A 2022, 128, 637. [Google Scholar] [CrossRef]
- Remund, S.; Gafner, M.; Chaja, M.; Urniezius, A.; Butkus, S.; Neuenschwander, B. Milling applications with GHz burst: Investigations concerning the removal rate and machining quality. Procedia CIRP 2020, 94, 850–855. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycoglu, H.; Elahi, P.; Cetin, B.; Kesim, D.; Akçaalan, O.; Yavas, S.; Asik, M.; Oktem, B.; Hoogland, H.; et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 2016, 537, 84. [Google Scholar] [CrossRef]
- Balage, P.; Lopez, J.; Bonamis, G.; Hönninger, C.; Manek-Hönninger, I. Crack-free high-aspect ratio holes in glasses by top–down percussion drilling with infrared femtosecond laser GHz-bursts. Int. J. Extrem. Manuf. 2023, 5, 015002. [Google Scholar] [CrossRef]
- Elahi, P.; Akçaalan, Ö.; Ertek, C.; Eken, K.; Ilday, F.; Kalaycoglu, H. High-power Yb-based all-fiber laser delivering 300 fs pulses for high-speed ablation-cooled material removal. Opt. Lett. 2018, 43, 3. [Google Scholar] [CrossRef]
- Hendow, S.; Takahashi, H.; Yamaguchi, M.; Xu, J. Enhanced ablation using GHz-pulsed fs laser. Proc. SPIE Laser Based-Micro-Nanoprocess. XIV 2020, 11268, 1126809. [Google Scholar] [CrossRef]
- Schwarz, S.; Rung, S.; Esen, C.; Hellmann, R. Enhanced ablation efficiency using GHz bursts in micromachining fused silica. Opt. Lett. 2021, 46, 282–285. [Google Scholar] [CrossRef]
- Žemaitis, A.; Gečys, P.; Gedvilas, M. Efficient Ablation, Further GHz Burst Polishing, and Surface Texturing by Ultrafast Laser. Adv. Eng. Mater. 2024, 26, 2302262. [Google Scholar] [CrossRef]
- Balage, P.; Bonamis, G.; Lafargue, M.; Guilberteau, T.; Delaigue, M.; Hönninger, C.; Qiao, J.; Lopez, J.; Manek-Hönninger, I. Advances in Femtosecond Laser GHz-Burst Drilling of Glasses: Influence of Burst Shape and Duration. Micromachines 2023, 14, 1158. [Google Scholar] [CrossRef]
- Bonamis, G.; Audouard, E.; Hönninger, C.; Lopez, J.; Mishchik, K.; Mottay, E.; Manek-Hönninger, I. Systematic study of laser ablation with GHz bursts of femtosecond pulses. Opt. Express 2020, 28, 27702–27714. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guilberteau, T.; Husson, F.; Lafargue, M.; Lopez, J.; Faucon, M.; Gemini, L.; Manek-Hönninger, I. Long GHz-Burst Laser Surface Polishing of AlSl 316L Stainless Steel Parts Manufactured by Short GHz-Burst Laser Ablation. Nanomaterials 2025, 15, 1343. https://doi.org/10.3390/nano15171343
Guilberteau T, Husson F, Lafargue M, Lopez J, Faucon M, Gemini L, Manek-Hönninger I. Long GHz-Burst Laser Surface Polishing of AlSl 316L Stainless Steel Parts Manufactured by Short GHz-Burst Laser Ablation. Nanomaterials. 2025; 15(17):1343. https://doi.org/10.3390/nano15171343
Chicago/Turabian StyleGuilberteau, Théo, Florent Husson, Manon Lafargue, John Lopez, Marc Faucon, Laura Gemini, and Inka Manek-Hönninger. 2025. "Long GHz-Burst Laser Surface Polishing of AlSl 316L Stainless Steel Parts Manufactured by Short GHz-Burst Laser Ablation" Nanomaterials 15, no. 17: 1343. https://doi.org/10.3390/nano15171343
APA StyleGuilberteau, T., Husson, F., Lafargue, M., Lopez, J., Faucon, M., Gemini, L., & Manek-Hönninger, I. (2025). Long GHz-Burst Laser Surface Polishing of AlSl 316L Stainless Steel Parts Manufactured by Short GHz-Burst Laser Ablation. Nanomaterials, 15(17), 1343. https://doi.org/10.3390/nano15171343