Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = ppb-level ozone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 16060 KiB  
Article
Synergic Lidar Observations of Ozone Episodes and Transport During 2023 Summer AGES+ Campaign in NYC Region
by Dingdong Li, Yonghua Wu, Thomas Ely, Thomas Legbandt and Fred Moshary
Remote Sens. 2025, 17(13), 2303; https://doi.org/10.3390/rs17132303 - 4 Jul 2025
Viewed by 329
Abstract
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island [...] Read more.
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island Sound (LIS) areas. The results highlight significant ozone formation within the planetary boundary layer (PBL) and the concurrent transport of ozone/aerosol plumes aloft and mixing into the PBL during 26–28 July 2023. Especially, 26 July experienced the highest ozone concentration within the PBL during the three-day ozone episode despite having a lower temperature than the following two days. In addition, the onset of the afternoon sea breeze contributed to increased ozone levels in the PBL. A mobile ozone DIAL was also deployed at Columbia University’s Lamont–Doherty Earth Observatory (LDEO) in Palisades, NY, 29 km north of NYC, from 11 August to 8 September 2023. A notable high-ozone episode was observed by both ozone DIALs at the CCNY and the LDEO site during an unusual heatwave event in early September. On 7 September, the peak ozone concentration at the LDEO reached 120 ppb, exceeding the ozone levels observed in NYC. This enhancement was associated with urban plume transport, as indicated by wind lidar measurements, the HRRR (High-Resolution Rapid Refresh) model, and the Copernicus Sentinel-5 TROPOMI (TROPOspheric Monitoring Instrument) tropospheric column NO2 product. The results also show that, during both heatwave events, those days with slow southeast to southwest winds experienced significantly higher ozone pollution. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

21 pages, 46714 KiB  
Article
Street-Level Sensing for Assessing Urban Microclimate (UMC) and Urban Heat Island (UHI) Effects on Air Quality
by Lirane Kertesse Mandjoupa, Pradeep Behera, Kibria K. Roman, Hossain Azam and Max Denis
Environments 2025, 12(6), 184; https://doi.org/10.3390/environments12060184 - 30 May 2025
Viewed by 486
Abstract
During the intense heatwaves of late summer 2024, Washington, D.C.’s urban landscape revealed the powerful influence of urban morphology on microclimates and air quality. This study investigates the impact of building height-to-width (H/W) ratios on the urban heat island (UHI) effect, using a [...] Read more.
During the intense heatwaves of late summer 2024, Washington, D.C.’s urban landscape revealed the powerful influence of urban morphology on microclimates and air quality. This study investigates the impact of building height-to-width (H/W) ratios on the urban heat island (UHI) effect, using a combination of field measurements and Computational Fluid Dynamics (CFD) simulations to understand the dynamics. Street-level data collected from late August to November 2024 across three sites in Washington, D.C., indicate that high H/W ratios (1.5–2.0) increased temperatures by approximately 2–3 °C and reduced wind speeds to around 0.8 m/s. These conditions led to elevated pollutant concentrations, with ozone (O3) ranging from 1.8 to 7.3 ppb, nitrogen dioxide (NO2) from 0.3 to 0.5 ppm, and carbon monoxide (CO) remaining relatively constant at approximately 2.1 ppm. PM2.5 concentrations fluctuated between 2.8 and 0.4 μg/m3. Meanwhile, lower H/W ratios (less than 1.5) demonstrated better air circulation and lower pollution levels. The CFD simulations are in agreement with the experimental data, yielding an RMSE of 0.75 for temperature, demonstrating its utility for forecasting UHI effects under varying urban layouts. These results demonstrate the potential of Computational Fluid Dynamics in not only modeling but also predicting UHI dynamics. Full article
Show Figures

Figure 1

21 pages, 5918 KiB  
Article
Surface Ozone Variability in Two Contrasting Megacities, Cairo and Paris, and Its Observation from Satellites
by Amira N. Mostafa, Stephane Alfaro, Juan Cuesta, Ibrahim A. Hassan and M. M. Abdel Wahab
Atmosphere 2025, 16(4), 475; https://doi.org/10.3390/atmos16040475 - 18 Apr 2025
Viewed by 371
Abstract
With recognized adverse effects on human health and the environment, surface ozone constitutes a major problem within and downwind of urbanized areas. In this work, we first analyzed 5 years of hourly concentrations of ozone measured in two megacities with contrasting climates: Paris [...] Read more.
With recognized adverse effects on human health and the environment, surface ozone constitutes a major problem within and downwind of urbanized areas. In this work, we first analyzed 5 years of hourly concentrations of ozone measured in two megacities with contrasting climates: Paris and Cairo. In both cases, the maximal daily concentrations were observed in summer and they exceeded the 35 ppb threshold recommended by the World Health Organization in 45% and 69% of the days, respectively. During periods of forced reduced activities, these concentrations decreased in Cairo but not in Paris. This indicates that low-emission zones are not necessarily effective to help curb the ozone problem. In a second stage, the ozone retrievals of two satellite-based atmospheric sounding methods (AIRS, and the multispectral approach IASI+GOME2) were compared to the surface measurements. A systematic overestimation, larger for AIRS than IASI+GOME2, was observed. This is likely linked to the fact that satellite approaches retrieve ozone concentrations at higher atmospheric levels than the surface. However, a significantly high linear correlation was obtained at the monthly temporal resolution. Therefore, shift adjustments of the satellite measurements provide efficient proxies of surface observations with significant monthly correlations. This may help complete lacunar surface measurements. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

17 pages, 17370 KiB  
Article
The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing
by Tao Tan, Xinyuan Xu, Haixin Gu, Li Cao, Ting Liu, Yunjiang Zhang, Junfeng Wang, Mindong Chen, Haiwei Li and Xinlei Ge
Toxics 2024, 12(12), 868; https://doi.org/10.3390/toxics12120868 - 29 Nov 2024
Cited by 5 | Viewed by 1424
Abstract
This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April [...] Read more.
This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.9 ± 12.9 ppb and an average OFP of 90.1 ± 109.5 μg m−3. Alkanes constituted the largest fraction of VOCs, accounting for 44.1%, while alkenes emerged as the primary contributors to OFP, comprising 52.8%. TVOC concentrations peaked before dawn, a pattern attributed to early morning industrial activities and nighttime heavy vehicle operations. During periods classified as clean, when ozone levels were below 160 μg m−3, both TVOC (15.9 ± 12.9 ppb) and OFP (90.4 ± 110.0 μg m−3) concentrations were higher than those during polluted hours. The analysis identified the key sources of VOC emissions, including automobile exhaust, oil and gas evaporation, and industrial discharges, with additional potential pollution sources identified in adjacent regions. Health risk assessments indicated that acrolein exceeded the non-carcinogenic risk threshold at specific times. Moreover, trichloromethane, 1,3-butadiene, 1,2-dichloroethane, and benzene were found to surpass the acceptable lifetime carcinogenic risk level (1 × 10−6) during certain periods. These findings highlight the urgent need for enhanced monitoring and regulatory measures aimed at mitigating VOC emissions and protecting public health in industrial areas. In the context of complex air pollution in urban industrial areas, policymakers should focus on controlling industrial and vehicle emissions, which can not only reduce secondary pollution, but also inhibit the harm of toxic substances on human health. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

14 pages, 889 KiB  
Article
Long-Term Ozone Exposure, COPD, and Asthma Mortality: A Retrospective Cohort Study in the Republic of Korea
by Min-Seok Kim, Youn-Hee Lim, Jongmin Oh, Jisun Myung, Changwoo Han, Hyun-Joo Bae, Soontae Kim, Yun-Chul Hong and Dong-Wook Lee
Atmosphere 2024, 15(11), 1340; https://doi.org/10.3390/atmos15111340 - 8 Nov 2024
Cited by 4 | Viewed by 2043
Abstract
Ozone concentrations have increased in recent decades, and several studies have reported that long-term exposure to ozone increases the mortality risk induced by respiratory conditions. However, research on cause-specific mortality related to ozone exposure and respiratory diseases remains scarce. We constructed a retrospective [...] Read more.
Ozone concentrations have increased in recent decades, and several studies have reported that long-term exposure to ozone increases the mortality risk induced by respiratory conditions. However, research on cause-specific mortality related to ozone exposure and respiratory diseases remains scarce. We constructed a retrospective cohort of 5,360,032 adults aged ≥ 65 years from the National Health Insurance Service of Republic of Korea, and death certificates were obtained from Statistics Republic of Korea to determine the cause of death between 2010 and 2019. The daily maximum 8 h average levels of ozone during the warm season annually (May–September) and other air pollutants were determined for the residential district. We analyzed the data using a time-varying Cox proportional hazards model with individual- and district-level covariates, incorporating a competing risk framework to address deaths from causes other than chronic obstructive pulmonary disease (COPD) and asthma. In our single-pollutant model with a 3-year moving average, a 1 ppb increase in ozone exposure was associated with a hazard ratio (HR) of 1.011 (95% confidence interval [CI]: 1.008–1.013) for COPD mortality and an HR of 1.016 (95% CI: 1.011–1.022) for asthma mortality. In our model adjusted for the presence of underlying diseases and district-level variables, the HRs were 1.009 (95% CI: 1.008–1.014) for COPD and 1.017 (95% CI: 1.011–1.023) for asthma, respectively. These associations remained robust in our two-pollutant model, except for NO2 and COPD. A linear concentration–response relationship was identified between ozone concentration, COPD, and asthma mortality. In this large nationwide cohort study, long-term exposure to ozone was associated with an increased risk of death from COPD and asthma in older Korean adults. Full article
(This article belongs to the Topic The Effect of Air Pollution on Human Health)
Show Figures

Figure 1

19 pages, 5054 KiB  
Article
Impact of Air Conditioning Type on Outdoor Ozone Intrusion into Homes in a Semi-Arid Climate
by James D. Johnston, Seth Van Roosendaal, Joseph West, Hanyong Jung and Darrell Sonntag
Environments 2024, 11(10), 219; https://doi.org/10.3390/environments11100219 - 7 Oct 2024
Cited by 2 | Viewed by 1654
Abstract
Outdoor ozone (O3) is elevated on hot, sunny days when residential air conditioning is used most. We evaluated the impact of direct evaporative coolers (ECs) and vapor-compression air conditioners (ACs) on indoor O3 concentrations in homes (N = 31) in [...] Read more.
Outdoor ozone (O3) is elevated on hot, sunny days when residential air conditioning is used most. We evaluated the impact of direct evaporative coolers (ECs) and vapor-compression air conditioners (ACs) on indoor O3 concentrations in homes (N = 31) in Utah County, Utah, United States of America. Indoor and outdoor O3 concentrations were measured for 24 h at each home using nitrite-impregnated glass-fiber filters. AC homes (n = 16) provided a protective envelope from outdoor O3 pollution. Only one AC home had O3 levels above the limit of detection (LOD). Conversely, EC homes (n = 15) provided minimal protection from outdoor O3. Only one EC home had O3 levels below the LOD. The average indoor O3 concentration in EC homes was 23 ppb (95% CI 20, 25). The indoor-to-outdoor (I/O) ratio for O3 in EC homes was 0.65 (95% CI 0.58, 0.72), while the upper bound for the I/O ratio for AC homes was 0.13 (p < 0.001). Indoor exposure to O3 for residents in EC homes is approximately five times greater than for residents of AC homes. Although ECs offer energy and cost-saving advantages, public health awareness campaigns in O3-prone areas are needed, as well as research into O3 pollution controls for direct ECs such as activated carbon filtration. Full article
Show Figures

Figure 1

11 pages, 1980 KiB  
Article
Efficiency and Interference Verification of a HONO Collection System Using an Ultrasonic Nozzle Coupled with a Recirculating Spray Chamber for Ambient Air Monitoring
by Sea-Ho Oh, James J. Schauer, Hajeong Jeon, Dong-Hoon Ko, Seoyeong Choe and Min-Suk Bae
Appl. Sci. 2024, 14(19), 8930; https://doi.org/10.3390/app14198930 - 3 Oct 2024
Viewed by 1390
Abstract
This study explores the efficiency and applicability of a HONO collection system that incorporates an ultrasonic nozzle and spray chamber for the measurement of ambient air. The system demonstrates (1) a remarkable efficiency of 97.7% across two serial stages, (2) lower detection limits [...] Read more.
This study explores the efficiency and applicability of a HONO collection system that incorporates an ultrasonic nozzle and spray chamber for the measurement of ambient air. The system demonstrates (1) a remarkable efficiency of 97.7% across two serial stages, (2) lower detection limits of 0.15 ppbv for HONO, and (3) an absence of interference from NO2 or OH radicals. Practical ambient monitoring with the HONO collection system revealed typical diurnal variations in HONO, O3, and HNO3 concentrations, aligning with photolysis dynamics. Notably, HONO concentrations peaked at 0.37 ppb during nighttime and decreased to 0.27 ppb by midday. O3 demonstrated an inverse relationship with HONO, especially during ozone depletion phases, with r2 values of 0.94, 0.81, and 0.52 across various intervals. The HONO/NOx ratio during periods of enhanced HONO suggested the presence of additional formation mechanisms beyond heterogeneous NOx reactions. Moreover, ozone levels often fell below 20 ppb, indicating a consistent inverse correlation with HONO, thereby reaffirming further mechanisms of HONO formation beyond heterogeneous NOx reactions. The real-time atmospheric chemical reactions involving HONO, monitored concurrently with O3 and NOx, were effectively validated by the HONO collection system employed in this investigation. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

14 pages, 481 KiB  
Review
Tropospheric Ozone: A Critical Review of the Literature on Emissions, Exposure, and Health Effects
by Gabriele Donzelli and Maria Morales Suarez-Varela
Atmosphere 2024, 15(7), 779; https://doi.org/10.3390/atmos15070779 - 29 Jun 2024
Cited by 22 | Viewed by 7232
Abstract
Tropospheric ozone is a significant air pollutant with severe adverse effects on human health. The complex dynamics of ozone formation, distribution, and health impacts underscore the need for a comprehensive understanding of this pollutant. Despite well-documented health risks, including an estimated 423,100 deaths [...] Read more.
Tropospheric ozone is a significant air pollutant with severe adverse effects on human health. The complex dynamics of ozone formation, distribution, and health impacts underscore the need for a comprehensive understanding of this pollutant. Despite well-documented health risks, including an estimated 423,100 deaths annually due to ozone exposure, millions of people in major countries continue to be exposed to unhealthy levels. Notably, the epidemiological evidence linking long-term ozone exposure to health outcomes is limited compared to short-term exposure studies, leaving some findings incomplete. Regulatory standards vary globally, with the implementation of the World Health Organization recommendation for an 8-h average limit of 50 ppb to protect public health remaining heterogeneous, leading to significant disparities in adoption across countries, and often significantly higher. Emissions from diesel and gasoline vehicles are major sources of VOCs and NOx in urban areas, and their reduction is a key strategy. Additionally, climate change may exacerbate ozone pollution through increased natural precursor emissions, leading to higher ground-level ozone in polluted regions, like the eastern US, southern Europe, and parts of Asia. Addressing tropospheric ozone effectively requires an integrated approach that considers both natural and anthropogenic sources to reduce concentrations and mitigate health impacts. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
Show Figures

Figure 1

12 pages, 1448 KiB  
Article
Elevated Ozone Reduces the Quality of Tea Leaves but May Improve the Resistance of Tea Plants
by Nuo Wang, Yuxi Wang, Xinyang Zhang, Yiqi Wu, Lan Zhang, Guanhua Liu, Jianyu Fu, Xin Li, Dan Mu and Zhengzhen Li
Plants 2024, 13(8), 1108; https://doi.org/10.3390/plants13081108 - 16 Apr 2024
Cited by 2 | Viewed by 1763
Abstract
Tropospheric ozone (O3) pollution can affect plant nutritional quality and secondary metabolites by altering plant biochemistry and physiology, which may lead to unpredictable effects on crop quality and resistance to pests and diseases. Here, we investigated the effects of O3 [...] Read more.
Tropospheric ozone (O3) pollution can affect plant nutritional quality and secondary metabolites by altering plant biochemistry and physiology, which may lead to unpredictable effects on crop quality and resistance to pests and diseases. Here, we investigated the effects of O3 (ambient air, Am; ambient air +80 ppb of O3, EO3) on the quality compounds and chemical defenses of a widely cultivated tea variety in China (Camellia sinensis cv. ‘Baiye 1 Hao’) using open-top chamber (OTC). We found that elevated O3 increased the ratio of total polyphenols to free amino acids while decreasing the value of the catechin quality index, indicating a reduction in leaf quality for green tea. Specifically, elevated O3 reduced concentrations of amino acids and caffeine but shows no impact on the concentrations of total polyphenols in tea leaves. Within individual catechins, elevated O3 increased the concentrations of ester catechins but not non-ester catechins, resulting in a slight increase in total catechins. Moreover, elevated O3 increased the emission of biogenic volatile organic compounds involved in plant defense against herbivores and parasites, including green leaf volatiles, aromatics, and terpenes. Additionally, concentrations of main chemical defenses, represented as condensed tannins and lignin, in tea leaves also increased in response to elevated O3. In conclusion, our results suggest that elevated ground-level O3 may reduce the quality of tea leaves but could potentially enhance the resistance of tea plants to biotic stresses. Full article
(This article belongs to the Special Issue Tea Germplasm Improvement and Resistance Breeding)
Show Figures

Figure 1

19 pages, 7990 KiB  
Article
Temporal Variations in Urban Air Pollution during a 2021 Field Campaign: A Case Study of Ethylene, Benzene, Toluene, and Ozone Levels in Southern Romania
by Mioara Petrus, Cristina Popa and Ana-Maria Bratu
Sustainability 2024, 16(8), 3219; https://doi.org/10.3390/su16083219 - 11 Apr 2024
Cited by 3 | Viewed by 1977
Abstract
This study focused on quantifying the gas concentrations of ethylene, benzene, toluene, and ozone within an urban area in the southern region of Romania. The gas sampling campaign, conducted between March and August 2021, took place in three different locations from the point [...] Read more.
This study focused on quantifying the gas concentrations of ethylene, benzene, toluene, and ozone within an urban area in the southern region of Romania. The gas sampling campaign, conducted between March and August 2021, took place in three different locations from the point of view of the architectural structure, and the sampling height was 1.5 m. Sampling occurred on weekdays (Monday through Friday) during daylight hours, with subsequent concentration analysis employing descriptive statistics, diurnal cycles, and seasonal assessments. A highly sensitive and selective detector, employing laser photoacoustic spectroscopy, was utilized to monitor pollutants. The average concentrations (±Standard Deviation) were determined as follows: ethylene at 116.82 ± 82.37 parts per billion (ppb), benzene at 1.13 ± 0.32 ppb, toluene at 5.48 ± 3.27 ppb, and ozone at 154.75 ± 68.02 ppb, with peak levels observed during the summer months. Diurnal patterns were observable for ethylene, benzene, and toluene, exhibiting higher concentrations during the early hours of the day followed by a decrease towards the evening. In contrast, ozone concentrations peaked in the evening compared to the early part of the day. Thus, perceptible effects were demonstrated on gas concentrations as a result of the influence of meteorological variables. Moreover, the high toluene/benzene ratio indicated traffic and industrial emissions as primary sources of these pollutants. Of the four gases monitored, benzene and ozone exceeded regulatory limits, particularly during the summer season, highlighting concerns regarding air quality in the studied urban environment. Full article
(This article belongs to the Special Issue Fates, Transports, Interactions and Monitoring of Emerging Pollutants)
Show Figures

Figure 1

13 pages, 854 KiB  
Article
Allocation of Nutrients and Leaf Turnover Rate in Poplar under Ambient and Enriched Ozone Exposure and Soil Nutrient Manipulation
by Elena Paoletti, Mario Pagano, Lu Zhang, Ovidiu Badea and Yasutomo Hoshika
Biology 2024, 13(4), 232; https://doi.org/10.3390/biology13040232 - 31 Mar 2024
Cited by 1 | Viewed by 1614
Abstract
An excess of ozone (O3) is currently stressing plant ecosystems and may negatively affect the nutrient use of plants. Plants may modify leaf turnover rates and nutrient allocation at the organ level to counteract O3 damage. We investigated leaf turnover [...] Read more.
An excess of ozone (O3) is currently stressing plant ecosystems and may negatively affect the nutrient use of plants. Plants may modify leaf turnover rates and nutrient allocation at the organ level to counteract O3 damage. We investigated leaf turnover rate and allocation of primary (C, N, P, K) and secondary macronutrients (Ca, S, Mg) under various O3 treatments (ambient concentration, AA, with a daily hourly average of 35 ppb; 1.5 × AA; 2.0 × AA) and fertilization levels (N: 0 and 80 kg N ha−1 y−1; P: 0 and 80 kg N ha−1 y−1) in an O3-sensitive poplar clone (Oxford: Populus maximowiczii Henry × P. berolinensis Dippel) in a Free-Air Controlled Exposure (FACE) experiment. The results indicated that both fertilization and O3 had a significant impact on the nutrient content. Specifically, fertilization and O3 increased foliar C and N contents (+5.8% and +34.2%, respectively) and root Ca and Mg contents (+46.3% and +70.2%, respectively). Plants are known to increase the content of certain elements to mitigate the damage caused by high levels of O3. The leaf turnover rate was accelerated as a result of increased O3 exposure, indicating that O3 plays a main role in influencing this physiological parameter. A PCA result showed that O3 fumigation affected the overall allocation of primary and secondary elements depending on the organ (leaves, stems, roots). As a conclusion, such different patterns of element allocation in plant leaves in response to elevated O3 levels can have significant ecological implications. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 6324 KiB  
Article
Characteristics and Source Apportionment of Volatile Organic Compounds in an Industrial Area at the Zhejiang–Shanghai Boundary, China
by Xiang Cao, Jialin Yi, Yuewu Li, Mengfei Zhao, Yusen Duan, Fei Zhang and Lian Duan
Atmosphere 2024, 15(2), 237; https://doi.org/10.3390/atmos15020237 - 18 Feb 2024
Cited by 6 | Viewed by 2597
Abstract
As “fuel” for atmospheric photochemical reactions, volatile organic compounds (VOCs) play a key role in the secondary generation of ozone (O3) and fine particulate matter (PM2.5, an aerodynamic diameter ≤ 2.5 μm). To determine the characteristics of VOCs in [...] Read more.
As “fuel” for atmospheric photochemical reactions, volatile organic compounds (VOCs) play a key role in the secondary generation of ozone (O3) and fine particulate matter (PM2.5, an aerodynamic diameter ≤ 2.5 μm). To determine the characteristics of VOCs in a high-level ozone period, comprehensive monitoring of O3 and its precursors (VOCs and NOx) was continuously conducted in an industrial area in Shanghai from 18 August to 30 September 2021. During the observation period, the average concentration of VOCs was 47.33 ppb, and alkanes (19.64 ppb) accounted for the highest proportion of TVOCs, followed by oxygenated volatile organic compounds (OVOCs) (13.61 ppb), alkenes (6.92 ppb), aromatics (4.65 ppb), halogenated hydrocarbons (1.60 ppb), and alkynes (0.91 ppb). Alkenes were the predominant components that contributed to the ozone formation potential (OFP), while aromatics such as xylene, toluene, and ethylbenzene contributed the most to the secondary organic aerosol production potential (SOAFP). During the study period, O3, NOx, and VOCs showed significant diurnal variations. Industrial processes were the main source of VOCs, and the second largest source of VOCs was vehicle exhaust. While the largest contribution to OFP was from vehicle exhaust, the second largest contribution was from liquid petroleum gas (LPG). High potential source contribution function (PSCF) values were observed in western and southeastern areas near the sampling sites. The results of a health risk evaluation showed that the Hazard Index was less than 1 and there was no non-carcinogenic risk, but 1,3-butadiene, benzene, chloroform, 1,2-dibromoethane, and carbon tetrachloride pose a potential carcinogenic risk to the population. Full article
(This article belongs to the Special Issue Advances in Atmospheric Aqueous-Phase Chemistry)
Show Figures

Figure 1

15 pages, 1725 KiB  
Article
Analyzing COVID-19 and Air Pollution Effects on Pediatric Asthma Emergency Room Visits in Taiwan
by Yan-Lin Chen, Yen-Yue Lin, Pi-Wei Chin, Cheng-Chueh Chen, Chun-Gu Cheng and Chun-An Cheng
Toxics 2024, 12(1), 79; https://doi.org/10.3390/toxics12010079 - 17 Jan 2024
Cited by 4 | Viewed by 2520
Abstract
(1) Background: An asthma exacerbation that is not relieved with medication typically requires an emergency room visit (ERV). The coronavirus disease 2019 (COVID-19) pandemic began in Taiwan in January of 2020. The influence of the COVID-19 pandemic on pediatric ERVs in Taiwan was [...] Read more.
(1) Background: An asthma exacerbation that is not relieved with medication typically requires an emergency room visit (ERV). The coronavirus disease 2019 (COVID-19) pandemic began in Taiwan in January of 2020. The influence of the COVID-19 pandemic on pediatric ERVs in Taiwan was limited. Our aim was to survey pediatric asthma ERVs in the COVID-19 era; (2) Methods: Data were collected from the health quality database of the Taiwanese National Health Insurance Administration from 2019 to 2021. Air pollution and climatic factors in Taipei were used to evaluate these relationships. Changes in the rates of pediatric asthma ERVs were assessed using logistic regression analysis. Poisson regression was used to evaluate the impact of air pollution and climate change; (3) Results: The rate of pediatric asthma ERVs declined in different areas and at different hospital levels including medical centers, regional and local hospitals. Some air pollutants (particulate matter ≤ 2.5 µm, particulate matter ≤ 10 µm, nitrogen dioxide, and carbon monoxide) reduced during the COVID-19 lockdown. Ozone increased the relative risk (RR) of pediatric asthma ERVs during the COVID-19 period by 1.094 (95% CI: 1.095–1.12) per 1 ppb increase; (4) Conclusions: The rate of pediatric asthma ERVs declined during the COVID-19 pandemic and ozone has harmful effects. Based on these results, the government could reduce the number of pediatric asthma ERVs through healthcare programs, thereby promoting children’s health. Full article
Show Figures

Figure 1

14 pages, 6617 KiB  
Article
Determination of Ozone Concentration Levels in Urban Environments Using a Laser Spectroscopy System
by Mioara Petrus, Cristina Popa and Ana-Maria Bratu
Environments 2024, 11(1), 9; https://doi.org/10.3390/environments11010009 - 2 Jan 2024
Cited by 9 | Viewed by 3667
Abstract
In urban areas, there has been a recent rise in ground-level ozone. Given its toxicity to both humans and the environment, the investigation of ozone pollution demands attention and should not be overlooked. Therefore, we conducted a study on ozone concentration in three [...] Read more.
In urban areas, there has been a recent rise in ground-level ozone. Given its toxicity to both humans and the environment, the investigation of ozone pollution demands attention and should not be overlooked. Therefore, we conducted a study on ozone concentration in three distinct locations within the city of Magurele, Romania. This investigation considered variations in both structure and location during the spring and summer seasons, specifically at a breathing level of 1.5 m above the ground. Our analysis aimed to explore the impact of different locations and meteorological variables on ozone levels. The three measurement points were strategically positioned in diverse settings: within the city, in a forest, and within an industrial area. For these measurements, we used a laser spectroscopy system to determine the system’s sensitivity and selectivity and the influence of humidity in the detection of ozone in ambient air, which is a mixture of trace gases and water vapor. During the March–August campaign, the mean values in the three measuring points were 24.45 ± 16.44 ppb, 11.96 ± 3.80 ppb, and 95.01 ± 37.11 ppb. The peak concentrations of ozone were observed during the summer season. A diurnal analysis revealed that the atmospheric ozone levels were higher in the latter part of the day compared to the earlier part. These measurements suggest that the atmospheric temperature plays a significant role in tropospheric ozone production. Additionally, meteorological variables such as wind speed and direction were found to influence the ozone concentration. Remarkably, despite substantial traffic, the ozone levels remained consistently low throughout the entire period within the forested area. This observation may suggest the remarkable ability of trees to mitigate pollution levels. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas II)
Show Figures

Figure 1

17 pages, 5359 KiB  
Article
Significance of Volatile Organic Compounds to Secondary Pollution Formation and Health Risks Observed during a Summer Campaign in an Industrial Urban Area
by Li Cao, Qihui Men, Zihao Zhang, Hao Yue, Shijie Cui, Xiangpeng Huang, Yunjiang Zhang, Junfeng Wang, Mindong Chen and Haiwei Li
Toxics 2024, 12(1), 34; https://doi.org/10.3390/toxics12010034 - 1 Jan 2024
Cited by 13 | Viewed by 3135
Abstract
The chemical complexity and toxicity of volatile organic compounds (VOCs) are primarily encountered through intensive anthropogenic emissions in suburban areas. Here, pollution characteristics, impacts on secondary pollution formation, and health risks were investigated through continuous in-field measurements from 1–30 June 2020 in suburban [...] Read more.
The chemical complexity and toxicity of volatile organic compounds (VOCs) are primarily encountered through intensive anthropogenic emissions in suburban areas. Here, pollution characteristics, impacts on secondary pollution formation, and health risks were investigated through continuous in-field measurements from 1–30 June 2020 in suburban Nanjing, adjacent to national petrochemical industrial parks in China. On average, the total VOCs concentration was 34.47 ± 16.08 ppb, which was comprised mostly by alkanes (41.8%) and halogenated hydrocarbons (29.4%). In contrast, aromatics (17.4%) dominated the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) with 59.6% and 58.3%, respectively. Approximately 63.5% of VOCs were emitted from the petrochemical industry and from solvent usage based on source apportionment results, followed by biogenic emissions of 22.3% and vehicle emissions of 14.2%. Of the observed 46 VOC species, hexachlorobutadiene, dibromoethane, butadiene, tetrachloroethane, and vinyl chloride contributed as high as 98.8% of total carcinogenic risk, a large fraction of which was ascribed to the high-level emissions during ozone pollution episodes and nighttime. Therefore, the mitigation of VOC emissions from petrochemical industries would be an effective way to reduce secondary pollution and potential health risks in conurbation areas. Full article
Show Figures

Figure 1

Back to TopTop