Impact of Air Conditioning Type on Outdoor Ozone Intrusion into Homes in a Semi-Arid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Housing Questionnaire
2.3. O3 Measurement
2.4. Temperature and Relative Humidity Measurement
2.5. Quality Assurance Steps
2.6. Data Analysis Steps
- xj is the mean I/O for home, j
- I/Oi is the Indoor to Outdoor ratio of the 24 h integrated O3 concentrations for visit, i
- vj is the total number of visits made at house, j (vj = 1, 2, or 3)
- is the mean I/O for homes with air conditioning type, k (k = AC or EC)
- is the total number of homes with air conditioning type, k
- is the type 1 error rate for a confidence interval.
- For a 95% confidence interval,
- is the t-critical value based on the type I error rate and number of homes with air conditioning type, k
- sdk is the sample standard deviation from homes with air conditioning type, k
3. Results
3.1. Indoor/Outdoor Ratios
3.2. Representative I/O Ratios during Air Conditioning Use
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons, Incorporated: New York, NY, USA, 2016; Available online: http://ebookcentral.proquest.com/lib/byu/detail.action?docID=4462549 (accessed on 24 June 2022).
- Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2019.02518 (accessed on 7 July 2024). [CrossRef] [PubMed]
- Nazaroff, W.W.; Weschler, C.J. Indoor ozone: Concentrations and influencing factors. Indoor Air 2021, 32, e12942. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.A. Ozone in rural areas of the United States. J. Geophys. Res. Atmos. 1989, 94, 8511–8532. [Google Scholar] [CrossRef]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2017, 25, 8074–8088. [Google Scholar] [CrossRef]
- Bello-Medina, P.C.; Rodríguez-Martínez, E.; Prado-Alcalá, R.A.; Rivas-Arancibia, S. Ozone pollution, oxidative stress, synaptic plasticity, and neurodegeneration. Neurol. (Engl. Ed.) 2021, 37, 277–286. [Google Scholar] [CrossRef]
- Rivas-Arancibia, S.; Hernández-Orozco, E.; Rodríguez-Martínez, E.; Valdés-Fuentes, M.; Cornejo-Trejo, V.; Pérez-Pacheco, N.; Dorado-Martínez, C.; Zequeida-Carmona, D.; Espinosa-Caleti, I. Ozone Pollution, Oxidative Stress, Regulatory T Cells and Antioxidants. Antioxidants 2022, 11, 1553. [Google Scholar] [CrossRef]
- Wiegman, C.H.; Li, F.; Ryffel, B.; Togbe, D.; Chung, K.F. Oxidative Stress in Ozone-Induced Chronic Lung Inflammation and Emphysema: A Facet of Chronic Obstructive Pulmonary Disease. Front. Immunol. 2020, 11, 1957. [Google Scholar] [CrossRef]
- Lodovici, M.; Bigagli, E. Oxidative Stress and Air Pollution Exposure. J. Toxicol. 2011, 2011, 487074. [Google Scholar] [CrossRef]
- Hu, W.; Yang, J. Effect of ambient ozone pollution on disease burden globally: A systematic analysis for the global burden of disease study 2019. Sci. Total. Environ. 2024, 926, 171739. [Google Scholar] [CrossRef]
- EPA, U.S. NAAQS Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 16 May 2024).
- EPA, U.S. 8-Hour Ozone Nonattainment Area Summary. 2015. Available online: https://www3.epa.gov/airquality/greenbook/jnsum.html (accessed on 28 May 2024).
- EPA, U.S. Technical Assistance Document for the Reporting of Daily Air Quality—The Air Quality Index (AQI). EPA-454/B-24-002. Available online: https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf (accessed on 1 May 2024).
- Guo, C.; Gao, Z.; Shen, J. Emission rates of indoor ozone emission devices: A literature review. Build. Environ. 2019, 158, 302–318. [Google Scholar] [CrossRef]
- Zhang, Q.; Jenkins, P.L. Evaluation of ozone emissions and exposures from consumer products and home appliances. Indoor Air 2017, 27, 386–397. [Google Scholar] [CrossRef]
- Stamp, S.; Burman, E.; Chatzidiakou, L.; Cooper, E.; Wang, Y.; Mumovic, D. A critical evaluation of the dynamic nature of indoor-outdoor air quality ratios. Atmos. Environ. 2022, 273, 118955. [Google Scholar] [CrossRef]
- Rodes, C.E.; Lawless, P.A.; Thornburg, J.W.; Williams, R.W.; Croghan, C.W. DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmos. Environ. 2010, 44, 1386–1399. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Hoek, G.; Brunekreef, B.; Harssema, H.; Menswik, I.; Zuidhof, A. Personal sampling of particles in Adults: Relation among Personal, Indoor, and Outdoor Air Concentrations. Am. J. Epidemiol. 1998, 147, 537–547. [Google Scholar] [CrossRef]
- Hubal, E.A.C.; Sheldon, L.S.; Burke, J.M.; McCurdy, T.R.; Berry, M.R.; Rigas, M.L.; Zartarian, V.G.; Freeman, N.C. Children’s exposure assessment: A review of factors influencing Children’s exposure, and the data available to characterize and assess that exposure. Environ. Health Perspect. 2000, 108, 475–486. [Google Scholar] [CrossRef]
- Spalt, E.W.; Curl, C.L.; Allen, R.W.; Cohen, M.; Adar, S.D.; Stukovsky, K.H.; Avol, E.; Castro-Diehl, C.; Nunn, C.; Mancera-Cuevas, K.; et al. Time–location patterns of a diverse population of older adults: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). J. Expo. Sci. Environ. Epidemiol. 2016, 26, 349–355. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J. Roles of the human occupant in indoor chemistry. Indoor Air 2016, 26, 6–24. [Google Scholar] [CrossRef]
- Zhang, J.; Lioy, P.J. Ozone in residential air: Concentrations, I/O ratios, indoor chemistry, and exposures. Indoor Air 1994, 4, 95–105. [Google Scholar] [CrossRef]
- Lebel, E.D.; Finnegan, C.J.; Ouyang, Z.; Jackson, R.B. Methane and NOx Emissions from Natural Gas Stoves, Cooktops, and Ovens in Residential Homes. Environ. Sci. Technol. 2022, 56, 2529–2539. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA); Residential Energy Consumption Survey (RECS). Table HC7.1 Air conditioning in U.S. Homes, by Housing Unit Type, 2020. 2023. Available online: https://www.eia.gov/consumption/residential/data/2020/hc/pdf/HC%207.1.pdf (accessed on 25 June 2024).
- Yamamoto, N.; Shendell, D.G.; Winer, A.M.; Zhang, J. Residential air exchange rates in three major US metropolitan areas: Results from the Relationship Among Indoor, Outdoor, and Personal Air Study 1999–2001. Indoor Air 2010, 20, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Macher, J.M.; Girman, J.R. Multiplication of microorganisms in an evaporative air cooler and possible indoor air contamination. Environ. Int. 1990, 16, 203–211. [Google Scholar] [CrossRef]
- Li, W.-W.; Paschold, H.; Morales, H.; Chianelli, J. Correlations between short-term indoor and outdoor PM concentrations at residences with evaporative coolers. Atmospheric Environ. 2003, 37, 2691–2703. [Google Scholar] [CrossRef]
- United States Geological Survey. Evaporative Coolers Work Best in the Dry Areas of the U.S. (Area A). Available online: https://www.usgs.gov/media/images/evaporative-coolers-work-best-dry-areas-us-area-a (accessed on 25 June 2024).
- Paschold, H.; Li, W.-W.; Morales, H.; Walton, J. Laboratory study of the impact of evaporative coolers on indoor PM concentrations. Atmos. Environ. 2003, 37, 1075–1086. [Google Scholar] [CrossRef]
- Sonntag, D.B.; Jung, H.; Harline, R.P.; Peterson, T.C.; Willis, S.E.; Christensen, T.R.; Johnston, J.D. Infiltration of Outdoor PM2.5 Pollution into Homes with Evaporative Coolers in Utah County. Sustainability 2023, 16, 177. [Google Scholar] [CrossRef]
- U.S. Census Bureau QuickFacts: Utah County, Utah. Available online: https://www.census.gov/quickfacts/utahcountyutah (accessed on 19 May 2024).
- USEPA, Green Book | US EPA. Available online: https://www3.epa.gov/airquality/greenbook/jbcs.html#UT (accessed on 29 May 2024).
- EPA, U.S. Ozone Designation and Classification Information. Available online: https://www.epa.gov/green-book/ozone-designation-and-classification-information (accessed on 29 May 2024).
- OSHA, Ozone in Workplace Atmospheres ID-214. Occupational Safety and Health Administration, T-ID-214-02-0801-M. Available online: https://www.osha.gov/sites/default/files/methods/osha-id214.pdf (accessed on 1 January 2008).
- BYU Physics and Astronomy Weather Station. Available online: https://marvin.byu.edu/ (accessed on 24 May 2024).
- stats version, R: Student’s t-Test. Available online: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/t.test.html (accessed on 24 July 2024).
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 16 June 2023).
- R: Local Polynomial Regression Fitting. Available online: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/loess.html (accessed on 27 May 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 1 January 2008).
- A box and whiskers plot (in the style of Tukey)—Geom_boxplot. Available online: https://ggplot2.tidyverse.org/reference/geom_boxplot.html (accessed on 2 November 2023).
- Watt, J.R.; Brown, W.K. 1937-Evaporative Air Conditioning Handbook, 3rd ed.; Distributed by Prentice Hall, PTR; Lilburn, G.A., Ed.; Fairmont Press: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Bom, G.J. Evaporative Air-Conditioning: Applications for Environmentally Friendly Cooling; in World Bank Technical Paper; no. 421; World Bank: Washington, DC, USA, 1999. [Google Scholar]
- Yang, Y.; Cui, G.; Lan, C.Q. Developments in evaporative cooling and enhanced evaporative cooling—A review. Renew. Sustain. Energy Rev. 2019, 113, 109230. [Google Scholar] [CrossRef]
- Bolaji, B.O.; Huan, Z. Ozone depletion and global warming: Case for the use of natural refrigerant—A review. Renew. Sustain. Energy Rev. 2012, 18, 49–54. [Google Scholar] [CrossRef]
- Kapilan, N.; Isloor, A.M.; Karinka, S. A comprehensive review on evaporative cooling systems. Results Eng. 2023, 18, 101059. [Google Scholar] [CrossRef]
- Tejero-González, A.; Franco-Salas, A. Optimal operation of evaporative cooling pads: A review. Renew. Sustain. Energy Rev. 2021, 151, 111632. [Google Scholar] [CrossRef]
- Paschold, H.; Li, W.-W.; Morales, H.; Pingitore, N.E.; Maciejewska, B. Elemental analysis of airborne particulate matter and cooling water in west Texas residences. Atmos. Environ. 2003, 37, 2681–2690. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Stock, T.H.; Sarnat, J.A.; Sosa, T.M.; Sarnat, S.E.; Holguin, F.; Greenwald, R.; Johnson, B.; Li, W.-W. Characterization of traffic-related air pollutant metrics at four schools in El Paso, Texas, USA: Implications for exposure assessment and siting schools in urban areas. Atmos. Environ. 2013, 80, 140–151. [Google Scholar] [CrossRef]
- Larsson, L.S. Risk-Reduction Strategies to Expand Radon Care Planning with Vulnerable Groups. Public Health Nurs. 2014, 31, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.S.; Butterfield, P.; Hill, W.G.; Houck, G.; Messecar, D.C.; Cudney, S. Radon Testing for Low-Income Montana Families. Available online: https://aarst.org/proceedings/2011/RADON_TESTING_FOR_LOW-INCOME_MONTANA_FAMILIES.pdf (accessed on 7 July 2024).
- Hill, W.G.; Butterfield, P.; Larsson, L.S. Rural Parents’ Perceptions of Risks Associated with Their Children’s Exposure to Radon. Public Health Nurs. 2006, 23, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Avery, C.L.; Mills, K.T.; Williams, R.; McGraw, K.A.; Poole, C.; Smith, R.L.; Whitsel, E.A. Estimating Error in Using Residential Outdoor PM2.5 Concentrations as Proxies for Personal Exposures: A Meta-analysis. Environ. Health Perspect. 2010, 118, 673–678. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Xu, X.; Kulka, R.; You, H.; Wallace, L.; Mallach, G.; Van Ryswyk, K.; MacNeill, M.; Kearney, J.; Rasmussen, P.E.; et al. Windsor, Ontario Exposure Assessment Study: Design and Methods Validation of Personal, Indoor, and Outdoor Air Pollution Monitoring. J. Air Waste Manag. Assoc. 2011, 61, 142–156. [Google Scholar] [CrossRef]
- Department of Energy, U.S. Evaporative Coolers. Energy.gov. Available online: https://www.energy.gov/energysaver/evaporative-coolers (accessed on 28 September 2024).
- Smith, R.L.; Xu, B.; Switzer, P. Reassessing the relationship between ozone and short-term mortality in U.S. urban communities. Inhal. Toxicol. 2009, 21, 37–61. [Google Scholar] [CrossRef]
- Charles, J.W. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. [Google Scholar] [CrossRef]
- Shair, F. Relating indoor pollutant concentrations of ozone and sulfur dioxide to those outside: Economic reduction of indoor ozone through selective filtration of the make-up air. ASHRAE Trans. 1981, 87, 116–139. [Google Scholar]
- Weschler, C.J.; Shields, H.C.; Naik, D.V. Ozone-removal efficiencies of activated carbon filters after more than three years of continuous service. In Proceedings of the ASHRAE Annual Meeting, Orlando, FL, USA, 25–29 June 1994; in ASHRAE Transactions, 100. ASHRAE: Orlando, FL, USA, 1994; pp. 1121–1129. [Google Scholar]
- Barkjohn, K.K.; Norris, C.; Cui, X.; Fang, L.; Zheng, T.; Schauer, J.J.; Li, Z.; Zhang, Y.; Black, M.; Zhang, J.; et al. Real-time measurements of PM2.5 and ozone to assess the effectiveness of residential indoor air filtration in Shanghai homes. Indoor Air 2020, 31, 74–87. [Google Scholar] [CrossRef]
- Bedi, N.S.; Adams, Q.H.; Hess, J.J.; Wellenius, G.A. The Role of Cooling Centers in Protecting Vulnerable Individuals from Extreme Heat. Epidemiology 2022, 33, 611–615. [Google Scholar] [CrossRef]
- Quackenboss, J.J.; Lebowitz, M.D.; Crutchfield, C.D. Indoor-outdoor relationships for particulate matter: Exposure classifications and health effects. Environ. Int. 1989, 15, 353–360. [Google Scholar] [CrossRef]
- Google LLC. Google Earth Version 10.56.0.1. Available online: https://earth.google.com/web/ (accessed on 26 June 2024).
- Utah County Evaporative Cooler Air Quality Study. Google My Maps. Available online: https://www.google.com/maps/d/u/0/edit?mid=16kZcXy2IDVdfBM13103vhYMxD5W6lY0&usp=sharing (accessed on 26 June 2024).
- Stephenson, D.J.; Lillquist, D.R. The Effects of Temperature and Pressure on Airborne Exposure Concentrations When Performing Compliance Evaluations Using ACGIH TLVs and OSHA PELs. Appl. Occup. Environ. Hyg. 2001, 16, 482–486. [Google Scholar] [CrossRef] [PubMed]
- NOAA, Station Pressure Calculator. Available online: https://www.weather.gov/epz/wxcalc_stationpressure (accessed on 6 May 2024).
- National Weather Service. Provo Municipal Airport—Time Series Viewer. Available online: https://www.weather.gov/wrh/timeseries?site=KPVU (accessed on 27 April 2024).
Home Characteristics | AC (n = 16) | EC (n = 15) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD a | Min | Max | Mean | SD a | Min | Max | |
Age of home (yrs) | 33.0 | 26.3 | 2 | 80 | 62 | 22.6 | 21 | 100 |
Area (m2) | 191 | 35 | 144 | 278 | 177 | 86 | 79 | 386 |
Number of residents | 4.1 | 1.7 | 2 | 8 | 3.0 | 1.9 | 1 | 7 |
Occupant density b | 2.1 | 0.9 | 1.0 | 3.6 | 2.0 | 1.7 | 0.5 | 7.4 |
Owner occupied (%) | 82 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, J.D.; Van Roosendaal, S.; West, J.; Jung, H.; Sonntag, D. Impact of Air Conditioning Type on Outdoor Ozone Intrusion into Homes in a Semi-Arid Climate. Environments 2024, 11, 219. https://doi.org/10.3390/environments11100219
Johnston JD, Van Roosendaal S, West J, Jung H, Sonntag D. Impact of Air Conditioning Type on Outdoor Ozone Intrusion into Homes in a Semi-Arid Climate. Environments. 2024; 11(10):219. https://doi.org/10.3390/environments11100219
Chicago/Turabian StyleJohnston, James D., Seth Van Roosendaal, Joseph West, Hanyong Jung, and Darrell Sonntag. 2024. "Impact of Air Conditioning Type on Outdoor Ozone Intrusion into Homes in a Semi-Arid Climate" Environments 11, no. 10: 219. https://doi.org/10.3390/environments11100219
APA StyleJohnston, J. D., Van Roosendaal, S., West, J., Jung, H., & Sonntag, D. (2024). Impact of Air Conditioning Type on Outdoor Ozone Intrusion into Homes in a Semi-Arid Climate. Environments, 11(10), 219. https://doi.org/10.3390/environments11100219