Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,544)

Search Parameters:
Keywords = power management systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6388 KiB  
Article
Spatial–Temporal Hotspot Management of Photovoltaic Modules Based on Fiber Bragg Grating Sensor Arrays
by Haotian Ding, Rui Guo, Huan Xing, Yu Chen, Jiajun He, Junxian Luo, Maojie Chen, Ye Chen, Shaochun Tang and Fei Xu
Sensors 2025, 25(15), 4879; https://doi.org/10.3390/s25154879 (registering DOI) - 7 Aug 2025
Abstract
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards [...] Read more.
Against the backdrop of an urgent energy crisis, solar energy has attracted sufficient attention as one of the most inexhaustible and friendly types of environmental energy. Faced with long service and harsh environment, the poor performance ratios of photovoltaic arrays and safety hazards are frequently boosted worldwide. In particular, the hot spot effect plays a vital role in weakening the power generation performance and reduces the lifetime of photovoltaic (PV) modules. Here, our research reports a spatial–temporal hot spot management system integrated with fiber Bragg grating (FBG) temperature sensor arrays and cooling hydrogels. Through finite element simulations and indoor experiments in laboratory conditions, a superior cooling effect of hydrogels and photoelectric conversion efficiency improvement have been demonstrated. On this basis, field tests were carried out in which the FBG arrays detected the surface temperature of the PV module first, and then a classifier based on an optimized artificial neural network (ANN) recognized hot spots with an accuracy of 99.1%. The implementation of cooling hydrogels as a feedback mechanism achieved a 7.7 °C reduction in temperature, resulting in a 5.6% enhancement in power generation efficiency. The proposed strategy offers valuable insights for conducting predictive maintenance of PV power plants in the case of hot spots. Full article
Show Figures

Figure 1

33 pages, 4895 KiB  
Article
Scalable Energy Management Model for Integrating V2G Capabilities into Renewable Energy Communities
by Niccolò Pezzati, Eleonora Innocenti, Lorenzo Berzi and Massimo Delogu
World Electr. Veh. J. 2025, 16(8), 450; https://doi.org/10.3390/wevj16080450 (registering DOI) - 7 Aug 2025
Abstract
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by [...] Read more.
To promote a more decentralized energy system, the European Commission introduced the concept of Renewable Energy Communities (RECs). Meanwhile, the increasing penetration of Electric Vehicles (EVs) may significantly increase peak power demand and consumption ramps when charging sessions are left uncontrolled. However, by integrating smart charging strategies, such as Vehicle-to-Grid (V2G), EV storage can actively support the energy balance within RECs. In this context, this work proposes a comprehensive and scalable model for leveraging smart charging capabilities in RECs. This approach focuses on an external cooperative framework to optimize incentive acquisition and reduce dependence on Medium Voltage (MV) grid substations. It adopts a hybrid strategy, combining Mixed-Integer Linear Programming (MILP) to solve the day-ahead global optimization problem with local rule-based controllers to manage power deviations. Simulation results for a six-month case study, using historical demand data and synthetic charging sessions generated from real-world events, demonstrate that V2G integration leads to a better alignment of overall power consumption with zonal pricing, smoother load curves with a 15.5% reduction in consumption ramps, and enhanced cooperation with a 90% increase in shared power redistributed inside the REC. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
18 pages, 2405 KiB  
Article
Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System
by Roberta Caponi, Domenico Vizza, Claudia Bassano, Luca Del Zotto and Enrico Bocci
Energies 2025, 18(15), 4209; https://doi.org/10.3390/en18154209 (registering DOI) - 7 Aug 2025
Abstract
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms [...] Read more.
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production. Full article
Show Figures

Figure 1

20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
43 pages, 2840 KiB  
Review
Oxytocin, Vasopressin and Stress: A Hormetic Perspective
by Hans P. Nazarloo, Marcy A. Kingsbury, Hannah Lamont, Caitlin V. Dale, Parmida Nazarloo, John M. Davis, Eric C. Porges, Steven P. Cuffe and C. Sue Carter
Curr. Issues Mol. Biol. 2025, 47(8), 632; https://doi.org/10.3390/cimb47080632 (registering DOI) - 7 Aug 2025
Abstract
The purpose of this article is to examine a previously unrecognized role for the vasopressin–oxytocin (VP-OT) system in mammalian “stress-response hormesis.” The current review adds hormesis to the long list of beneficial effects of OT. Hormesis, a biphasic adaptive response to low-level stressors, [...] Read more.
The purpose of this article is to examine a previously unrecognized role for the vasopressin–oxytocin (VP-OT) system in mammalian “stress-response hormesis.” The current review adds hormesis to the long list of beneficial effects of OT. Hormesis, a biphasic adaptive response to low-level stressors, is introduced here to contextualize the dynamic roles of oxytocin and vasopressin. As with hormesis, the properties of the VP-OT system are context-, time-, and dose-sensitive. Here we suggest that one key to understanding hormesis is the fact that VP and OT and their receptors function as an integrated system. The VP-OT system is capable of changing and adapting to challenges over time, including challenges necessary for survival, reproduction and sociality. Prior research suggests that many beneficial effects of OT are most apparent only following stressful experiences, possibly reflecting interactions with VP, its receptors and other components of the hypothalamic–pituitary–adrenal axis. The release of OT is documented following various kinds of hormetic experiences such as birth, vigorous exercise, ischemic events and the ingestion of emetics, including psychedelics. The phasic or cyclic modulation of VP and related “stress” hormones, accompanied or followed by the release of OT, creates conditions that conform to the core principles of hormesis. This concept is reviewed here in the context of other hormones including corticotropin releasing hormone (CRH) and urocortin, as well as cytokines. In general, VP and classic “stress hormones” support an active response, helping to quickly mobilize body systems. OT interacts with all of these, and may subsequently re-establish homeostasis and precondition the organism to deal with future stressors. However, the individual history of an organism, including epigenetic modifications of classical stress hormones such as VP, can moderate the effects of OT. Oxytocin’s effects also help to explain the important role of sociality in mammalian resilience and longevity. A hormetic perspective, focusing on a dynamic VP-OT system, offers new insights into emotional and physical disorders, especially those associated with the management of chronic stress, and helps us to understand the healing power of social behavior and perceived safety. Full article
(This article belongs to the Special Issue Current Advances in Oxytocin Research)
Show Figures

Figure 1

14 pages, 3207 KiB  
Article
Grid-Tied PV Power Smoothing Using an Energy Storage System: Gaussian Tuning
by Ahmad I. Alyan, Nasrudin Abd Rahim and Jeyraj Selvaraj
Energies 2025, 18(15), 4206; https://doi.org/10.3390/en18154206 (registering DOI) - 7 Aug 2025
Abstract
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This [...] Read more.
The use of power smoothing for renewable energy resources is attracting increasing attention. One widely used resource that could benefit from this technique is the grid-tied photovoltaic (PV) system. Solar energy production typically follows a Gaussian bell curve, with peaks at midday. This paper confirms this pattern by using the bell curve as a reference; however, climate variations can significantly alter this pattern. Therefore, this study aimed to smooth the power supplied to the grid by a PV system. The proposed controller manages the charge and discharge processes of the energy storage system (ESS) to ensure a smooth Gaussian bell curve output. It adjusts the parameters of this curve to closely match the generated energy, absorbing or supplying fluctuations to maintain the desired profile. This system also aims to provide accurate predictions of the power that should be supplied to the grid by the PV system, based on the capabilities of the ESS and the overall system performance. Although experimental results were not included in this analysis, the system was implemented in SIMULINK using real-world data. The controller utilizes a hybrid ESS comprising a vanadium redox battery (VRB) and supercapacitors (SCs). The design and operation of the controller, including curve tuning and ESS charge–discharge management, are detailed. The simulation results demonstrate excellent performance and are thoroughly discussed. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 3849 KiB  
Article
Low-Power Branch CNN Hardware Accelerator with Early Exit for UAV Disaster Detection Using 16 nm CMOS Technology
by Yu-Pei Liang, Wen-Chin Chao and Ching-Che Chung
Sensors 2025, 25(15), 4867; https://doi.org/10.3390/s25154867 - 7 Aug 2025
Abstract
This paper presents a disaster detection framework based on aerial imagery, utilizing a Branch Convolutional Neural Network (B-CNN) to enhance feature learning efficiency. The B-CNN architecture incorporates branch training, enabling effective training and inference with reduced model parameters. To further optimize resource usage, [...] Read more.
This paper presents a disaster detection framework based on aerial imagery, utilizing a Branch Convolutional Neural Network (B-CNN) to enhance feature learning efficiency. The B-CNN architecture incorporates branch training, enabling effective training and inference with reduced model parameters. To further optimize resource usage, the framework integrates DoReFa-Net for weight quantization and fixed-point parameter representation. An early exit mechanism is introduced to support low-latency, energy-efficient predictions. The proposed B-CNN hardware accelerator is implemented using TSMC 16 nm CMOS technology, incorporating power gating techniques to manage memory power consumption. Post-layout simulations demonstrate that the proposed hardware accelerator operates at 500 MHz with a power consumption of 37.56 mW. The system achieves a disaster prediction accuracy of 88.18%, highlighting its effectiveness and suitability for low-power, real-time applications in aerial disaster monitoring. Full article
Show Figures

Figure 1

19 pages, 6784 KiB  
Article
Surface Temperature Assisted State of Charge Estimation for Retired Power Batteries
by Liangyu Xu, Wenxuan Han, Jiawei Dong, Ke Chen, Yuchen Li and Guangchao Geng
Sensors 2025, 25(15), 4863; https://doi.org/10.3390/s25154863 - 7 Aug 2025
Abstract
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered [...] Read more.
Accurate State of Charge (SOC) estimation for retired power batteries remains a critical challenge due to their degraded electrochemical properties and heterogeneous aging mechanisms. Traditional methods relying solely on electrical parameters (e.g., voltage and current) exhibit significant errors, as aged batteries experience altered internal resistance, capacity fade, and uneven heat generation, which distort the relationship between electrical signals and actual SOC. To address these limitations, this study proposes a surface temperature-assisted SOC estimation method, leveraging the distinct thermal characteristics of retired batteries. By employing infrared thermal imaging, key temperature feature regions—the positive/negative tabs and central area—are identified, which exhibit strong correlations with SOC dynamics under varying operational conditions. A Gated Recurrent Unit (GRU) neural network is developed to integrate multi-region temperature data with electrical parameters, capturing spatial–temporal thermal–electrical interactions unique to retired batteries. The model is trained and validated using experimental data collected under constant current discharge conditions, demonstrating superior accuracy compared to conventional methods. Specifically, our method achieves 64.3–68.1% lower RMSE than traditional electrical-parameter-only approaches (V-I inputs) across 0.5 C–2 C discharge rates. Results show that the proposed method reduces SOC estimation errors compared to traditional voltage-based models, achieving RMSE values below 1.04 across all tested rates. This improvement stems from the model’s ability to decode localized heating patterns and their hysteresis effects, which are particularly pronounced in aged batteries. The method’s robustness under high-rate operations highlights its potential for enhancing the reliability of retired battery management systems in secondary applications such as energy storage. Full article
Show Figures

Figure 1

18 pages, 3548 KiB  
Article
A Fault Diagnosis Framework for Waterjet Propulsion Pump Based on Supervised Autoencoder and Large Language Model
by Zhihao Liu, Haisong Xiao, Tong Zhang and Gangqiang Li
Machines 2025, 13(8), 698; https://doi.org/10.3390/machines13080698 - 7 Aug 2025
Abstract
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, [...] Read more.
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, this paper proposes a novel diagnostic framework that integrates a supervised autoencoder (SAE) with a large language model (LLM). This framework first employs an SAE to perform task-oriented feature learning on raw vibration signals collected from the pump’s guide vane casing. By jointly optimizing reconstruction and classification losses, the SAE extracts deep features that both represent the original signal information and exhibit high discriminability for different fault classes. Subsequently, the extracted feature vectors are converted into text sequences and fed into an LLM. Leveraging the powerful sequential information processing and generalization capabilities of LLM, end-to-end fault classification is achieved through parameter-efficient fine-tuning. This approach aims to avoid the traditional dependence on manually extracted time-domain and frequency-domain features, instead guiding the feature extraction process via supervised learning to make it more task-specific. To validate the effectiveness of the proposed method, we compare it with a baseline approach that uses manually extracted features. In two experimental scenarios, direct diagnosis with full data and transfer diagnosis under limited-data, cross-condition settings, the proposed method significantly outperforms the baseline in diagnostic accuracy. It demonstrates excellent performance in automated feature extraction, diagnostic precision, and small-sample data adaptability, offering new insights for the application of large-model techniques in critical equipment health management. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

30 pages, 5262 KiB  
Article
Alternative Hydraulic Modeling Method Based on Recurrent Neural Networks: From HEC-RAS to AI
by Andrei Mihai Rugină
Hydrology 2025, 12(8), 207; https://doi.org/10.3390/hydrology12080207 - 6 Aug 2025
Abstract
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural [...] Read more.
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural architectures were analyzed as follows: S-RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU. The input data for the neural networks were derived from 2D hydraulic simulations conducted using HEC-RAS software, which provided the necessary training data for the models. It should be mentioned that the input data for the hydraulic model are synthetic hydrographs, derived from the statistical processing of recorded floods. Performance evaluation was based on standard metrics such as NSE, R2 MSE, and RMSE. The results indicate that all studied networks performed well, with NSE and R2 values close to 1, thus validating their capacity to reproduce complex hydrological dynamics. Overall, all models yielded satisfactory results, making them useful tools particularly the GRU and Bi-GRU architectures, which showed the most balanced behavior, delivering low errors and high stability in predicting peak discharge, water level, and flood wave volume. The GRU and Bi-GRU networks yielded the best performance, with RMSE values below 1.45, MAE under 0.3, and volume errors typically under 3%. On the other hand, LSTM architecture exhibited the most significant instability and errors, especially in estimating the flood wave volume, often having errors exceeding 9% in some sections. The study concludes by identifying several limitations, including the heavy reliance on synthetic data and its local applicability, while also proposing solutions for future analyses, such as the integration of real-world data and the expansion of the methodology to diverse river basins thus providing greater significance to RNN models. The final conclusions highlight that RNNs are powerful tools in flood risk management, contributing to the development of fast and efficient early warning systems for extreme hydrological and meteorological events. Full article
Show Figures

Figure 1

37 pages, 13501 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

13 pages, 2106 KiB  
Article
Diagnosis of the Multiepitope Protein rMELEISH3 for Canine Visceral Leishmaniasis
by Rita Alaide Leandro Rodrigues, Mariana Teixeira de Faria, Isadora Braga Gandra, Juliana Martins Machado, Ana Alice Maia Gonçalves, Daniel Ferreira Lair, Diana Souza de Oliveira, Lucilene Aparecida Resende, Maykelin Fuentes Zaldívar, Ronaldo Alves Pinto Nagem, Rodolfo Cordeiro Giunchetti, Alexsandro Sobreira Galdino and Eduardo Sergio da Silva
Appl. Sci. 2025, 15(15), 8683; https://doi.org/10.3390/app15158683 - 6 Aug 2025
Abstract
Canine visceral leishmaniasis (CVL) is a major zoonosis that poses a growing challenge to public health services, as successful disease management requires sensitive, specific, and rapid diagnostic methods capable of identifying infected animals even at a subclinical level. The objective of this study [...] Read more.
Canine visceral leishmaniasis (CVL) is a major zoonosis that poses a growing challenge to public health services, as successful disease management requires sensitive, specific, and rapid diagnostic methods capable of identifying infected animals even at a subclinical level. The objective of this study was to evaluate the performance of the recombinant chimeric protein rMELEISH3 as an antigen in ELISA assays for the robust diagnosis of CVL. The protein was expressed in a bacterial system, purified by affinity chromatography, and evaluated through a series of serological assays using serum samples from dogs infected with Leishmania infantum. ROC curve analysis revealed a diagnostic sensitivity of 96.4%, a specificity of 100%, and an area under the curve of 0.996, indicating excellent discriminatory power. Furthermore, rMELEISH3 was recognized by antibodies present in the serum of dogs with low parasite loads, reinforcing the diagnostic potential of the assay in asymptomatic cases. It is concluded that the use of the recombinant antigen rMELEISH3 could significantly contribute to the improvement of CVL surveillance and control programs in endemic areas of Brazil and other countries, by offering a safe, reproducible and effective alternative to the methods currently recommended for the serological diagnosis of the disease. Full article
Show Figures

Figure 1

42 pages, 5651 KiB  
Article
Towards a Trustworthy Rental Market: A Blockchain-Based Housing System Architecture
by Ching-Hsi Tseng, Yu-Heng Hsieh, Yen-Yu Chang and Shyan-Ming Yuan
Electronics 2025, 14(15), 3121; https://doi.org/10.3390/electronics14153121 - 5 Aug 2025
Abstract
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, [...] Read more.
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, underlying technologies, and myriad benefits of decentralized rental platforms. The intrinsic characteristics of blockchain—immutability, transparency, and decentralization—are pivotal in enhancing the credibility of rental information and proactively preventing fraudulent activities. Smart contracts emerge as a key innovation, enabling the automated execution of Rental Agreements, thereby significantly boosting efficiency and minimizing reliance on intermediaries. Furthermore, Decentralized Identity (DID) solutions offer a robust mechanism for securely managing identities, effectively mitigating risks associated with data leakage, and fostering a more trustworthy environment. The suitability of platforms such as Hyperledger Fabric for developing such sophisticated rental systems is also critically evaluated. Blockchain-based systems promise to dramatically increase market transparency, bolster transaction security, and enhance fraud prevention. They also offer streamlined processes for dispute resolution. Despite these significant advantages, the widespread adoption of blockchain in the rental sector faces several challenges. These include inherent technological complexity, adoption barriers, the need for extensive legal and regulatory adaptation, and critical privacy concerns (e.g., ensuring compliance with GDPR). Furthermore, blockchain scalability limitations and the intricate balance between data immutability and the necessity for occasional data corrections present considerable hurdles. Future research should focus on developing user-friendly DID solutions, enhancing blockchain performance and cost-efficiency, strengthening smart contract security, optimizing the overall user experience, and exploring seamless integration with emerging technologies. While current challenges are undeniable, blockchain technology offers a powerful suite of tools for fundamentally improving the rental market’s efficiency, transparency, and security, exhibiting significant potential to reshape the entire rental ecosystem. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

22 pages, 3601 KiB  
Article
Support-Vector-Regression-Based Intelligent Control Strategy for DFIG Wind Turbine Systems
by Farhat Nasim, Shahida Khatoon, Ibraheem Nasiruddin, Mohammad Shahid, Shabana Urooj and Basel Bilal
Machines 2025, 13(8), 687; https://doi.org/10.3390/machines13080687 - 5 Aug 2025
Abstract
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause [...] Read more.
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause power oscillations, rotor speed fluctuations, and voltage instability. Traditional proportional–integral (PI) controllers struggle with such nonlinear, rapidly changing scenarios. A control approach utilizing support vector regression (SVR) is proposed for the DFIG wind turbine system. The SVR controller manages both active and reactive power by simultaneously controlling the rotor- and grid-side converters (RSC and GSC). Simulations under a sudden wind speed variation from 10 to 12 m per second show the SVR approach reduces settling time significantly (up to 70.3%), suppresses oscillations in rotor speed, torque, and power output, and maintains over 97% DC-link voltage stability. These improvements enhance power quality, reliability, and system performance, demonstrating the SVR controller’s superiority over conventional PI methods for variable-speed wind energy systems. Full article
(This article belongs to the Special Issue Modelling, Design and Optimization of Wind Turbines)
Show Figures

Figure 1

Back to TopTop