Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (254)

Search Parameters:
Keywords = power line interference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2289 KiB  
Communication
Raman Gas Analysis with External Power Build-Up Cavity of Line-Narrowed 407-nm Laser Diode
by Zhongyi Yao, Xinbing Wang and Duluo Zuo
Sensors 2025, 25(15), 4600; https://doi.org/10.3390/s25154600 - 25 Jul 2025
Viewed by 193
Abstract
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, [...] Read more.
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, the laser linewidth was narrowed by resonant optical feedback, and tens of watts of external cavity power were built up. The coupling mechanism between the semiconductor laser and the external cavity are discussed, as well as the noise background in the experimental results. The Raman spectrum of ambient air was analyzed, achieving a methane detection limit of 1 ppm. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

12 pages, 1275 KiB  
Article
Performance of G3-PLC Channel in the Presence of Spread Spectrum Modulated Electromagnetic Interference
by Waseem ElSayed, Amr Madi, Piotr Lezynski, Robert Smolenski and Paolo Crovetti
Signals 2025, 6(3), 33; https://doi.org/10.3390/signals6030033 - 17 Jul 2025
Viewed by 255
Abstract
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used [...] Read more.
Power converters in the smart grid systems are essential to link renewable energy sources with all grid appliances and equipment. However, this raises the possibility of electromagnetic interference (EMI) between the smart grid elements. Hence, spread spectrum (SS) modulation techniques have been used to mitigate the EMI peaks generated from the power converters. Consequently, the performance of the nearby communication systems is affected under the presence of EMI, which is not covered in many situations. In this paper, the behavior of the G3 Power Line Communication (PLC) channel is evaluated in terms of the Shannon–Hartley equation in the presence of SS-modulated EMI from a buck converter. The SS-modulation technique used is the Random Carrier Frequency Modulation with Constant Duty cycle (RCFMFD). Moreover, The analysis is validated by experimental results obtained with a test setup reproducing the parasitic coupling between the PLC system and the power converter. Full article
Show Figures

Figure 1

15 pages, 4034 KiB  
Article
Electroluminescent Sensing Coating for On-Line Detection of Zero-Value Insulators in High-Voltage Systems
by Yongjie Nie, Yihang Jiang, Pengju Wang, Daoyuan Chen, Yongsen Han, Jialiang Song, Yuanwei Zhu and Shengtao Li
Appl. Sci. 2025, 15(14), 7965; https://doi.org/10.3390/app15147965 - 17 Jul 2025
Viewed by 232
Abstract
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric [...] Read more.
In high-voltage transmission lines, insulators subjected to prolonged electromechanical stress are prone to zero-value defects, leading to insulation failure and posing significant risks to power grid reliability. The conventional detection method of spark gap is vulnerable to environmental interference, while the emerging electric field distribution-based techniques require complex instrumentation, limiting its applications in scenes of complex structures and atop tower climbing. To address these challenges, this study proposes an electroluminescent sensing strategy for zero-value insulator identification based on the electroluminescence of ZnS:Cu. Based on the stimulation of electrical stress, real-time monitoring of the health status of insulators was achieved by applying the composite of epoxy and ZnS:Cu onto the connection area between the insulator steel cap and the shed. Experimental results demonstrate that healthy insulators exhibit characteristic luminescence, whereas zero-value insulators show no luminescence due to a reduced drop in electrical potential. Compared with conventional detection methods requiring access of electric signals, such non-contact optical detection method offers high fault-recognition accuracy and real-time response capability within milliseconds. This work establishes a novel intelligent sensing paradigm for visualized condition monitoring of electrical equipment, demonstrating significant potential for fault diagnosis in advanced power systems. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 295
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

31 pages, 3621 KiB  
Review
Electromyography Signal Acquisition, Filtering, and Data Analysis for Exoskeleton Development
by Jung-Hoon Sul, Lasitha Piyathilaka, Diluka Moratuwage, Sanura Dunu Arachchige, Amal Jayawardena, Gayan Kahandawa and D. M. G. Preethichandra
Sensors 2025, 25(13), 4004; https://doi.org/10.3390/s25134004 - 27 Jun 2025
Viewed by 907
Abstract
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, [...] Read more.
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, noise mitigation, data preprocessing, feature extraction, and control strategies. Various EMG acquisition methods, including surface, intramuscular, and high-density surface EMG, are evaluated for their applicability in real-time control. The review addresses prevalent signal quality challenges, such as motion artifacts, power-line interference, and crosstalk. It also highlights both traditional filtering techniques and advanced methods, such as wavelet transforms, empirical mode decomposition, and adaptive filtering. Feature extraction techniques are explored to support pattern recognition and motion classification. Machine learning approaches are examined for their roles in pattern recognition-based and hybrid control architectures. This article emphasizes muscle synergy analysis and adaptive control algorithms to enhance personalization and fatigue compensation, followed by the benefits of multimodal sensing and edge computing in addressing the limitations of EMG-only systems. By focusing on EMG-driven strategies through signal processing, machine learning, and sensor fusion innovations, this review bridges gaps in human–machine interaction, offering insights into improving the precision, adaptability, and robustness of next generation exoskeletons. Full article
(This article belongs to the Special Issue Sensors-Based Healthcare Diagnostics, Monitoring and Medical Devices)
Show Figures

Figure 1

25 pages, 3362 KiB  
Article
A Fault Direction Discrimination Method for a Two-Terminal Weakly Fed AC System Using the Time-Domain Fault Model for the Difference Discrimination of Composite Electrical Quantities
by Lie Li, Yu Sun, Yifan Zhao, Xiaoqian Zhu, Ping Xiong, Wentao Yang and Junjie Hou
Electronics 2025, 14(13), 2556; https://doi.org/10.3390/electronics14132556 - 24 Jun 2025
Viewed by 216
Abstract
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential [...] Read more.
The project of the flexible direct transmission of renewable energy has become an inevitable development trend for the large-scale grid connection of renewable energy. Its two-terminal weakly fed AC system is often composed of 100% power electronic equipment, which leads to an essential transformation in fault characteristics and protection requirements. At present, in research, the traditional directional elements are limited by the negative-sequence control strategy, resulting in the decline of their sensitivity and reliability. Therefore, this paper proposes a model for identifying directional elements using composite electrical quantities that is not affected by the control strategy of the two-terminal weakly fed AC system and can reliably identify the fault direction. Firstly, the adaptability of traditional directional elements under the negative-sequence current suppression strategy on both sides of the system when faults occur in the AC line was analyzed. Secondly, based on the idea of model recognition, the model relationship of fault voltage and current in the case of ground faults and non-ground faults occurring at different locations was analyzed. Finally, a fitted voltage was constructed and the Kendall correlation coefficient was introduced to achieve fault direction discrimination. Simulation results demonstrate that the proposed pilot protection scheme can operate reliably under conditions of 300 Ω transition resistance and 25 dB noise interference. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

17 pages, 6780 KiB  
Article
A Metric Learning-Based Improved Oriented R-CNN for Wildfire Detection in Power Transmission Corridors
by Xiaole Wang, Bo Wang, Peng Luo, Leixiong Wang and Yurou Wu
Sensors 2025, 25(13), 3882; https://doi.org/10.3390/s25133882 - 22 Jun 2025
Viewed by 365
Abstract
Wildfire detection in power transmission corridors is essential for providing timely warnings and ensuring the safe and stable operation of power lines. However, this task faces significant challenges due to the large number of smoke-like samples in the background, the complex and diverse [...] Read more.
Wildfire detection in power transmission corridors is essential for providing timely warnings and ensuring the safe and stable operation of power lines. However, this task faces significant challenges due to the large number of smoke-like samples in the background, the complex and diverse target morphologies, and the difficulty of detecting small-scale smoke and flame objects. To address these issues, this paper proposed an improved Oriented R-CNN model enhanced with metric learning for wildfire detection in power transmission corridors. Specifically, a multi-center metric loss (MCM-Loss) module based on metric learning was introduced to enhance the model’s ability to differentiate features of similar targets, thereby improving the recognition accuracy in the presence of interference. Experimental results showed that the introduction of the MCM-Loss module increased the average precision (AP) for smoke targets by 2.7%. In addition, the group convolution-based network ResNeXt was adopted to replace the original backbone network ResNet, broadening the channel dimensions of the feature extraction network and enhancing the model’s capability to detect flame and smoke targets with diverse morphologies. This substitution led to a 0.6% improvement in mean average precision (mAP). Furthermore, an FPN-CARAFE module was designed by incorporating the content-aware up-sampling operator CARAFE, which improved multi-scale feature representation and significantly boosted performance in detecting small targets. In particular, the proposed FPN-CARAFE module improved the AP for fire targets by 8.1%. Experimental results demonstrated that the proposed model achieved superior performance in wildfire detection within power transmission corridors, achieving a mAP of 90.4% on the test dataset—an improvement of 6.4% over the baseline model. Compared with other commonly used object detection algorithms, the model developed in this study exhibited improved detection performance on the test dataset, offering research support for wildfire monitoring in power transmission corridors. Full article
(This article belongs to the Special Issue Object Detection and Recognition Based on Deep Learning)
Show Figures

Figure 1

17 pages, 621 KiB  
Article
Performance Analysis of an IRS-Assisted SWIPT System with Phase Error and Interference
by Xuhua Tian, Jing Guo and Zhili Ren
Sensors 2025, 25(12), 3756; https://doi.org/10.3390/s25123756 - 16 Jun 2025
Viewed by 314
Abstract
In this paper, we investigate a simultaneous wireless information and power transfer (SWIPT) communication system enhanced by an intelligent reflecting surface (IRS). Our study takes into account the imperfections in the phase shift of the IRS and the presence of interfering signals reflected [...] Read more.
In this paper, we investigate a simultaneous wireless information and power transfer (SWIPT) communication system enhanced by an intelligent reflecting surface (IRS). Our study takes into account the imperfections in the phase shift of the IRS and the presence of interfering signals reflected by the IRS at the destination terminal. Additionally, our analysis incorporates both the presence of a line-of-sight path between the source and destination and a non-linear energy-harvesting model. In order to assess the influence of phase error and interference on the considered system, closed-form and asymptotic expression for the system’s outage probability, ergodic capacity, and energy efficiency (EE) are derived. Simulation results are presented to corroborate our analysis and illustrate the impact of phase error, interference, the number of reflecting elements, and various system parameters on the system performance. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 4090 KiB  
Article
Transmission Line Defect Detection Algorithm Based on Improved YOLOv12
by Yanpeng Ji, Tianxiang Ma, Hongliang Shen, Haiyan Feng, Zizi Zhang, Dan Li and Yuling He
Electronics 2025, 14(12), 2432; https://doi.org/10.3390/electronics14122432 - 14 Jun 2025
Cited by 2 | Viewed by 896
Abstract
To address the challenges of high missed detection rates for minute transmission line defects, strong complex background interference, and limited computational power on edge devices in UAV-assisted power line inspection, this paper proposes a lightweight improved YOLOv12 real-time detection model. First, a Bidirectional [...] Read more.
To address the challenges of high missed detection rates for minute transmission line defects, strong complex background interference, and limited computational power on edge devices in UAV-assisted power line inspection, this paper proposes a lightweight improved YOLOv12 real-time detection model. First, a Bidirectional Weighted Feature Fusion Network (BiFPN) is introduced to enhance bidirectional interaction between shallow localization information and deep semantic features through learnable feature layer weighting, thereby improving detection sensitivity for line defects. Second, a Cross-stage Channel-Position Collaborative Attention (CPCA) module is embedded in the BiFPN’s cross-stage connections, jointly modeling channel feature significance and spatial contextual relationships to effectively suppress complex background noise from vegetation occlusion and metal reflections while enhancing defect feature representation. Furthermore, the backbone network is reconstructed using ShuffleNetV2’s channel rearrangement and grouped convolution strategies to reduce model complexity. Experimental results demonstrate that the improved model achieved 98.7% mAP@0.5 on our custom transmission line defect dataset, representing a 3.0% improvement over the baseline YOLOv12, with parameters compressed to 2.31M (8.3% reduction) and real-time detection speed reaching 142.7 FPS. This method effectively balances detection accuracy and inference efficiency, providing reliable technical support for unmanned intelligent inspection of transmission lines. Full article
Show Figures

Figure 1

23 pages, 16865 KiB  
Article
MOT: A Low-Latency, Multichannel Wireless Surface Electromyography Acquisition System Based on the AD8232 Front-End
by Augusto Tetsuo Prado Inafuco, Pablo Machoski, Daniel Prado Campos, Sergio Francisco Pichorim and José Jair Alves Mendes Junior
Sensors 2025, 25(12), 3600; https://doi.org/10.3390/s25123600 - 7 Jun 2025
Viewed by 806
Abstract
Commercial wearable systems for surface electromyography (sEMG) acquisition often trade bandwidth, synchronization, and battery life for miniaturization, and their proprietary designs inhibit reproducibility and cost-effective customization. To address these limitations, we developed MOT, a fully wireless, multichannel platform built from commodity components that [...] Read more.
Commercial wearable systems for surface electromyography (sEMG) acquisition often trade bandwidth, synchronization, and battery life for miniaturization, and their proprietary designs inhibit reproducibility and cost-effective customization. To address these limitations, we developed MOT, a fully wireless, multichannel platform built from commodity components that can be replicated in academic laboratories. Each sensor node integrates an AD8232 analog front-end configured for 19–690 Hz bandwidth (59 dB mid-band gain) with a 12-bit successive approximation ADC sampling at 1 kS/s. Packets of 120 samples are broadcast via the low-latency ESP-NOW 2.45 GHz protocol to a central hub, which timestamps and streams data to a host PC over USB-UART. Bench tests confirmed the analog response and showed mains interference at least 40 dB below voluntary contraction levels; the cumulative packet loss remained below 0.5% for six simultaneous channels at 100 m line-of-sight, with end-to-end latency under 3 ms. A 180 mAh Li-ion cell was used to power each node for 1.8 h of continuous operation at 100 mA average draw, and the complete sensor, including enclosure, was found to weigh 22 g. MOT reduced a 60 Hz artifact magnitude by up to 22 dB while preserving signal bandwidth. The hardware, therefore, provides a compact and economical solution for biomechanics, rehabilitation, and human–machine interface research that demands mobile, high-fidelity sEMG acquisition. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

18 pages, 4934 KiB  
Article
Prediction of the Probability of IC Failure and Validation of Stochastic EM-Fields Coupling into PCB Traces Using a Bespoke RF IC Detector
by Arunkumar Hunasanahalli Venkateshaiah, John F. Dawson, Martin A. Trefzer, Haiyan Xie, Simon J. Bale, Andrew C. Marvin and Martin P. Robinson
Electronics 2025, 14(11), 2187; https://doi.org/10.3390/electronics14112187 - 28 May 2025
Viewed by 349
Abstract
In this paper, a method of estimating the probability of susceptibility of a component on a circuit board to electromagnetic interference (EMI) is presented. The integrated circuit electromagnetic compatibility (IC EMC) standard IEC 62132-4 enables the assessment of the susceptibility of an IC [...] Read more.
In this paper, a method of estimating the probability of susceptibility of a component on a circuit board to electromagnetic interference (EMI) is presented. The integrated circuit electromagnetic compatibility (IC EMC) standard IEC 62132-4 enables the assessment of the susceptibility of an IC by determining the forward power incident on each pin required to induce a malfunction. Although we focus on IC susceptibility, the method might be applied to other components and sub-circuits where the same information is known. Building upon a previously established numerical model capable of estimating the average coupled forward power at the end of a trace of a lossless PCB trace for a known load in a reverberant environment, this paper updates the model by incorporating PCB losses and utilizes the updated model to estimate the distribution of coupled forward power at the package pin over a number of boundary conditions in a reverberant field. Thus, the probability of failure can be predicted from the known component susceptibility level, the length, transmission line parameters, and the loading of the track to which it is attached. To validate this numerical model, the paper includes measurements obtained with a custom-designed RF IC detector, created for the purpose of measuring RF power coupled into the package pin via test PCB tracks. Full article
(This article belongs to the Special Issue Antennas and Microwave/Millimeter-Wave Applications)
Show Figures

Figure 1

13 pages, 2332 KiB  
Article
Non-Invasive Voltage Measurement Device Based on MEMS Electric Field Sensor and Applications
by Xueqiong Zhu, Ziyang Zhang, Chengbo Hu, Zhen Wang, Ziquan Liu, Qing Yang, Jianglin Zhou, Zhenhui Qiu and Shijie Bao
Electronics 2025, 14(11), 2140; https://doi.org/10.3390/electronics14112140 - 24 May 2025
Viewed by 439
Abstract
In the context of new power systems, the safe and accurate sensing of voltage data is crucial for the secure and stable operation of power grids. Given that existing voltage measurement devices cannot meet the development requirements for wide-area deployment and distributed monitoring, [...] Read more.
In the context of new power systems, the safe and accurate sensing of voltage data is crucial for the secure and stable operation of power grids. Given that existing voltage measurement devices cannot meet the development requirements for wide-area deployment and distributed monitoring, this paper designs a non-intrusive voltage measurement device based on MEMS (micro-electromechanical system) electric field sensors, which are characterized by their small size, low power consumption, ease of installation and strong anti-interference ability. Firstly, the paper introduces the voltage measurement principle and analyzes the equivalent circuit based on this analysis; secondly, the key structural design of the measurement device is completed and the prototype of the device is developed; finally, the accuracy and anti-jamming tests of the measurement device are conducted by establishing an experimental platform, followed by field applications. Experimental results demonstrate that the voltage measurement device has high measurement accuracy, and the maximum error is only 1.215%. Additionally, the device has a good shielding capability against the coupled electric field of surrounding interference conductors, with a maximum error increase of 1.313%. In a 10 kV overhead line voltage test, the device can accurately obtain the actual voltage. The voltage measuring device developed in this paper can provide data support for the condition assessment of overhead lines and effective monitoring means for the safe and stable operation of the power system. Full article
Show Figures

Figure 1

12 pages, 5132 KiB  
Article
Leveraging Hybrid RF-VLP for High-Accuracy Indoor Localization with Sparse Anchors
by Bangyan Lu, Yongyun Li, Yimao Sun and Yanbing Yang
Sensors 2025, 25(10), 3074; https://doi.org/10.3390/s25103074 - 13 May 2025
Viewed by 446
Abstract
Indoor low-power positioning systems have received much attention, and visible light positioning (VLP) shows great potential for its high accuracy and low power consumption. However, VLP also exhibits some limitations like small coverage area and the requirement of line of sight. Moreover, most [...] Read more.
Indoor low-power positioning systems have received much attention, and visible light positioning (VLP) shows great potential for its high accuracy and low power consumption. However, VLP also exhibits some limitations like small coverage area and the requirement of line of sight. Moreover, most VLP applications require the receiver to be within the coverage of at least three LEDs simultaneously, which seriously confines the availability of VLP when LEDs are sparsely deployed. Conversely, radio frequency (RF)-based positioning systems provide large coverage area, but suffer from low positioning accuracy due to multipath interference. In this work, we harnessed the complementary strengths of multiple technologies to develop a hybrid RF-VLP indoor positioning system for improving localization accuracy under sparse anchors. The RF-network-assisted visible light positioning enables each receiver to determine its position autonomously, using signals from a single LED anchor and neighboring receivers, and without needing RF anchors. To validate the effectiveness of the proposed method, we utilize commercial off-the-shelf LED and ESP32 to build up a prototype system. Comprehensive experiments are performed to evaluate the performance of the positioning system, and the results show that the proposed system achieves an overall root mean square error (RMSE) of 26.1 cm, representing a 28.5% improvement in positioning accuracy compared to traditional RF-based positioning methods, which makes it highly feasible for deployment. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Graphical abstract

23 pages, 8246 KiB  
Article
Reactive Power Equalization Strategy for Islanded Microgrids Based on Improved Adaptive Droop Factor
by Minghu Wu, Chenliang Wu, Lujun Wang and Yichen Yuan
Electronics 2025, 14(10), 1981; https://doi.org/10.3390/electronics14101981 - 13 May 2025
Viewed by 357
Abstract
Due to the mismatch of line impedance, the traditional droop control of parallel inverters in microgrids has limitations. It is difficult to achieve uniform distribution of reactive power and reduce voltage deviation. This paper proposes a droop control strategy that combines adaptive droop [...] Read more.
Due to the mismatch of line impedance, the traditional droop control of parallel inverters in microgrids has limitations. It is difficult to achieve uniform distribution of reactive power and reduce voltage deviation. This paper proposes a droop control strategy that combines adaptive droop coefficients with secondary voltage compensation. Simulation experiments were carried out on the MATLAB R2021b/Simulink platform, and this strategy was compared with three other methods. The proposed strategy has achieved excellent results: The reactive power sharing speed has been increased by 80% (reduced from 0.5 s of the adaptive virtual impedance method to 0.1 s), which improves the system response efficiency. The amplitude of the output voltage has increased from 306 V to 311 V, improving the voltage quality. This strategy outperforms other methods in terms of reactive power sharing, response speed, stability, and anti-interference ability. The simulation results verify the effectiveness of the proposed droop control strategy. Full article
Show Figures

Figure 1

12 pages, 2525 KiB  
Article
Impact of Electromagnetic Pulses on N-Type MOSFET Reliability: Experimental Insights
by Yaxing Zhu, Dongyan Zhao, Fei Dai, Yanning Chen, Fang Liu, Bo Wu, Yang Zhao, Bocong Ren, Yanhong Wang, Yingzong Liang and Junpeng Wang
Electronics 2025, 14(10), 1937; https://doi.org/10.3390/electronics14101937 - 9 May 2025
Viewed by 394
Abstract
In power systems, MOSFET devices used in industrial chips exhibit more pronounced degradation when subjected to intense electromagnetic pulses than in conventional environments. Conventional reliability testing methods, which fail to simulate dynamic electromagnetic environments, are unable to accurately assess the changes in device [...] Read more.
In power systems, MOSFET devices used in industrial chips exhibit more pronounced degradation when subjected to intense electromagnetic pulses than in conventional environments. Conventional reliability testing methods, which fail to simulate dynamic electromagnetic environments, are unable to accurately assess the changes in device performance under electromagnetic interference. In this study, we employed a transmission line pulse generator to apply pulse stress to N-type MOSFET devices, systematically investigating the degradation mechanisms by varying pulse features such as pulse cycle, amplitude, rise/fall times, and intervals. The results indicate that changes in the electrical properties of the devices are primarily influenced by two types of charged traps. Under the conditions of low pulse cycles, the current response of the devices may even exceed that prior to stress application. The study further analyzed the competitive mechanisms of these different traps during the device degradation process. Additionally, by varying the test temperature to mimic industrial application scenarios, we analyzed the degradation behavior of the devices under multi-physics conditions. Full article
(This article belongs to the Special Issue Advanced High-Performance Analog Integrated Circuits)
Show Figures

Figure 1

Back to TopTop