Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = positronium (Ps)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2288 KiB  
Article
Defect Studies in Thin-Film SiO2 of a Metal-Oxide-Silicon Capacitor Using Drift-Assisted Positron Annihilation Lifetime Spectroscopy
by Ricardo Helm, Werner Egger, Catherine Corbel, Peter Sperr, Maik Butterling, Andreas Wagner, Maciej Oskar Liedke, Johannes Mitteneder, Michael Mayerhofer, Kangho Lee, Georg S. Duesberg, Günther Dollinger and Marcel Dickmann
Nanomaterials 2025, 15(15), 1142; https://doi.org/10.3390/nano15151142 - 23 Jul 2025
Viewed by 281
Abstract
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, [...] Read more.
This work investigates the impact of an internal electric field on the annihilation characteristics of positrons implanted in a 180(10)nm SiO2 layer of a Metal-Oxide-Silicon (MOS) capacitor, using Positron Annihilation Lifetime Spectroscopy (PALS). By varying the gate voltage, electric fields up to 1.72MV/cm were applied. The measurements reveal a field-dependent suppression of positronium (Ps) formation by up to 64%, leading to an enhancement of free positron annihilation. The increase in free positrons suggests that vacancy clusters are the dominant defect type in the oxide layer. Additionally, drift towards the SiO2/Si interface reveals not only larger void-like defects but also a distinct population of smaller traps that are less prominent when drifting to the Al/SiO2 interface. In total, by combining positron drift with PALS, more detailed insights into the nature and spatial distribution of defects within the SiO2 network and in particular near the SiO2/Si interface are obtained. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 9743 KiB  
Article
Similarities in the Low-Energy Elastic and Ps Formation Differential Cross-Sections for e+-H and e+-He Scattering
by Peter Van Reeth and John W. Humberston
Atoms 2025, 13(6), 46; https://doi.org/10.3390/atoms13060046 - 28 May 2025
Viewed by 678
Abstract
Scattering differential cross-sections (DCSs) are important tools, both experimentally and theoretically, in the investigation of scattering processes in lepton–atom collisions. In the present work, the elastic scattering differential cross-sections (EDCSs) for e+-H and e+-He below the first excitation threshold [...] Read more.
Scattering differential cross-sections (DCSs) are important tools, both experimentally and theoretically, in the investigation of scattering processes in lepton–atom collisions. In the present work, the elastic scattering differential cross-sections (EDCSs) for e+-H and e+-He below the first excitation threshold of the target were evaluated using the Kohn variational method and found to be very similar. In both cases, the EDCS below the positronium formation threshold, i.e., for pure elastic scattering, had minimum valley features in which significant minima close to 90 degrees were found at ≈2.8 eV for H and ≈2 eV for He. These minima were shown to be linked to the zero in the s-wave phase shift, which gives rise to the Ramsauer minimum in the elastic integrated cross-sections. They were not vortices, but the overall EDCS structure was found to be related to the structures and vortices found in the Ps formation differential cross-sections just above the Ps formation threshold. The valley-type structure in the EDCS went smoothly through the Ps formation threshold, where it linked up with a similar valley structure in both the EDCS above the threshold and the Ps formation DCS. A comparison with the EDCS for e-H and e-He scattering over the same energy range revealed similarities with the positron EDCS, however, with less pronounced structures that had different angular and momentum dependences. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

27 pages, 6045 KiB  
Article
Nanostructured Molecular–Network Arsenoselenides from the Border of a Glass-Forming Region: A Disproportionality Analysis Using Complementary Characterization Probes
by Oleh Shpotyuk, Malgorzata Hyla, Adam Ingram, Yaroslav Shpotyuk, Vitaliy Boyko, Pavlo Demchenko, Renata Wojnarowska-Nowak, Zdenka Lukáčová Bujňáková and Peter Baláž
Molecules 2024, 29(16), 3948; https://doi.org/10.3390/molecules29163948 - 21 Aug 2024
Cited by 2 | Viewed by 1222
Abstract
Binary AsxSe100−x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry–wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by [...] Read more.
Binary AsxSe100−x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry–wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum–chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide As4Se2 stoichiometry, realized in glassy g-As65Se35, glassy–crystalline g/c-As67Se33 and glassy–crystalline g/c-As70Se30. From the XRPD results, the number of rhombohedral As and cubic arsenolite As2O3 phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution. Nanomilling-driven amorphization and reamorphization transformations in these alloys are identified by an analysis of diffuse peak halos in their XRPD patterning, showing the interplay between the levels of a medium-range structure (disruption of the intermediate-range ordering at the cost of an extended-range one). From the micro-RS spectroscopy results, these alloys are stabilized by molecular thioarsenides As4Sen (n = 3, 4), regardless of their phase composition, remnants of thioarsenide molecules destructed under nanomilling being reincorporated into a glass network undergoing a polyamorphic transition. From the PAL spectroscopy results, volumetric changes in the wet-milled alloys with respect to the dry-milled ones are identified as resulting from a direct conversion of the bound positron–electron (Ps, positronium) states in the positron traps. Ps-hosting holes in the PVP medium appear instead of positron traps, with ~0.36–0.38 ns lifetimes ascribed to multivacancies in the As-Se matrix. The superposition of PAL spectrum peaks and tails for pelletized PVP, unmilled, dry-milled, and dry–wet-milled As-Se samples shows a spectacular smoothly decaying trend. The microstructure scenarios of the spontaneous (under quenching) and activated (under nanomilling) decomposition of principal network clusters in As4Se2-bearing arsenoselenides are recognized. Over-constrained As6·(2/3) ring-like network clusters acting as pre-cursors of the rhombohedral As phase are the main products of this decomposition. Two spontaneous processes for creating thioarsenides with crystalline counterparts explain the location of the glass-forming border in an As-Se system near the As4Se2 composition, while an activated decomposition process for creating layered As2Se3 structures is responsible for the nanomilling-driven molecular-to-network transition. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 689 KiB  
Review
Modelling Annihilation Properties of Positronium Confined in Nanoporous Materials: A Review
by Fabrizio Castelli and Giovanni Consolati
Int. J. Mol. Sci. 2024, 25(7), 3692; https://doi.org/10.3390/ijms25073692 - 26 Mar 2024
Cited by 1 | Viewed by 1607
Abstract
Positronium (Ps) is a valuable probe to investigate nanometric or sub-nanometric cavities in non-metallic materials, where Ps can be confined. Accessible experimental measurements concern the lifetime of trapped Ps, which is largely influenced by pick-off processes, depending on the size of the cavity [...] Read more.
Positronium (Ps) is a valuable probe to investigate nanometric or sub-nanometric cavities in non-metallic materials, where Ps can be confined. Accessible experimental measurements concern the lifetime of trapped Ps, which is largely influenced by pick-off processes, depending on the size of the cavity as well as on the density of the electrons belonging to the surface of the host trap. Another relevant physical quantity is the contact density, that is the electron density at the positron position, which is usually found to be well below the vacuum value. Here, we review the principal models that have been formulated to account and explain for these physical properties of confined Ps. Starting with models, treating Ps as a single particle formulated essentially to study pick-off, we go on to describe more refined two-particle models because a two-body model is the simplest approach able to describe any change in the contact density, observed in many materials. Finally, we consider a theory of Ps annihilation in nanometric voids in which the exchange correlations between the electron of Ps and the outer electrons play a fundamental role. This theory is not usually taken into account in the literature, but it has to be considered for a correct theory of pick-off annihilation processes. Full article
(This article belongs to the Special Issue Positron Annihilation Spectroscopies in Condensed Matter)
Show Figures

Figure 1

21 pages, 9868 KiB  
Article
Strain Rate and Temperature Influence on Micromechanisms of Plastic Deformation of Polyethylenes Investigated by Positron Annihilation Lifetime Spectroscopy
by Cezary Makarewicz, Marta Safandowska, Rafal Idczak, Slawomir Kolodziej and Artur Rozanski
Polymers 2024, 16(3), 420; https://doi.org/10.3390/polym16030420 - 2 Feb 2024
Cited by 4 | Viewed by 2029
Abstract
Plastic deformation of low/high density polyethylene (LDPE/HDPE) was analyzed in this work using positron annihilation lifetime spectroscopy (PALS). It was shown that in undeformed LDPE, both the mean ortho-positronium lifetime (τ3) and its dispersion (σ3), corresponding to the average [...] Read more.
Plastic deformation of low/high density polyethylene (LDPE/HDPE) was analyzed in this work using positron annihilation lifetime spectroscopy (PALS). It was shown that in undeformed LDPE, both the mean ortho-positronium lifetime (τ3) and its dispersion (σ3), corresponding to the average size and size distribution of the free-volume pores of the amorphous component, respectively, were clearly higher than in HDPE. This effect was induced by a lower and less uniform molecular packing of the amorphous regions in LDPE. During the deformation of LDPE, an increase in the τ3 value was observed within the local strains of 0–0.25. This effect was mainly stimulated by a positive relative increase in interlamellar distances due to the deformation of lamellar crystals oriented perpendicular (increased by 31.8%) and parallel (decreased by 10.1%) to the deformation directions. At the same time, the dimension of free-volume pores became more uniform, which was manifested by a decrease in the σ3 value. No significant effect of temperature or strain rate on the τ3 and σ3 values was observed during LDPE deformation. In turn, in the case of HDPE, with an increase in the strain rate/or a decrease in temperature, an intensification of the cavitation phenomenon could be observed with a simultaneous decrease in the τ3 value. This effect was caused by the lack of annihilation of ortho-positonium (o-Ps) along the longer axis of the highly anisotropic/ellipsoidal cavities. Therefore, this dimension was not detectable by the PALS technique. At the same time, the increase in the dimension of the shorter axis of the cavities was effectively limited by the thickness of amorphous layers. As the strain rate increased or the temperature decreased, the σ3 value during HDPE deformation increased. This change was correlated with the initiation and intensification of the cavitation phenomenon. Based on the mechanical response of samples with a similar yield stress, it was also proven that the susceptibility of the amorphous regions of LDPE to the formation of cavities is lower than in the case of amorphous component of HDPE. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

24 pages, 4222 KiB  
Review
Probing the Free Volume in Polymers by Means of Positron Annihilation Lifetime Spectroscopy
by Giovanni Consolati, Dario Nichetti and Fiorenza Quasso
Polymers 2023, 15(14), 3128; https://doi.org/10.3390/polym15143128 - 23 Jul 2023
Cited by 17 | Viewed by 4631
Abstract
Positron annihilation lifetime spectroscopy (PALS) is a valuable technique to investigate defects in solids, such as vacancy clusters and grain boundaries in metals and alloys, as well as lattice imperfections in semiconductors. Positron spectroscopy is able to reveal the size, structure and concentration [...] Read more.
Positron annihilation lifetime spectroscopy (PALS) is a valuable technique to investigate defects in solids, such as vacancy clusters and grain boundaries in metals and alloys, as well as lattice imperfections in semiconductors. Positron spectroscopy is able to reveal the size, structure and concentration of vacancies with a sensitivity of 10−7. In the field of porous and amorphous systems, PALS can probe cavities in the range from a few tenths up to several tens of nm. In the case of polymers, PALS is one of the few techniques able to give information on the holes forming the free volume. This quantity, which cannot be measured with macroscopic techniques, is correlated to important mechanical, thermal, and transport properties of polymers. It can be deduced theoretically by applying suitable equations of state derived by cell models, and PALS supplies a quantitative measure of the free volume by probing the corresponding sub-nanometric holes. The system used is positronium (Ps), an unstable atom formed by a positron and an electron, whose lifetime can be related to the typical size of the holes. When analyzed in terms of continuous lifetimes, the positron annihilation spectrum allows one to gain insight into the distribution of the free volume holes, an almost unique feature of this technique. The present paper is an overview of PALS, addressed in particular to readers not familiar with this technique, with emphasis on the experimental aspects. After a general introduction on free volume, positronium, and the experimental apparatus needed to acquire the corresponding lifetime, some of the recent results obtained by various groups will be shown, highlighting the connections between the free volume as probed by PALS and structural properties of the investigated materials. Full article
Show Figures

Figure 1

8 pages, 546 KiB  
Article
Anomalous Positron Lifetime in Single Crystal of Weyl Semimetal CoSi
by D. A. Salamatin, A. V. Bokov, M. G. Kozin, I. L. Romashkina, A. V. Salamatin, M. V. Mikhin, A. E. Petrova, V. A. Sidorov, A. V. Nikolaev, Z. Fisk and A. V. Tsvyashchenko
Crystals 2023, 13(3), 509; https://doi.org/10.3390/cryst13030509 - 16 Mar 2023
Cited by 2 | Viewed by 2087
Abstract
The positron annihilation lifetimes were measured using a 48V positron source in noncentrosymmetric cubic single crystals of CoSi, FeSi and MnSi. The following lifetimes were determined from the positron annihilation time spectra: 168(1) ps for CoSi, 114(1) ps for FeSi and 111(1) [...] Read more.
The positron annihilation lifetimes were measured using a 48V positron source in noncentrosymmetric cubic single crystals of CoSi, FeSi and MnSi. The following lifetimes were determined from the positron annihilation time spectra: 168(1) ps for CoSi, 114(1) ps for FeSi and 111(1) ps for MnSi. For single-crystal CoSi, the positron annihilation lifetime was also determined with a 22Na positron source. For CoSi, the lifetimes obtained from different positron sources are consistent. The differences in the positron annihilation lifetimes in MnSi and FeSi, on the one hand, and in the Weyl semimetal CoSi, on the other hand, are possibly caused by the formation of a positron + electron bound state (positronium). Full article
(This article belongs to the Special Issue Advances in Intermetallic and Metal-Like Compounds)
Show Figures

Figure 1

17 pages, 4482 KiB  
Article
Experimental Study on Positronium Detection under Millimeter Waves Generated from Plasma Wakefield Acceleration
by Sun-Hong Min, Chawon Park, Kyo Chul Lee, Yong Jin Lee, Matlabjon Sattorov, Seonmyeong Kim, Dongpyo Hong and Gun-Sik Park
Electronics 2022, 11(19), 3178; https://doi.org/10.3390/electronics11193178 - 3 Oct 2022
Viewed by 2412
Abstract
Positronium (Ps) is an unstable system created by the temporary combination of electrons and negative electrons, and Ps generation technology under resonance conditions at millimeter waves is emerging as a new research topic. In general, Ps can be observed when an unstable separate [...] Read more.
Positronium (Ps) is an unstable system created by the temporary combination of electrons and negative electrons, and Ps generation technology under resonance conditions at millimeter waves is emerging as a new research topic. In general, Ps can be observed when an unstable separate state remains after electron and positron pair annihilation, as in positron emission tomography (PET). However, in this study, a plasma wakefield accelerator based on vacuum electronics devices (VEDs) was designed in the ponderomotive force generating electrons and positrons simultaneously using annular relativistic electron beams. It can induce Cherenkov radiation from beam–wave interaction by using dielectric materials. According to the size of dielectric materials, the frequency of oscillation is approximately 203 GHz at the range of millimeter waves. At this time, the output power is about 109 watts-levels. Meanwhile, modes of millimeter waves polarized by a three-stepped axicon lens are used to apply the photoconversion technology. Thus, it is possible to confirm light emission in the form of a light-converted Bessel beam. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

21 pages, 3404 KiB  
Article
A Combined Atomic and Molecular Probe Characterization of Aromatic Hydrocarbons via PALS and ESR: Methylbenzene
by Josef Bartoš, Bożena Zgardzińska, Helena Švajdlenková, Barbara Charmas, Miroslava Lukešová, Konrad Wysogląd and Magdalena Goździuk
Materials 2022, 15(2), 462; https://doi.org/10.3390/ma15020462 - 8 Jan 2022
Cited by 2 | Viewed by 2136
Abstract
A combined study of one of the simplest aromatic hydrocarbons, i.e., methylbenzene (toluene) (TOL), via the annihilation of an ortho-positronium (o-Ps) probe via positron annihilation lifetime spectroscopy (PALS) and the rotation dynamics of nitroxide spin probe 2,2,6,6-tetramethyl-piperidinyl-1-oxy (TEMPO) using electron spin resonance (ESR) [...] Read more.
A combined study of one of the simplest aromatic hydrocarbons, i.e., methylbenzene (toluene) (TOL), via the annihilation of an ortho-positronium (o-Ps) probe via positron annihilation lifetime spectroscopy (PALS) and the rotation dynamics of nitroxide spin probe 2,2,6,6-tetramethyl-piperidinyl-1-oxy (TEMPO) using electron spin resonance (ESR) over a wide temperature range, 10–300 K, is reported. The o-Ps lifetime, τ3, and the relative o-Ps intensity, I3, as a function of temperature exhibit changes defining several characteristic PALS temperatures in the slowly and rapidly cooled samples. Similarly, the spectral parameter of TEMPO mobility in TOL, 2Azz‘, and its correlation time, τc, reveal several effects at a set of the characteristic ESR temperatures, which were determined and compared with the PALS results. Finally, the physical origins of the changes in free volume expansion and spin probe mobility are revealed. They are reflected in a series of the mutual coincidences between the characteristic PALS and ESR temperatures and appropriate complementary thermodynamic and dynamic techniques. Full article
(This article belongs to the Special Issue Advanced Applications and Novel Technologies of Positron Annihilation)
Show Figures

Figure 1

24 pages, 2469 KiB  
Article
The Art of Positronics in Contemporary Nanomaterials Science: A Case Study of Sub-Nanometer Scaled Glassy Arsenoselenides
by Oleh Shpotyuk, Adam Ingram, Catherine Boussard-Pledel, Bruno Bureau, Zdenka Lukáčová Bujňáková, Peter Baláž, Bohdan Mahlovanyi and Yaroslav Shpotyuk
Materials 2022, 15(1), 302; https://doi.org/10.3390/ma15010302 - 1 Jan 2022
Cited by 10 | Viewed by 2192
Abstract
The possibilities surrounding positronics, a versatile noninvasive tool employing annihilating positrons to probe atomic-deficient sub-nanometric imperfections in a condensed matter, are analyzed in application to glassy arsenoselenides g-AsxSe100−x (0 < x < 65), subjected to dry and wet (in 0.5% [...] Read more.
The possibilities surrounding positronics, a versatile noninvasive tool employing annihilating positrons to probe atomic-deficient sub-nanometric imperfections in a condensed matter, are analyzed in application to glassy arsenoselenides g-AsxSe100−x (0 < x < 65), subjected to dry and wet (in 0.5% PVP water solution) nanomilling. A preliminary analysis was performed within a modified two-state simple trapping model (STM), assuming slight contributions from bound positron–electron (Ps, positronium) states. Positron trapping in g-AsxSe100−x/PVP nanocomposites was modified by an enriched population of Ps-decay sites in PVP. This was proven within a three-state STM, assuming two additive inputs in an overall trapping arising from distinct positron and Ps-related states. Formalism of x3-x2-CDA (coupling decomposition algorithm), describing the conversion of Ps-decay sites into positron traps, was applied to identify volumetric nanostructurization in wet-milled g-As-Se, with respect to dry-milled ones. Under wet nanomilling, the Ps-decay sites stabilized in inter-particle triple junctions filled with PVP replaced positron traps in dry-milled substances, the latter corresponding to multi-atomic vacancies in mostly negative environments of Se atoms. With increased Se content, these traps were agglomerated due to an abundant amount of Se-Se bonds. Three-component lifetime spectra with nanostructurally- and compositionally-tuned Ps-decay inputs and average lifetimes serve as a basis to correctly understand the specific “rainbow” effects observed in the row from pelletized PVP to wet-milled, dry-milled, and unmilled samples. Full article
(This article belongs to the Special Issue Advanced Techniques for Materials Characterization)
Show Figures

Figure 1

18 pages, 396 KiB  
Article
Positronium Confined in Nanocavities: The Role of Electron Exchange Correlations
by Fabrizio Castelli, Giovanni Consolati and Giacomo Tanzi Marlotti
Nanomaterials 2021, 11(9), 2350; https://doi.org/10.3390/nano11092350 - 10 Sep 2021
Cited by 9 | Viewed by 2017
Abstract
Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity [...] Read more.
Positronium atoms (Ps) are commonly employed as a probe to characterize nanometric or subnanometric voids or vacancies in nonmetallic materials, where Ps can end up confined. The annihilation lifetime of a trapped Ps is strongly modified by pickoff and depends on the cavity size and on the electron density in the confining cavity surface. Here, we develop a theory of the Ps annihilation in nanocavities based on the fundamental role of the exchange correlations between the Ps-electron and the outer electrons, which are not usually considered but must be considered to correctly theorize the pickoff annihilation processes. We obtain an important relation connecting the two relevant annihilation rates (for the p-Ps and the o-Ps) with the electron density, which has the property of being totally independent of the geometrical characteristics of the nanoporous medium. This general relation can be used to gather information on the electron density and on the average cavity radius of the confining medium, starting from the experimental data on PALS annihilation spectra. Moreover, by analyzing our results, we also highlight that a reliable interpretation of the PALS spectra can only be obtained if the rule of 1/3 between the intensities of p-Ps and o-Ps lifetimes can be fulfilled. Full article
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Deep Minimum and a Vortex for Positronium Formation in Low-Energy Positron-Helium Collisions
by Albandari W. Alrowaily, Sandra J. Ward and Peter Van Reeth
Atoms 2021, 9(3), 56; https://doi.org/10.3390/atoms9030056 - 6 Aug 2021
Cited by 4 | Viewed by 2487
Abstract
We find a zero in the positronium formation scattering amplitude and a deep minimum in the logarithm of the corresponding differential cross section for positron–helium collisions for an energy just above the positronium formation threshold. Corresponding to the zero, there is a vortex [...] Read more.
We find a zero in the positronium formation scattering amplitude and a deep minimum in the logarithm of the corresponding differential cross section for positron–helium collisions for an energy just above the positronium formation threshold. Corresponding to the zero, there is a vortex in the extended velocity field that is associated with this amplitude when one treats both the magnitude of the momentum of the incident positron and the angle of the scattered positronium as independent variables. Using the complex Kohn variational method, we determine accurately two-channel K-matrices for positron–helium collisions in the Ore gap. We fit these K-matrices using both polynomials and the Watanabe and Greene’s multichannel effective range theory taking into account explicitly the polarization potential in the Ps-He+ channel. Using the fitted K-matrices we determine the extended velocity field and show that it rotates anticlockwise around the zero in the positronium formation scattering amplitude. We find that there is a valley in the logarithm of the positronium formation differential cross section that includes the deep minimum and also a minimum in the forward direction. Full article
Show Figures

Figure 1

10 pages, 1020 KiB  
Article
Calculations of Resonance Parameters for the Doubly Excited 1P° States in Ps Using Exponentially Correlated Wave Functions
by Sabyasachi Kar and Yew Kam Ho
Atoms 2020, 8(1), 1; https://doi.org/10.3390/atoms8010001 - 31 Dec 2019
Cited by 8 | Viewed by 2661
Abstract
Recent observations on resonance states of the positronium negative ion (Ps) in the laboratory created huge interest in terms of the calculation of the resonance parameters of the simple three-lepton system. We calculate the resonance parameters for the doubly excited 1 [...] Read more.
Recent observations on resonance states of the positronium negative ion (Ps) in the laboratory created huge interest in terms of the calculation of the resonance parameters of the simple three-lepton system. We calculate the resonance parameters for the doubly excited 1P° states in Ps using correlated exponential wave functions based on the complex-coordinate rotation method. The resonance energies and widths for the 1P° Feshbach resonance states in Ps below the N = 2, 3, 4, 5 Ps thresholds are reported. The 1P° shape resonance above the N = 2, 4 Ps thresholds are also reported. Our predications are in agreement with the available results. Few Feshbach resonance parameters below the N = 4 and 5 Ps thresholds have been reported in the literature. Our predictions will provide useful information for future resonance experiments in Ps. Full article
(This article belongs to the Special Issue Interactions of Positrons with Matter and Radiation)
Show Figures

Figure 1

10 pages, 1047 KiB  
Article
Critical Stability of the Negatively Charged Positronium-Like Ions with Yukawa Potentials and Varying Z
by Sabyasachi Kar, Yu-Shu Wang, Yang Wang and Yew Kam Ho
Atoms 2019, 7(2), 53; https://doi.org/10.3390/atoms7020053 - 3 Jun 2019
Cited by 7 | Viewed by 3277
Abstract
The question of stability of a given quantum system made up of charged particles is of fundamental interest in atomic, molecular, and nuclear physics. In this work, the stability for the negatively charged positronium (Ps)-like ions or the three-body system ( [...] Read more.
The question of stability of a given quantum system made up of charged particles is of fundamental interest in atomic, molecular, and nuclear physics. In this work, the stability for the negatively charged positronium (Ps)-like ions or the three-body system ( Z e + , e , e ) with Yukawa potentials is studied using correlated exponential wavefunctions based on the Ritz variational method. We obtained the critical screening parameter μ C as a function of the continuously varied nuclear charge Z , the critical nuclear charge Z C as a function of the screening parameter μ , and the ionization energies in terms of the screening parameter μ and Z . The critical nuclear charge for the bare Coulomb system ( Z e + , e , e ) obtained using 700-term correlated exponential wavefunctions is in accord with the reported results. The ionization energy, μ C , and Z C for the Yukawa system ( Z e + , e , e ) exhibit interesting behaviors. The present study describes the possible nonexistence of Borromean binding as well as Efimov states. The possible existence of quasi-bound resonances states for the negatively charged screened Ps-like ions is briefly discussed. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

4 pages, 227 KiB  
Article
Photodetachment of the Positronium Negative Ion with Excitation in the Positronium Atom
by Anand K. Bhatia
Atoms 2019, 7(1), 2; https://doi.org/10.3390/atoms7010002 - 26 Dec 2018
Cited by 5 | Viewed by 2817
Abstract
Lyman-α radiation ( 2 P 1 S ) has been seen from astrophysical sources and the sun. The line shape of this transition has been measured recently in Ps atoms both inside and outside a porous silica target. In the photodetachment of [...] Read more.
Lyman-α radiation ( 2 P 1 S ) has been seen from astrophysical sources and the sun. The line shape of this transition has been measured recently in Ps atoms both inside and outside a porous silica target. In the photodetachment of Ps, the residual Ps atom can be left in the 2P state instead of the 1S state giving rise to positronium Lyman radiation at 2432 A0. Photodetachment cross sections of Ps have been calculated when the Ps atom is left in nP states, n being 2, 3, 4, 5, 6 and 7, using the asymptotic form of the bound-state wave function and a plane wave for the final state wave function, following the approach of Ohmura and Ohmura [Phys. Rev. 1960, 118, 154] in the photodetachment of H. Full article
(This article belongs to the Special Issue Interactions of Positrons with Matter and Radiation)
Show Figures

Figure 1

Back to TopTop