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Abstract: The positron annihilation lifetimes were measured using a 48V positron source in noncen-
trosymmetric cubic single crystals of CoSi, FeSi and MnSi. The following lifetimes were determined
from the positron annihilation time spectra: 168(1) ps for CoSi, 114(1) ps for FeSi and 111(1) ps for
MnSi. For single-crystal CoSi, the positron annihilation lifetime was also determined with a 22Na
positron source. For CoSi, the lifetimes obtained from different positron sources are consistent. The
differences in the positron annihilation lifetimes in MnSi and FeSi, on the one hand, and in the Weyl
semimetal CoSi, on the other hand, are possibly caused by the formation of a positron + electron
bound state (positronium).

Keywords: positron annihilation; 48V positron source; single crystals; noncentrosymmetric structure
B20

1. Introduction

Positronium (Ps) is a purely lepton bound state consisting of an electron and a
positron [1,2]. As the simplest electromagnetically bound state, it is an ideal system
for studying in quantum electrodynamics. Ps can exist either in a spin-singlet (para(p)–Ps)
state or in a spin-triplet (ortho(o)–Ps) state. In vacuum, these states have an average lifetime
of 0.125 ns and 142 ns, respectively [3,4]. The Ps lifetimes in solids differ from their values
in vacuum due to the many-particle Coulomb interaction. For example, in the α-SiO2
single crystal, the lifetime of p-Ps amounts to τp−Ps = 156(4) ps [5]. The formation of
Ps both on the surface of a solid [6] and in the bulk [7] depends on the electronic struc-
ture near the Fermi level of the sample under study. In studying the formation of Ps in
multilayer graphene, grown on a polycrystalline copper substrate, it has been found that
Ps in graphene and Ps on the surface of copper are different [8]. On the other hand, it
is well known that the electronic structure of graphene, characterized by the presence of
quasi-two-dimensional Dirac fermions, gives rise to a discovery of Weyl semimetals that
contain massless Dirac–Weyl fermions in three dimensions [9–14].

This suggests that the formation of Ps can also be expected in single crystals of
Weyl semimetals, including, in particular, CoSi, RhSi, RhSn, and PtAl [15–19], which are
crystallized in the noncentrosymmetric structure of the FeSi-type (the P213 space group).
In addition, in these quantum materials, such unusual objects as chiral fermions have been
found. For CoSi and RhSi, the existence of two types of chiral fermions with nonzero
Chern numbers was confirmed: spin-1 and charge-2. Ab initio calculations [20] showed
that their band structure near the Fermi energy (EF) has a threefold degenerate point at
the Γ point and a fourfold degenerate point at the R point of the Brilloin zone. It is also
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worth mentioning that in CoSi and RhSi the topological superconductivity was theoretically
predicted in Ref. [21]. New spin-related transport properties of these unconventional chiral
fermionic semimetals make them very promising for future spintronic and spin caloritronics
applications [22], while the quantum combination of topological and optical properties can
be used for new information technologies [23].

The electronic properties of CoSi are often compared with those of MnSi and FeSi.
Notice that, since Mn, Fe and Co are consecutive elements of the same row in the periodic
table, in going from Mn to Fe and then to Co, the 3d electron band acquires more electrons
and the Fermi energy (EF) is increased. As a result, in FeSi, the added electron populates the
unoccupied states below the energy gap, while in CoSi the extra electron is accommodated
by filling electron states above the gap, with EF reaching a three-fold degenerate state at the
Γ point and a four-fold degenerate level at the R point [24]. Correspondingly, one observes
a change in properties from the helicoid magnet MnSi [25] through the formation of the
Kondo state in FeSi [26] to the chiral diamagnetic Weyl semimetal ground state in CoSi.
This change, caused by differences in the electronic band structure near the Fermi level,
can be probed by positron annihilation, and, in this paper, we present our results of the
positron lifetime annihilation spectroscopy (PALS) study performed in CoSi, FeSi, and
MnSi single crystals.

Usually, the positron annihilation rate (inversely proportional to the annihilation
lifetime τ) is determined by the overlap of the positron ρ+(r) = |ψ+(r)|2 and electron
ρ−(r) densities in the localization region: λ = 1

τ = πr2
0c

∫
|ψ+(r)|2ρ−(r)γdr, where r0

is the classical electron radius, whereas γ = γ[ρ−(r)] = 1 + ∆ρ−
ρ−

describes the increase
in the electron density as a result of the mutual Coulomb attraction of the electron and
the positron [27]. For performing PALS experiments in laboratories, the preferred source
of positrons is usually 22NaCl on thin metal (Ni, Al) or polymer foil (Kapton, Mylar).
However, the monosilicides MnSi, FeSi and CoSi have already been studied using this
source or accelerator beams [28–31]. In this work, as a source of positrons, we have decided
to use the 48V isotope in titanium foil with a half-life T1/2 ≈ 16 days, which makes PALS
measurements more convenient and environmentally friendly. First, titanium has a high
melting point (1668 °C), which makes it possible to use the obtained source in various
experiments at high temperatures (for example, in liquid metals or boiling solutions). On
the other hand, at low temperatures, this source is also convenient in experiments due to
its low thermal conductivity (13 times less than the thermal conductivity of aluminum and
4 times less than that of iron), making it possible to carry out positron measurements with
high accuracy in a thermostat, and also without the possibility of dissolving the source
itself in the process of its operation. A chemically aggressive environment (for example,
molten salts) is also not a problem for such a source due to the high corrosion resistance
of titanium. Due to its convenient shape (thin metal foil), 48V can also be used in high
pressure experiments. Secondly, after titanium foil irradiation at the cyclotron, active
nuclides 48V are distributed in the titanium node, and the foil becomes a closed source
of positrons, which is already ready for experiments without requiring radiochemical
preparation. This allows you not to worry about additional personal protective equipment
in the future due to the fact that the source will be lost or smeared on the surfaces of other
materials. Moreover, the relatively short half-life makes it possible to store the source
without excessive radiation and biological protection almost immediately after its use in
a nuclear physics experiment. Based on this, excessive environmental pollution does not
occur, and the process of “recharging” the source can be easily controlled by having a
cyclotron with a beam of low-energy protons. Compared to 22Na, the positron spectrum
from 48V has higher energy, with a maximum of about 700 keV (for 22Na, the maximum
energy is 545 keV). A higher positron energy will make it possible to study slightly thicker
layers of the studied substance (and hence the volume) and is commensurate with the
energies of the 22Na source; thus, it does not require additional serious changes in the
reconfiguration of the experimental technique and changes in the design of the detectors
(replacement of crystals and the electronic part of the equipment).
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2. Materials and Methods

The samples of MnSi (a = 4.5598(2) Å) and CoSi (a = 4.444(1) Å) single crystals
studied in this work were grown by the Bridgman method [32,33] (Ames Laboratory),
and their crystal structure was well defined and they have been characterized by various
macroscopic measurements (see [32–34]). The sample of FeSi (a = 4.486(2) Å) single
crystal was grown by the Czochralski method. The lattice parameters of the crystals,
determined by X-ray diffraction, correspond well to literature data [33,35,36]. As has been
mentioned earlier, as a source of positrons, we used the 48V isotope obtained by the reaction
48Ti(p,n)48V by irradiating titanium foil (50 µm) with protons with an energy of 7.8 MeV (in
the cyclotron of the Institute of Nuclear Physics, Moscow State University). The scattering
cross section for protons was about 65 mbarn [37,38]. The use of relatively low proton
energy proved to be sufficient to obtain the required 48V activity. Measurements of the
energy spectrum of the irradiated foil showed the absence of "spurious" lines from another
isotope (see Figure 1).

Figure 1. Measured energy spectrum of an irradiated 50 µm thick titanium foil. The blue points are
data from the HPGe detector, and the green points are data from the LaBr3:Ce detector.

Annihilation time spectra with the 48V positron source were measured using the
“VUKAP” four-detector compact digital spectrometer equipped with two LaBr3:Ce detectors
(BrilLanCeTM 380) [39]. The time resolution of the spectrometer (FWHM at 60Co) was
380 ps. Two detectors were installed at an angle of 90◦ to each other at a short distance. The
irradiated titanium foil was sandwiched between two samples of the same single crystal.
Such a “sandwich” was installed at an angle of 45◦ to the detectors. All measurements
were carried out at room temperature using the same positron source. The source size was
5 × 5 mm2, which made it possible to completely cover the source with samples. The initial
activity of the source was about 150 kBq. The 1312 keV γ-ray photon from the 48V decay
was used for the “START” and the 511 keV annihilation gamma-ray photon for the “STOP”.
Each PALS spectrum contained more than 6 million counts.
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3. Results and Discussion

The time spectra of bulk positron annihilation and their characteristics, described with
the two-exponential model in the LT10 program [40], are shown in Figure 2 and in Table 1.
Our results for MnSi and FeSi agree with previous measurements performed with other
experimental setups with 22Na as a positron source [29,31]. It has been found that the value
of τ for the second component varies from 1700 ps to 4000 ps depending on the sample
under study. Therefore, we attribute the second component to the medium between the
samples and the source. Its partial contribution to the intensity varies from 0.5% to 3%. The
intensity contribution from the annihilation in the source (the 50 µm width Ti foil) should
be within 15–20% [41]. As pointed out in [42], the main component (about 90%) from a
proton-irradiated unannealed Ti-foil source is described by τ ≈ 37 ps. We were unable to
resolve such a low lifetime due to the finite time resolution of the spectrometer. As a result,
the contribution of the positron source to the spectra could not be reliably determined. We
then measured the PALS spectrum for the CoSi single crystal using another spectrometer
with a time resolution of about 200 ps and the 22NaCl positron source (Joint Institute for
Nuclear Research, Dubna). In this case, the positron lifetime is 166(2) ps (see Figure 3
and Table 1), which coincides with the result obtained with a 48V positron source. We
also measured the PALS spectrum for the Si single crystal with a 48V positron source. The
positron lifetime is 218(1) ps (see Figure 3 and Table 1), which coincides with the result
obtained with a 48V positron source [43]. The lifetimes for MnSi and FeSi are found to
be approximately the same, despite the different densities of electron states at EF. While
MnSi is a metal, FeSi has a small energy gap of about 75 µeV above the filled electron
band. On the other hand, our high-quality single crystal positron annihilation lifetime in
CoSi has turned out to be 1.5 times larger than the found values of τ in MnSi, FeSi and
polycrystal CoSi (see Figure 2 and Table 1). This result contradicts the previous value of the
positron lifetime, obtained in polycrystalline samples of CoSi [28]. According to Ref. [28],
the lifetime in polycrystalline CoSi amounts to 115 ps, which is close to the value of τ
both in the MnSi single crystal (Table 1) and in FeSi and apparently can be explained by
positron annihilation on conducting electrons, despite the fact that defects may exist in a
polycrystalline sample of CoSi. In our case, we consider that the positron annihilation in the
single-crystal CoSi can be associated with its electronic features [17,44]. In particular, since
the chiral Weyl fermions near the Fermi energy are absent in MnSi and FeSi, their presence
can probably account for the formation and subsequent decay of the Ps, which results in a
longer positron annihilation lifetime observed experimentally. The peculiarities of CoSi in
this B20-compounds row have been recently observed on the temperature dependence of
elastic constants; the values of c11 and c12 are highest for CoSi and then follow FeSi and
MnSi [33,45]. In contrast to FeSi, inelastic neutron scattering measurements have shown
that CoSi exhibits normal phonon behavior, which is clear from its different electronic
structure [46]. Our experimental results certainly indicate the need for further research to
elucidate the mechanism of positron annihilation in topological semimetal single crystals
with Weyl singular points.
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Figure 2. Time spectra of positron annihilation with the 48V source in titanium foil and their fittings
for the CoSi, MnSi, and FeSi single crystals.

Figure 3. Time spectra of positron annihilation for the CoSi single crystal with the 22Na source and
for the Si single crystal with the 48V source.
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Table 1. Measured positron annihilation lifetimes (τexp) in single crystals of Si, CoSi, MnSi, and FeSi
(this work), compared with τb in polycristalline samples (CoSi, MnSi, FeSi) and the Si single crystal
with 22Na as a source of positrons.

Material τexp, ps (in This Work) τb, ps (According to
Literature)

Si 218(1) (with 48V) 218(1) (single crystal) [43]

CoSi 168(1) (with 48V), 166(2)
(with 22Na)

115(2) (polycrystal) [28]

FeSi 114(1) (with 48V) 130(3) (polycrystal) [31]
MnSi 111(1) (with 48V) 119(3) (single crystal) [29]

4. Conclusions

Our measurements of the PALS spectra in the single crystals of MnSi, FeSi and CoSi
indicate that the positron annihilation lifetime in CoSi is approximately 1.5 times longer
than τ in MnSi and FeSi, and by the same amount exceeds the value of τ, obtained in
polycrystalline CoSi. The longer lifetime implies a possible formation of the Ps. The
peculiarities of CoSi in this B20-compounds row also have been recently observed on the
temperature dependence of elastic constants, the small value of shear modulo and phonon
density of states.

In the future, we plan to continue our PALS study of other topological Weyl semimetals
at various temperatures. In addition, we prepare the PALS experiment at high pressure
thanks to the good possibilities of the 48V positron source.
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