Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = portable laser scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8058 KiB  
Article
Design of a Prototype of an Innovative 3D Scanning Technology for Use in the Digitization of Hard-to-Reach Places
by Adrián Vodilka, Marek Kočiško and Jakub Kaščak
Appl. Sci. 2025, 15(5), 2817; https://doi.org/10.3390/app15052817 - 5 Mar 2025
Cited by 1 | Viewed by 924
Abstract
This research addresses the challenge of digitizing the surface of objects in hard-to-reach areas and focuses on the integration of reverse engineering techniques with innovative digitization approaches. Conventional non-destructive testing techniques, such as industrial videoscope inspection, lack the ability to capture accurate geometric [...] Read more.
This research addresses the challenge of digitizing the surface of objects in hard-to-reach areas and focuses on the integration of reverse engineering techniques with innovative digitization approaches. Conventional non-destructive testing techniques, such as industrial videoscope inspection, lack the ability to capture accurate geometric and surface information without the need for disassembly of the components. To overcome these limitations, this research proposes a 3D digitizing prototype that integrates structured light, laser scanning, and active stereo techniques. The device utilizes ESP32-CAM modules and compact mechanical components designed for portability and usability in confined spaces. Experimental validation involved scanning complex and reflective surfaces, including printer components and the engine compartment of an automobile, demonstrating the device’s ability to produce detailed point clouds in challenging environments. Key innovations include a unique approach for utilizing 3D scanning techniques of active stereovision using a folding mechanism. The findings highlight the device’s potential for applications in technical diagnostics, industrial inspection, and environments where traditional digitizing technologies could not be utilized. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 24426 KiB  
Article
Geometallurgical Characterization of the Arthur River Magnesite Deposit, Northwestern Tasmania for Pathways to Production
by Alfredtina Akua Abrafi Appiah, Julie Hunt, Mohammadbagher Fathi, Owen P. Missen, Wei Hong, Ivan Belousov, Verity Kameniar-Sandery and Mick Wilson
Minerals 2025, 15(3), 247; https://doi.org/10.3390/min15030247 - 27 Feb 2025
Cited by 1 | Viewed by 878
Abstract
The Arthur River magnesite deposit is in the northwestern part of Tasmania, Australia, within the Arthur Metamorphic Complex. Physical, mineralogical, and chemical characteristics of the deposit were studied using geological drill core logging and analytical techniques (scanning electron microscopy, portable x-ray fluorescence, and [...] Read more.
The Arthur River magnesite deposit is in the northwestern part of Tasmania, Australia, within the Arthur Metamorphic Complex. Physical, mineralogical, and chemical characteristics of the deposit were studied using geological drill core logging and analytical techniques (scanning electron microscopy, portable x-ray fluorescence, and laser ablation–inductively coupled plasma–mass spectrometry). The results document variations within the ore body, and three ore types have been identified for the potential production of an economic magnesite concentrate separated from associated gangue minerals (dolomite, quartz, and talc and iron bearing minerals such as pyrite and pyrrhotite). The ore types were identified based on a combination of physical, chemical, and mineralogical differences. Type 1 has a relatively high magnesium content and appears in drill core as hard white crystalline magnesite. Type 2 has relatively lower magnesium and higher iron contents than type 1 and occurs visibly as creamy-yellowish soft magnesite. Type 3 ore has the lowest magnesium and the highest iron content of the three ore types and is reddish brown in color. From the characterization studies, potential beneficiation routes for each ore type are suggested along with potential processing challenges. Examples of processing challenges include magnesium present in both magnesite and in dolomite, and the association of magnesite with quartz and talc results in a relatively high silica content. Full article
(This article belongs to the Special Issue Microanalysis Applied to Mineral Deposits)
Show Figures

Graphical abstract

26 pages, 19720 KiB  
Article
Multi-Technique Approach for the Sustainable Characterisation and the Digital Documentation of Painted Surfaces in the Hypogeum Environment of the Priscilla Catacombs in Rome
by Paola Calicchia, Sofia Ceccarelli, Francesco Colao, Chiara D’Erme, Valeria Di Tullio, Massimiliano Guarneri, Loredana Luvidi, Noemi Proietti, Valeria Spizzichino, Margherita Zampelli and Rocco Zito
Sustainability 2024, 16(19), 8284; https://doi.org/10.3390/su16198284 - 24 Sep 2024
Viewed by 1605
Abstract
The purpose of this paper is to identify an efficient, sustainable, and “green” approach to address the challenges of the preservation of hypogeum heritage, focusing on the problem of moisture, a recurring cause of degradation in porous materials, especially in catacombs. Conventional and [...] Read more.
The purpose of this paper is to identify an efficient, sustainable, and “green” approach to address the challenges of the preservation of hypogeum heritage, focusing on the problem of moisture, a recurring cause of degradation in porous materials, especially in catacombs. Conventional and novel technologies have been used to address this issue with a completely non-destructive approach. The article provides a multidisciplinary investigation making use of advanced technologies and analysis to quantify the extent and distribution of water infiltration in masonry before damage starts to be visible or irreversibly causes damage. Four different technologies, namely Portable Nuclear Magnetic Resonance (NMR), Audio Frequency–Acoustic Imaging (AF–AI), Laser-Induced Fluorescence (LIF), Infrared Thermography (IRT), and 3D Laser Scanning (RGB-ITR), were applied in the Priscilla catacombs in Rome (Italy). These imaging techniques allow the characterisation of the deterioration of painted surfaces within the delicate environment of the Greek chapel in the Priscilla catacombs. The resulting high-detailed 3D coloured model allowed for easily referencing the data collected by the other techniques aimed also at the study of the potential presence of salt efflorescence and/or microorganisms. The results supply an efficient and sustainable tool aimed at cultural heritage conservation but also at the creation of digital documentation obtained with green methodologies for a wider sharing, ensuring its preservation for future generations. Full article
Show Figures

Figure 1

25 pages, 50037 KiB  
Article
Surface Reconstruction from SLAM-Based Point Clouds: Results from the Datasets of the 2023 SIFET Benchmark
by Antonio Matellon, Eleonora Maset, Alberto Beinat and Domenico Visintini
Remote Sens. 2024, 16(18), 3439; https://doi.org/10.3390/rs16183439 - 16 Sep 2024
Cited by 2 | Viewed by 2251
Abstract
The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. [...] Read more.
The rapid technological development that geomatics has been experiencing in recent years is leading to increasing ease, productivity and reliability of three-dimensional surveys, with portable laser scanner systems based on Simultaneous Localization and Mapping (SLAM) technology, gradually replacing traditional techniques in certain applications. Although the performance of such systems in terms of point cloud accuracy and noise level has been deeply investigated in the literature, there are fewer works about the evaluation of their use for surface reconstruction, cartographic production, and as-built Building Information Model (BIM) creation. The objective of this study is to assess the suitability of SLAM devices for surface modeling in an urban/architectural environment. To this end, analyses are carried out on the datasets acquired by three commercial portable laser scanners in the context of a benchmark organized in 2023 by the Italian Society of Photogrammetry and Topography (SIFET). In addition to the conventional point cloud assessment, we propose a comparison between the reconstructed mesh and a ground-truth model, employing a model-to-model methodology. The outcomes are promising, with the average distance between models ranging from 0.2 to 1.4 cm. However, the surfaces modeled from the terrestrial laser scanning point cloud show a level of detail that is still unmatched by SLAM systems. Full article
Show Figures

Figure 1

9 pages, 3101 KiB  
Article
Ceramic Stereolithography of Li7La3Zr2O12 Micro-Embossed Sheets for Solid Electrolyte Applications
by Fiona Spirrett, Ayaka Oi and Soshu Kirihara
Ceramics 2024, 7(3), 1218-1226; https://doi.org/10.3390/ceramics7030080 - 12 Sep 2024
Cited by 1 | Viewed by 1292
Abstract
Lithium-ion batteries (LIBs) have significantly advanced portable electronics, yet their reliance on flammable organic solvents and lithium dendrite formation pose safety risks. Solid-state batteries (SSBs), utilizing solid electrolytes, offer a safer alternative with higher energy and power densities. This study explores the fabrication [...] Read more.
Lithium-ion batteries (LIBs) have significantly advanced portable electronics, yet their reliance on flammable organic solvents and lithium dendrite formation pose safety risks. Solid-state batteries (SSBs), utilizing solid electrolytes, offer a safer alternative with higher energy and power densities. This study explores the fabrication of solid electrolytes using ceramic stereolithography, focusing on lithium lanthanum zirconate (LLZ) due to its high ionic conductivity and chemical stability. A photosensitive paste containing 40–43 vol% LLZ was suitable for processing by stereolithography, and optimized processing parameters of 100 mW laser power and 1000 mm/s laser scanning speed with a 50 μm laser spot size were identified for sufficient material curing and interlayer lamination of LLZ. Thin embossed sheets were designed to enhance ion exchange and reduce internal resistance and were fabricated by the ceramic stereolithography method. The effect of cold isostatic pressing (CIP) on the sintered microstructure was investigated, and the potential for CIP to promote solid-phase diffusion during sintering was demonstrated, particularly at 67 MPa. The resulting LLZ-embossed sheets exhibited dense ceramic microstructures. These findings support the potential application of ceramic stereolithography for fabricating efficient solid electrolytes for next-generation telecommunications and mobile devices. Full article
(This article belongs to the Special Issue Advances in Ceramics, 2nd Edition)
Show Figures

Figure 1

16 pages, 7810 KiB  
Article
Study of Effects of Post-Weld Heat Treatment Time on Corrosion Behavior and Manufacturing Processes of Super Duplex Stainless SAF 2507 for Advanced Li-Ion Battery Cases
by Yoon-Seok Lee, Jinyong Park, Jung-Woo Ok, Seongjun Kim, Byung-Hyun Shin and Jang-Hee Yoon
Materials 2024, 17(16), 4107; https://doi.org/10.3390/ma17164107 - 19 Aug 2024
Cited by 3 | Viewed by 1329
Abstract
Lithium-ion batteries are superior energy storage devices that are widely utilized in various fields, from electric cars to small portable electric devices. However, their susceptibility to thermal runaway necessitates improvements in battery case materials to improve their safety. This study used electrochemical analyses, [...] Read more.
Lithium-ion batteries are superior energy storage devices that are widely utilized in various fields, from electric cars to small portable electric devices. However, their susceptibility to thermal runaway necessitates improvements in battery case materials to improve their safety. This study used electrochemical analyses, including open-circuit potential (OCP), potentiodynamic polarization, and critical pitting temperature (CPT) analyses, to investigate the corrosion resistance of super duplex stainless steel (SAF 2507) applied to battery cases in relation to post-weld heat treatment (PWHT) time. The microstructure during the manufacture, laser welding, and PWHT was analyzed using field-emission scanning electron microscopy, X-ray diffraction, and electron backscatter diffraction, and the chemical composition was analyzed using dispersive X-ray spectroscopy and electron probe micro-analysis. The PWHT increased the volume fraction of austenite from 5% to 50% over 3 min at 1200 °C; this increased the OCP from −0.21 V to +0.03 V, and increased the CPT from 56 °C to 73 °C. The PWHT effectively improved the corrosion resistance, laying the groundwork for utilizing SAF 2507 in battery case materials. But the alloy segregation and heterogeneous grain morphology after PWHT needs improvement. Full article
Show Figures

Figure 1

12 pages, 4694 KiB  
Article
Compact Linear Flow Phantom Model for Retinal Blood-Flow Evaluation
by Achyut J. Raghavendra, Abdelrahman M. Elhusseiny, Anant Agrawal, Zhuolin Liu, Daniel X. Hammer and Osamah J. Saeedi
Diagnostics 2024, 14(15), 1615; https://doi.org/10.3390/diagnostics14151615 - 26 Jul 2024
Viewed by 1505
Abstract
Impaired retinal blood flow is associated with ocular diseases such as glaucoma, macular degeneration, and diabetic retinopathy. Among several ocular imaging techniques developed to measure retinal blood flow both invasively and non-invasively, adaptive optics (AO)-enabled scanning laser ophthalmoscopy (AO-SLO) resolves individual red blood [...] Read more.
Impaired retinal blood flow is associated with ocular diseases such as glaucoma, macular degeneration, and diabetic retinopathy. Among several ocular imaging techniques developed to measure retinal blood flow both invasively and non-invasively, adaptive optics (AO)-enabled scanning laser ophthalmoscopy (AO-SLO) resolves individual red blood cells and provides a high resolution with which to measure flow across retinal microvasculature. However, cross-validation of flow measures remains a challenge owing to instrument and patient-specific variability in each imaging technique. Hence, there is a critical need for a well-controlled clinical flow phantom for standardization and to establish blood-flow measures as clinical biomarkers for early diagnosis. Here, we present the design and validation of a simple, compact, portable, linear flow phantom based on a direct current motor and a conveyor-belt system that provides linear velocity tuning within the retinal microvasculature range (0.5–7 mm/s). The model was evaluated using a sensitive AO-SLO line-scan technique, which showed a <6% standard deviation from the true velocity. Further, a clinical SLO instrument showed a linear correlation with the phantom’s true velocity (r2 > 0.997). This model has great potential to calibrate, evaluate, and improve the accuracy of existing clinical imaging systems for retinal blood flow and aid in the diagnosis of ocular diseases with abnormal blood flow. Full article
(This article belongs to the Special Issue High-Resolution Retinal Imaging: Hot Topics and Recent Developments)
Show Figures

Figure 1

31 pages, 13426 KiB  
Article
Ant3D—A Fisheye Multi-Camera System to Survey Narrow Spaces
by Luca Perfetti, Francesco Fassi and Giorgio Vassena
Sensors 2024, 24(13), 4177; https://doi.org/10.3390/s24134177 - 27 Jun 2024
Cited by 9 | Viewed by 2000
Abstract
Although the field of geomatics has seen multiple technological advances in recent years which enabled new applications and simplified the consolidated ones, some tasks remain challenging, inefficient, and time- and cost-consuming. This is the case of accurate tridimensional surveys of narrow spaces. Static [...] Read more.
Although the field of geomatics has seen multiple technological advances in recent years which enabled new applications and simplified the consolidated ones, some tasks remain challenging, inefficient, and time- and cost-consuming. This is the case of accurate tridimensional surveys of narrow spaces. Static laser scanning is an accurate and reliable approach but impractical for extensive tunnel environments; on the other hand, portable laser scanning is time-effective and efficient but not very reliable without ground control constraints. This paper describes the development process of a novel image-based multi-camera system meant to solve this specific problem: delivering accurate, reliable, and efficient results. The development is illustrated from the system conceptualization and initial investigations to the design choices and requirements for accuracy. The resulting working prototype has been put to the test to verify the effectiveness of the proposed approach. Full article
Show Figures

Figure 1

13 pages, 5175 KiB  
Article
Research on Fiber-Optic Optical Coherence Ranging System Based on Laser Frequency Scanning Interferometry
by Yingjian Zhou, Yanhong Yuan and Meixue Su
Sensors 2024, 24(6), 1838; https://doi.org/10.3390/s24061838 - 13 Mar 2024
Viewed by 1798
Abstract
In this paper, a system for absolute distance measurement is proposed based on laser frequency scanning interferometry (FSI). The system utilizes a digitally tunable laser as the light source and employs synchronized pulses to drive an analog-to-digital converter (ADC) for interference signal acquisition. [...] Read more.
In this paper, a system for absolute distance measurement is proposed based on laser frequency scanning interferometry (FSI). The system utilizes a digitally tunable laser as the light source and employs synchronized pulses to drive an analog-to-digital converter (ADC) for interference signal acquisition. The frequency domain demodulation for absolute distance measurement is achieved through a three-spectrum line interpolation method based on the Hanning window. The system takes advantage of the spatial filtering characteristics of a single-mode optical fiber and the diffuse reflection properties of light to achieve a high integration of the prism system that forms the interference optical path. The resulting integrated fiber-optic probe is capable of measuring the distance to a non-cooperative target even when oriented at a certain angle with the target. We designed and fabricated a portable prototype. Experimental validation demonstrated that the maximum measurement distance of the system is 73.51 mm with a standard deviation of less than 0.19 μm for optimal measurement results. Even when there is an offset angle, the system maintains good measurement repeatability. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

12 pages, 5855 KiB  
Article
The Precision, Inter-Rater Reliability, and Accuracy of a Handheld Scanner Equipped with a Light Detection and Ranging Sensor in Measuring Parts of the Body—A Preliminary Validation Study
by Enrica Callegari, Jacopo Agnolucci, Francesco Angiola, Paolo Fais, Arianna Giorgetti, Chiara Giraudo, Guido Viel and Giovanni Cecchetto
Sensors 2024, 24(2), 500; https://doi.org/10.3390/s24020500 - 13 Jan 2024
Cited by 2 | Viewed by 1767
Abstract
Background: Anthropometric measurements play a crucial role in medico-legal practices. Actually, several scanning technologies are employed in post-mortem investigations for forensic anthropological measurements. This study aims to evaluate the precision, inter-rater reliability, and accuracy of a handheld scanner in measuring various body parts. [...] Read more.
Background: Anthropometric measurements play a crucial role in medico-legal practices. Actually, several scanning technologies are employed in post-mortem investigations for forensic anthropological measurements. This study aims to evaluate the precision, inter-rater reliability, and accuracy of a handheld scanner in measuring various body parts. Methods: Three independent raters measured seven longitudinal distances using an iPad Pro equipped with a LiDAR sensor and specific software. These measurements were statistically compared to manual measurements conducted by an operator using a laser level and a meterstick (considered the gold standard). Results: The Friedman test revealed minimal intra-rater variability in digital measurements. Inter-rater variability analysis yielded an ICC = 1, signifying high agreement among the three independent raters. Additionally, the accuracy of digital measurements displayed errors below 1.5%. Conclusions: Preliminary findings demonstrate that the pairing of LiDAR technology with the Polycam app (ver. 3.2.11) and subsequent digital measurements with the MeshLab software (ver. 2022.02) exhibits high precision, inter-rater agreement, and accuracy. Handheld scanners show potential in forensic anthropology due to their simplicity, affordability, and portability. However, further validation studies under real-world conditions are essential to establish the reliability and effectiveness of handheld scanners in medico-legal settings. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

20 pages, 8232 KiB  
Article
Rapid Geometric Evaluation of Transportation Infrastructure Based on a Proposed Low-Cost Portable Mobile Laser Scanning System
by Haochen Wang and Dongming Feng
Sensors 2024, 24(2), 425; https://doi.org/10.3390/s24020425 - 10 Jan 2024
Cited by 3 | Viewed by 1374
Abstract
Efficient geometric evaluation of roads and tunnels is crucial to traffic management, especially in post-disaster situations. This paper reports on a study of the geometric feature detection method based on multi-sensor mobile laser scanning (MLS) system data. A portable, low-cost system that can [...] Read more.
Efficient geometric evaluation of roads and tunnels is crucial to traffic management, especially in post-disaster situations. This paper reports on a study of the geometric feature detection method based on multi-sensor mobile laser scanning (MLS) system data. A portable, low-cost system that can be mounted on vehicles and utilizes integrated laser scanning devices was developed. Coordinate systems and timestamps from numerous devices were merged to create 3D point clouds of objects being measured. Feature points reflecting the geometric information of measuring objects were retrieved based on changes in the point cloud’s shape, which contributed to measuring the road width, vertical clearance, and tunnel cross section. Self-developed software was used to conduct the measuring procedure, and a real-time online visualized platform was designed to reconstruct 3D models of the measured objects, forming a 3D digital map carrying the obtained geometric information. Finally, a case study was carried out. The measurement results of several representative nodes are discussed here, verifying the robustness of the proposed system. In addition, the main sources of interference are also discussed. Full article
(This article belongs to the Special Issue LiDAR Sensors Applied in Intelligent Transportation Systems)
Show Figures

Figure 1

18 pages, 5158 KiB  
Article
Incep-FrictionNet-Based Pavement Texture Friction Level Classification Prediction Method
by Guomin Xu, Xiuquan Lin, Shifa Wang, You Zhan, Jing Liu and He Huang
Lubricants 2024, 12(1), 8; https://doi.org/10.3390/lubricants12010008 - 28 Dec 2023
Cited by 5 | Viewed by 2209
Abstract
Pavement skid resistance is crucial for driving safety, and pavement texture significantly impacts skid resistance performance. To realize the application of pavement texture data in assessing pavement skid resistance performance, this paper proposes a convolutional neural network model based on the InceptionV4 module [...] Read more.
Pavement skid resistance is crucial for driving safety, and pavement texture significantly impacts skid resistance performance. To realize the application of pavement texture data in assessing pavement skid resistance performance, this paper proposes a convolutional neural network model based on the InceptionV4 module to predict the pavement friction level from the pavement texture dataset. The surface texture data of indoor test-rutted slabs were collected using a portable laser scanner. The surface friction coefficient of rutted slabs was measured using a pendulum tribometer. After data pre-processing, a total of nine types of texture data that are in the range of 0.4 to 0.8 skid resistance levels are selected at an interval of 0.05 for training, validation, and testing of the network model. The same dataset and training parameters were also used to train a conventional convolutional network model for comparison. The results showed that the proposed network model achieved 97.89% classification accuracy on the test set, which was 11.94 percentage points higher than the comparison model. This demonstrates that the proposed model in this paper can evaluate pavement friction levels by non-contact scanning of textures and has higher evaluation accuracy. Full article
(This article belongs to the Special Issue Friction Assessment in Pavement Engineering)
Show Figures

Figure 1

17 pages, 3420 KiB  
Article
A Facile Graphene Conductive Polymer Paper Based Biosensor for Dopamine, TNF-α, and IL-6 Detection
by Md Ashiqur Rahman, Ramendra Kishor Pal, Nazmul Islam, Robert Freeman, Francois Berthiaume, Aaron Mazzeo and Ali Ashraf
Sensors 2023, 23(19), 8115; https://doi.org/10.3390/s23198115 - 27 Sep 2023
Cited by 20 | Viewed by 4574
Abstract
Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based sensor or GCPPS) for sensitive detection of biomolecules. [...] Read more.
Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based sensor or GCPPS) for sensitive detection of biomolecules. Planetary mixing resulted in uniformly dispersed graphene and conductive polymer ink, which was applied to laser-cut Whatman filter paper substrates. Scanning electron microscopy and Raman spectroscopy showed strong attachment of conductive polymer-functionalized graphene to cellulose fibers. The GCPPS detected dopamine and cytokines, such as tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the ranges of 12.5–400 µM, 0.005–50 ng/mL, and 2 pg/mL–2 µg/mL, respectively, using a minute sample volume of 2 µL. The electrodes showed lower detection limits (LODs) of 3.4 µM, 5.97 pg/mL, and 9.55 pg/mL for dopamine, TNF-α, and IL-6 respectively, which are promising for rapid and easy analysis for biomarkers detection. Additionally, these paper-based biosensors were highly selective (no serpin A1 detection with IL-6 antibody) and were able to detect IL-6 antigen in human serum with high sensitivity and hence, the portable, adaptable, point-of-care, quick, minute sample requirement offered by our fabricated biosensor is advantageous to healthcare applications. Full article
(This article belongs to the Special Issue Microfluidic Sensors for Biomedical Applications)
Show Figures

Figure 1

14 pages, 6466 KiB  
Article
A Tailor-Made, Mirror-Based Infrared Scanner for the Reflectography of Paintings: Development, Features, and Applications
by Marco Gargano, Daniele Viganò, Tiziana Cavaleri, Francesco Cavaliere, Nicola Ludwig and Federica Pozzi
Sensors 2023, 23(9), 4322; https://doi.org/10.3390/s23094322 - 27 Apr 2023
Cited by 1 | Viewed by 2145
Abstract
Since infrared reflectography was first applied in the 1960s to visualize the underdrawings of ancient paintings, several devices and scanning techniques were successfully proposed both as prototypes and commercial instruments. In fact, because of the sensors’ small dimension, typically ranging from 0.1 to [...] Read more.
Since infrared reflectography was first applied in the 1960s to visualize the underdrawings of ancient paintings, several devices and scanning techniques were successfully proposed both as prototypes and commercial instruments. In fact, because of the sensors’ small dimension, typically ranging from 0.1 to 0.3 megapixels, scanning is always required. Point, line, and image scanners are all viable options to obtain an infrared image of the painting with adequate spatial resolution. This paper presents a newly developed, tailormade scanning system based on an InGaAs camera equipped with a catadioptric long-focus lens in a fixed position, enabling all movements to occur by means of a rotating mirror and precision step motors. Given the specific design of this system, as the mirror rotates, refocus of the lens is necessary and it is made possible by an autofocus system involving a laser distance meter and a motorized lens. The system proved to be lightweight, low cost, easily portable, and suitable for the examination of large-scale painting surfaces by providing high-resolution reflectograms. Furthermore, high-resolution images at different wavelengths can be obtained using band-pass filters. The in-situ analysis of a 16th-century panel painting is also discussed as a representative case study to demonstrate the effectiveness and reliability of the system described herein. Full article
(This article belongs to the Special Issue Sensor Techniques for Artworks Analysis and Investigations)
Show Figures

Figure 1

20 pages, 4006 KiB  
Article
Investigation and Implementation of New Technology Wearable Mobile Laser Scanning (WMLS) in Transition to an Intelligent Geospatial Cadastral Information System
by Abdurahman Yasin Yiğit, Seda Nur Gamze Hamal, Murat Yakar and Ali Ulvi
Sustainability 2023, 15(9), 7159; https://doi.org/10.3390/su15097159 - 25 Apr 2023
Cited by 6 | Viewed by 2792
Abstract
The human population is constantly increasing throughout the world, and accordingly, construction is increasing in the same way. Therefore, there is an emergence of irregular and unplanned urbanization. In order to achieve the goal of preventing irregular and unplanned urbanization, it is necessary [...] Read more.
The human population is constantly increasing throughout the world, and accordingly, construction is increasing in the same way. Therefore, there is an emergence of irregular and unplanned urbanization. In order to achieve the goal of preventing irregular and unplanned urbanization, it is necessary to monitor the cadastral borders quickly. In this sense, the concept of a sensitive, up-to-date, object-based, 3D, and 4D (4D, 3D + time) cadastral have to be a priority. Therefore, continuously updating cadastral maps is important in terms of sustainability and intelligent urbanization. In addition, due to the increase in urbanization, it has become necessary to update the cadastral information system and produce 3D cadastral maps. However, since there are big problems in data collection in urban areas where construction is rapid, different data-collection devices are constantly being applied. While these data-collection devices have proven themselves in terms of accuracy and precision, new technologies have started to be developed in urban areas especially, which is due to the increase in human population and the influence of environmental factors. For this reason, LiDAR data collection methods and the SLAM algorithm can offer a new perspective for producing cadastral maps in complex urban areas. In this study, 3D laser scanning data obtained from a portable sensor based on the SLAM algorithm are tested, which is a relatively new approach for cadastral surveys in complex urban areas. At the end of this study, two different statistical comparisons and accurate analyses of the proposed methodology with reference data were made. First, WMLS data were compared with GNSS data and RMSE values for X, Y, and Z, and were found to be 4.13, 4.91, and 7.77 cm, respectively. In addition, WMLS length data and cadastral length data from total-station data were compared and RMSE values were calculated as 4.76 cm. Full article
Show Figures

Figure 1

Back to TopTop