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Abstract: Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous
spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with
graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based
sensor or GCPPS) for sensitive detection of biomolecules. Planetary mixing resulted in uniformly
dispersed graphene and conductive polymer ink, which was applied to laser-cut Whatman filter
paper substrates. Scanning electron microscopy and Raman spectroscopy showed strong attachment
of conductive polymer-functionalized graphene to cellulose fibers. The GCPPS detected dopamine
and cytokines, such as tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the ranges of
12.5–400 µM, 0.005–50 ng/mL, and 2 pg/mL–2 µg/mL, respectively, using a minute sample volume
of 2 µL. The electrodes showed lower detection limits (LODs) of 3.4 µM, 5.97 pg/mL, and 9.55 pg/mL
for dopamine, TNF-α, and IL-6 respectively, which are promising for rapid and easy analysis for
biomarkers detection. Additionally, these paper-based biosensors were highly selective (no serpin
A1 detection with IL-6 antibody) and were able to detect IL-6 antigen in human serum with high
sensitivity and hence, the portable, adaptable, point-of-care, quick, minute sample requirement
offered by our fabricated biosensor is advantageous to healthcare applications.

Keywords: cancer detection; conductive polymers; dopamine detection; graphene; paper-based biosensor

1. Introduction

Dopamine (DA) is one of the most important neurotransmitters in the human central
nervous system. Dopamine deficiency may cause Parkinson’s disease [1], restless leg
syndrome [2], schizophrenia [3], and attention deficit hyperactivity disorder (ADHD) [4].
Thus, sensitive and selective dopamine detection using a simple and cost-effective method
is highly desirable. On the other hand, cytokines, a class of regulatory proteins, are
essential physiological and pathological markers for diagnosis of diseases (e.g., cancer and
Alzheimer’s) and response to injury. TNF-α, a pro-inflammatory cytokine originating from
macrophages and monocytes, serves as an early sign of inflammatory disease and chronic
wounds. The dysregulation of this cytokine can cause various types of diseases including
rheumatoid arthritis [5,6], cardiovascular disease [7], Alzheimer’s disease [8], cancer [9,10],
and psoriasis [11]. TNF-α is considered an anti-cancer agent, and its receptors can send
both survival and death signals to cells. It ranges from 10 pg/mL in healthy human serum
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to ~2000 pg/mL in patients with chronic wounds [12–16]. As a result, it is crucial to
measure TNF-α in a quick, accurate, and simple manner to predict, assess, prevent, and
monitor inflammation. Similarly, IL-6 is a multifunctional cytokine that plays an important
role in immunomodulation, hematopoiesis, and inflammation. Dysregulated continual
synthesis of IL-6 plays a pathological effect on chronic inflammation and autoimmunity
including diabetes, rheumatoid arthritis, and cancer [17–21]. Since the concentration of
cytokines can be very small, a sensitive sensor is needed to detect them. Electrochemical
sensors with microfluidic capability have the potential to detect small quantities of these
biomolecules reliably.

Electrochemical biosensors have certain advantages, such as ease of use and rapid,
sensitive, and selective response even in complex environments [22,23]. Electrodes for
electrochemical sensors include conductive polymers [24–26], carbon and metal nanomate-
rials [27–33], paper with conductive coating, nanocomposites [34–36], ionic liquids [37,38],
and other materials. Paper, which is composed of numerous cellulose layers, is a popular
substrate due to its low cost, light weight, microporous structure enabling microfluidics,
high abundance, environmental friendliness, and ease of bulk manufacture [39]. Thus,
paper has drawn much interest in sensor and device fabrication as it is flexible, portable,
disposable, and easy to operate [40–46]. Proper fabrication of electrochemical paper-based
biosensors depends on the selection of paper material, design of 2D and 3D electrodes,
formation of a hydrophobic wall to delineate microfluidic spreading area, surface modi-
fication of electrodes, and analyte conjugation [47]. A popular method of paper surface
modification is via the use of conductive polymers.

Conductive polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) [48], polyani-
line (PANI) [49], and polypyrrole (PPy) [50] have been widely used in electrochemical
sensing due to their remarkable electrical conductivity, high signal transduction, me-
chanical flexibility, and chemical stability. Compared to PANI and Ppy, PEDOT shows
relatively better stability, excellent charge transport, and higher conductivity. As PEDOT
is insoluble in water or in common solvents [51], PEDOT is synthesized in presence of
poly(4-styrenesulfonate) (PSS). These two polymers, generally referred to as PEDOT:PSS,
exhibit excellent solution–fabrication capability for dip coating. For conductive polymers,
an optimized conductivity is needed for a lower signal-to-noise ratio [52]. Graphene, which
is an exceptional 2D nanomaterial due to its excellent electrical, mechanical, and thermal
properties, can be used as a filler for enhancing PEDOT:PSS conductivity, mechanical
property, and high surface area for analyte conjugation [53].

PEDOT-graphene modified electrodes provide a lower dopamine detection limit of
0.33 µM due to low oxidation potential [54]. Aidin et al. developed a sensitive biosensor us-
ing semi-conductive poly-(3-thio-phene acetic acid) (P3) to measure TNF-α in human saliva
and serum [55]. Wang et al. developed paper-based aptasensors fabricated with conductive
polymer nanocomposite electrodes to detect cancer biomarkers [56]. Furthermore, to obtain
antigen-antibody conjugation, a graphene screen-printed electrode modified with polyani-
line was used and thus exhibited greater surface area for immobilization and exceptional
conductivity for human interferon-gamma (IFN-γ) detection [57]. The sensor showed a
better response over 5–1000 pg/mL with a detection limit of 3.4 pg/mL. A paper-based
biosensor with a carcinoembryonic antigen (CEA) detection range of 6–30 ng mL−1 and a
detection limit of 2.68 ng mL−1 using PEDOT:PSS with modified filter paper was developed
by Kumar et al. [58]. On the other hand, Il-6 detection can be carried out via direct [59],
indirect competitive [60], and sandwiched nanoparticle-labeled [61,62] electrochemical im-
munoassay methods. However, the unique combination of graphene-PEDOT:PSS prepared
using an optimized recipe and attached to paper-based microfluidic platform via unique
processing steps has not been investigated before.

In this paper, we fabricated a miniaturized graphene-PEDOT:PSS coated paper-based
biosensor (GCPPS) with laser engraving to detect dopamine, TNF-α, and IL-6. Initially
we focused on detectability of the biomolecules using the sensor. For the final test of
IL-6 detection in human serum, we triplicated the experiments to verify reproducibility.
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The electrodes were prepared with planetary mixed conductive G-PEDOT:PSS ink via dip
coating, and the performance was analyzed via electrochemical impedance spectroscopy.
Towards that goal, we improved the viscosity and stability of the conductive ink by adjust-
ing the ratio of Graphene NanoFlake (GNF) and PEDOT-PSS in DMSO (dimethyl sulfoxide)
solvent. Our choice of PEDOT:PSS to act as glue between cellulose fibrils and graphene
nanoflakes was able to provide a stable, conductive, high surface area sensing platform.
The choice of hydrophilic porous paper substrate, dimethyl sulfoxide (DMSO), as solvent
for the diluted ink led to delamination and crust formation prevention. Our results show
that Whatman filter paper serves as a microfluidic porous substrate for stable impregnation
of conductive and functionalized ink for electrochemical immunoassays. Using brief UV
ozone or atmospheric plasma-based dry oxidation, we increased the number of active sites
on the sensor surface for antibody attachment via using N-ethyl-N0-(3-(dimethylamino)-
propyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry. The resultant sensor
was able to detect biomolecules such as cytokines in the pg/mL range and in complex
environments such as human serum.

2. Materials and Methods
2.1. Materials

Dopamine hydrochloride, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT: PSS), dimethyl sulfoxide (DMSO), potassium hexacyanoferrate(II) trihydrate, and
potassium hexacyanoferrate(III) were obtained from Sigma Aldrich, St. Louis, MO, USA.

Human/Mouse TNF-α Antibody, Recombinant Human TNF-α (HEK293-expressed),
Mouse IL-6 Antibody, Recombinant Human IL-6 Protein, and Serpin A1 antigen were pur-
chased from R&D Systems, USA. Human/Mouse TNF-α Antibody, Recombinant Human
TNF-α, and Recombinant Human IL-6 were reconstituted at 0.2 mg/mL, 500 µg/mL, and
200 µg/mL in sterile phosphate buffer saline (PBS) respectively. N-Hydroxysuccinimide
(NHS) and N-(3-Dimethylaminopropyl)-N′-Ethylcarbodiimide Hydrochloride (EDC) were
obtained from Sigma Aldrich, USA. Graphene nanoflakes (surface area 750 m2/g, size
~2 µm) were obtained from Sigma Aldrich, USA.

2.2. Ink Preparation

The following were added into a container: 1 g of Graphene NanoFlake (GNF), 3 mL
of PEDOT:PSS, 3 mL De-Ionized (DI) water, and 800 µL of DMSO solvent (Figure 1a). The
solution was then mixed uniformly using a Hauschild Planetary Speed Mixer with rpm
800 and 2500 each for 30 s.

2.3. Laser Cutting of Filter Paper and Electrode Dip Coating

Whatman filter paper nos. 1 and 4 were used as a substrate for the electrodes. The
process for making the electrodes is shown in Figure 1b. A specific CAD design (biosensor
size: L = 13.7 mm, W = 7.2 mm, working electrode diameter = 3.7 mm) was made, and filter
papers were cut via laser using 4.8W laser power and 100 pulses per inch (PPI) (Universal
Laser System, PLS—4.75). A three-electrode method was used in this experimental design,
consisting of counter, working, and reference electrode. The counter electrode (C.E., left one
in Figure 1b: Fabricated Sensor) and the working electrode (W.E., middle one in Figure 1b:
Fabricated Sensor) were dip-coated in the G-PEDOT:PSS ink, and Ag ink was used for the
reference electrode (right one depicted in Figure 1b: Fabricated Sensor). These paper-based
electrodes were then dried in vacuum for 24 h. For a stable connection, W.E. and C.E.
contact pads were coated with Ag ink. To place the electrodes in a thick paper substrate,
double-sided scotch tape was used. After that, hydrophobic PDMS coating was put in
between the working zone and contact pads to prevent analyte from flowing through the
microfluidic paper from detection zone to contact pads.
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Figure 1. Schematic of (a) G-PEDOT:PSS conductive polymer ink preparation. (b) Paper-based
biosensor fabrication. (c) Schematic representation of TNF-α/IL-6 detection protocol for paper-
based electrodes.

2.4. Dopamine Solution Preparation

Dopamine hydrochloride was mixed in 1× PBS solvent and a range of dopamine
concentrations from 12.5 µM to 400 µM was prepared by serial dilution method.
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2.5. Surface Modification, EDC/NHS Conjugation, TNF-α Antigen, and IL-6 Antigen
Solution Preparation

Initially, the G-PEDOT:PSS electrode surfaces were modified using a Novascan UV-
Ozone instrument for 3 min (at 40 ◦C) to form a carboxylic group (–COOH). Alternatively,
similar oxygen functionalization can be obtained using mild oxygen plasma treatment. We
performed mild dry plasma oxidation on the sensors at 150 mtorr for 10 s at 20 watts. Then,
0.4 M of EDC was added to the electrode working zone to couple with the -COOH groups
and kept in a darker environment for 4 h [63]. Subsequently, 0.2 M NHS was used, and
similarly, it was kept in the dark for another 4 h. After that, 20 µL of TNF-α/IL-6 Antibody
was added to crosslink with the NHS-treated sensor and kept at 4 ◦C for 12 h. Recombinant
Human TNF-α (antigen)/IL-6 antigen solution of 5 pg/mL to 50 ng/mL was made using
the serial dilution method. The detailed schematic of the TNF-α/IL-6 detection protocol is
shown in Figure 1c.

2.6. Scanning Electron Microscopy (SEM) and Raman Characterization

SEM characterization was carried out on the G-PEDOT:PSS paper-based biosensor
(Zeiss, Oberkochen, Germany). Raman spectroscopy, which can reveal signature peaks
as well as the number of defects and functionalization from conductive polymers and
graphene, was also used. We collected Raman data using a 633 nm laser using a Renishaw
inVia reflex system with 50×magnification.

2.7. Electrochemical Analysis of Dopamine/TNF-α/IL-6

This paper-based sensor was connected with Autolab PGSTAT302N (from Metrohm)
via an adapter to accommodate GCPPS sensors. Cyclic voltammetry (CV) and electrochem-
ical impedance spectroscopy (EIS) were performed to analyze our paper-based electrode
sensors. A typical three-electrode method was chosen over the two-electrode method for
accurate quantification. The three-electrode method consists of one working electrode, one
counter electrode, and one reference electrode in which the potential is kept constant in the
working electrode with respect to the reference electrode and the potentiostat measures
the current accurately between counter and working electrodes. For dopamine, TNF-α
detection, and IL-6 detection, 10 µL of Ferrate (Fe2+), 10 µL of Ferric (Fe3+) solution (both
prepared using PBS solvent), and 2 µL of dopamine/TNF-α antigen/IL-6 antigen was used.
To detect IL-6 in human serum solution, 20 µL of human serum and 2 µL of IL-6 antigen
were used. In cyclic voltammetry (CV), a current is measured between the working elec-
trode and counter electrode, with the applied potential between the working and reference
electrode. The parameters for cyclic voltammetry (CV) were: 0.5 V to 0.5 V with a scan rate
of 0.05 V/s. The parameters for impedance spectroscopy were: start frequency—106 Hz,
stop frequency—0.1 Hz, frequency per decade—10, DC voltage—10 mV (high DC bias
can inhibit precise measurement [64]; therefore, 10 mV constant DC bias was applied in
all our tests), AC voltage—10 mV sinusoidal. Analyzing time for each concentration was
around 20 min (analyzing time ~5 min and waiting time in between two concentrations
~15 min), total analyzing time from surface modification to first concentration test was
around—20.5 h.

3. Results and Discussion
3.1. Characterization

The enhanced affinity of conductive polymer (CP) to cellulose fibers and interaction
of CP with GNF allows GNF to be glued to the fibers. PEDOT:PSS self-assembles on the
fibril in the wet stage and becomes π-stacked after drying and, therefore, act as a glue to
connect graphene with cellulose fibers [65]. This can be observed from the SEM images of
the GNF-CP paper-based sensor in Figure 2a,b. The flat GNF sheets are connected to the
fibrous structure of cellulose. The hierarchical structure with more prominent pores and
fibers can be observed in low-magnification SEM images in Figure S1. The choice of ink
components, mixing technique, drying conditions, and substrate are critical for a stable and



Sensors 2023, 23, 8115 6 of 17

effective sensor. We observed film delamination on hard ITO and hydrophobic Fabriano
paper substrates and under rapid drying conditions (Figure S2). We also tried Cyrene as a
solvent for GNF-CP instead of DMSO. However, the film’s conductivity with Cyrene is low
compared to film prepared with DMSO (Figure S3). A Flacktek mixer was used to achieve
uniform mixing and introduce curvature to GNF. The dual asymmetric centrifuge of the
mixer ensures uniform mixing and removal of bubbles and introduces curvature-induced
strain to the GNF and π-π* interaction of GNF with PEDOT:PSS, leading to enhancement
of charge carrier concentration of GNF (doping) [66–68]. We have also experimented with
more viscous ink (containing double the amount of PEDOT:PSS compared to the original
ink), which leads to the formation of a thick crust on the surface, preventing access to the
micro–nano porous microfluidic structure underneath (Figure S4).
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Figure 2. (a,b) Cross-sectional SEM images with false color showing graphene attached to the
conductive ink and cellulose fibrils at different spatial locations (black indicates the graphene flakes,
purple indicates the polymer network). Raman microscopy spectrum of the sensor (c) before oxidation
and (d) after oxidation.

Successful oxidation can be verified via Raman spectroscopy, which can show sig-
nature peaks from CP and graphene, and additionally, the number of defects and func-
tionalization (D band). This mild oxidation treatment leads to broadening of the D peak
(~1350 cm−1), as can be observed from before and after oxidation treatment in the Raman
spectra (Figure 2c,d). The G band (~1580 cm−1) and 2D band (~2690 cm−1) intensity ratio
also changed due to the mild oxidation treatment (I(2D/G) from 0.33 to 0.5). This can be
due to partial etching of multilayer graphene and formation of -COOH functional group at
the edge or defect sites generated by the dry oxidation treatment.

3.2. Dopamine Detection

The fabricated G-PEDOT:PSS sensor was employed to investigate the electrochemical
detection of dopamine. The dopamine detection was performed using both CV and EIS
(Figures 3 and S5a,b). The negative peak current (reduction) for dopamine showed an
increase with the concentration (25 µM to 400 µM) (Figure S5c).
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Figure 3. Single-layer dip-coated paper-based biosensor (a) EIS characterization of dopamine detec-
tion from 12.5 µM to 400 µM. (b) Enlarged view of the tail in (a,c) charge transfer resistance plot with
dopamine concentration. (d) Randles equivalent circuit and its representative Nyquist plot.

Nyquist plots (imaginary impedance vs. real impedance) are typically utilized to
investigate interface properties. The lower frequency corresponds to the diffusion-limited
process and the high frequency represents the charge transfer resistance [69]. The charge
transfer resistance can be found from the diameter of the semicircle formed. Using Nyquist
plots is advantageous for characterizing biosensing performance because of its high sensi-
tivity towards detecting the biomolecules [70,71].

The charge-transfer resistance (Rct) at the electrode surface depends on the total ana-
lytes on the electrode working zone. The charge transfer resistance (semi-circle diameter)
was the same for the two similar runs (Figure S6), showing that the sensor surface was
stable during electrochemical testing. EIS analysis of dip-coated electrodes (both counter
and working electrodes are dip-coated with graphene-conductive ink, reference electrode
is dip-coated with Ag) for dopamine detection is shown in Figure 3a,b. The charge trans-
fer resistance increased with the dopamine concentration from 12.5 µM to 400 µM due
to greater dopamine molecule adsorption on the surface (Figure 3c). Above 400 µM, a
dopamine concentration of 800 µM was also tested, and the Nyquist plot is shown in
Figure S7. However, the charge transfer resistance decreased when the concentration
increased from 400 µM to 800 µM, and this may be attributed to the working electrode area
reaching saturation. This means the maximum number of biomolecules had attached to
the surface, and the remaining biomolecules going back in electrolyte therefore decreased
the charge transfer resistance [72–74]. The Nyquist plot obtained in Figure 3a,b was fitted
with Randles equivalent circuit (4 components: solution resistance (Rs), charge transfer
resistance (Rct), double-layer capacitance (Cdl), and Warburg diffusion (Zw)) as shown in
Figure 3d.

To improve electrical conductivity and detection sensitivity, we dip-coated the sensor
a second time using G-PEDOT:PSS ink. Figure 4a,b shows the Nyquist plot for double-layer
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dip-coated electrodes for the same dopamine concentration range, and Figure 4c indicates
the corresponding charge transfer resistance increasing with dopamine concentration from
12.5 µM to 400 µM. The Rct values for double-layer dip-coated electrodes (4.75 kΩ) were
less than the single-layer dip-coated ones (20.1 kΩ), which indicates higher electrical
conductivity for charge transport. The detection limit of dopamine can be calculated
using the formula LOD = σ

S (σ is the standard deviation of the response and S is the
slope = 0.13 × (slope of semi-log plot)) [75]. The LOD for dopamine detection was ~3.4 µM
(calibration curve in Figure 4d). The limit of quantification (LOQ) is also similar to the
LOD, the lowest level of analyte that can be detected within a certain degree of uncertainty
(by considering a signal to noise ratio of 10:1). Thus, the LOQ can be also obtained from
the limit of detection (LOD) using the relation: LOQ = 3.3*LOD [76]. For our paper-based
biosensor, the LOQ for dopamine detection was ~11.22 µM.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17 
 

 

and working electrodes are dip-coated with graphene-conductive ink, reference electrode 
is dip-coated with Ag) for dopamine detection is shown in Figure 3a,b. The charge transfer 
resistance increased with the dopamine concentration from 12.5 µM to 400 µM due to 
greater dopamine molecule adsorption on the surface (Figure 3c). Above 400 µM, a dopa-
mine concentration of 800 µM was also tested, and the Nyquist plot is shown in Figure S7. 
However, the charge transfer resistance decreased when the concentration increased from 
400 µM to 800 µM, and this may be attributed to the working electrode area reaching 
saturation. This means the maximum number of biomolecules had attached to the surface, 
and the remaining biomolecules going back in electrolyte therefore decreased the charge 
transfer resistance [72–74]. The Nyquist plot obtained in Figure 3a,b was fitted with 
Randles equivalent circuit (4 components: solution resistance (Rs), charge transfer re-
sistance (Rct), double-layer capacitance (Cdl), and Warburg diffusion (Zw)) as shown in Fig-
ure 3d. 

To improve electrical conductivity and detection sensitivity, we dip-coated the sen-
sor a second time using G-PEDOT:PSS ink. Figure 4a,b shows the Nyquist plot for double-
layer dip-coated electrodes for the same dopamine concentration range, and Figure 4c in-
dicates the corresponding charge transfer resistance increasing with dopamine concentra-
tion from 12.5 µM to 400 µM. The Rct values for double-layer dip-coated electrodes (4.75 
kΩ) were less than the single-layer dip-coated ones (20.1 kΩ), which indicates higher elec-
trical conductivity for charge transport. The detection limit of dopamine can be calculated 
using the formula LOD = ஢ୗ (σ is the standard deviation of the response and S is the slope 
= 0.13×(slope of semi-log plot)) [75]. The LOD for dopamine detection was ~3.4 µM (cali-
bration curve in Figure 4d). The limit of quantification (LOQ) is also similar to the LOD, 
the lowest level of analyte that can be detected within a certain degree of uncertainty (by 
considering a signal to noise ratio of 10:1). Thus, the LOQ can be also obtained from the 
limit of detection (LOD) using the relation: LOQ = 3.3*LOD [76]. For our paper-based bi-
osensor, the LOQ for dopamine detection was ~11.22 µM. 

 
Figure 4. Double-layer dip-coated paper-based biosensor. (a) EIS characterization of dopamine
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Our paper-based sensors demonstrated a similar or higher sensitivity and range for
dopamine detection compared to prior work (Table 1). For example, Yang et al. fab-
ricated AuNPs@PANI nanocomposites to detect dopamine (range: 10–1700 µM, LOD:
5 µM) and ascorbic acid simultaneously [77]. Au nanoparticles on a polyaniline-modified
electrode surface for the detection of dopamine (range: 20–100 µM, LOD: 16 µM) was
fabricated by Mahalakshmi et al. [78]. PEDOT:PSS organic electrochemical transistor
(range: 5–100 µM, LOD: 6 µM) [79], commercial screen-printed electrode modified by
PEDOT:PSS/Chitosan/Graphene (range: 0.05–70 µM, LOD: 0.29 µM, more sensitive but
with a smaller detection range) [80], and multi-walled carbon nanotube (MWCNT)-PEDOT
(range: 10–330 µM, LOD: 10 µM) [81] sensors were the PEDOT-based biosensors reported
for dopamine detection.
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Table 1. Comparison of dopamine detection performance for different electrochemical biosensors
based on conductive polymers.

Electrode Structure Technique Linear Range Limit of Detection
(LOD) References

Polyaniline (PANI)–Au
nanoparticles (NPs)

Differential pulse voltammetry
(DPV) 10–1700 µM 5 µM [77]

Polyaniline (PANI)–Au NPs Linear sweep voltammetry
(LSV) 20–100 µM 16 µM [78]

PEDOT:PSS (FET) CV, DPV 5–100 µM 6 µM [79]
PEDOT:

PSS/Chitosan/Graphene CV, DPV 0.05–70 µM 0.29 µM [80]

MWCNT-PEDOT CV, DPV 10–330 µM 10 µM [81]
Ti3C2Cl2/graphitic pencil electrode CV, DPV, EIS 10−2000 µM 702 nM [82]

Cu-benzene-1,3,5-tricarboxylic
acid/carbon paste electrode CV, DPV 0.05-500 µM 0.03 µM [83]

Glassy carbon electrode
(GCE)/Carbon quantum dots/CuO

Square Wave voltammetry
(SWV) 1–800 µM 25.4 µM [84]

GCE/Pt/Ti3C2Tx CV, Constant Voltage Deposition 50 nM–9 mM 50 nM [85]
G-PEDOT:PSS EIS 12.5–400 µM 3.4 µM This work

3.3. TNF-α Detection

Similar to dopamine detection, EIS was performed to quantify the TNF-α detection
using a Nyquist plot in a double-layer dip-coated sensor. The G-PEDOT:PSS electrode
surface was first modified using UV–ozone treatment, and the Nyquist plot before and
after the UV–ozone treatment is shown in Figure S8. It indicates that the surface underwent
modification after UV–ozone as the resistance value increased. Figure 5a,b refers to the
Nyquist plot for TNF-α detection in the concentration range from 5 pg/mL to 50 ng/mL
(the same equivalent circuit fit was used, as depicted in Figure 3d). Rct with its logarithmic
x-axis (concentration) plot is presented in Figure 5c. The plot shows an almost linear
straight line with a slope of 66.89. The limit of detection for TNF-α was ~5.97 pg/mL
using the formula LOD = σ

S (σ is the standard deviation of the response and S is the
slope = 0.13×(slope of semi-log plot)). The LOQ for TNF-α detection was 19.7 pg/mL.

The performance comparison of different electrochemical biosensors including ours
is shown in Table 2. Researchers adopted different structures and techniques for TNF-
α detection. Poly(guanine)-functionalized silica NP biosensors showed a detection range of
0.1–100 ng/mL and an LOD of 50 pg/mL [86]. Yin et al. developed alkaline phosphatase-
functionalized nanosphere-based biosensors for TNF-α detection (range: 0.02–200.00 ng/mL,
LOD: 0.01 ng/mL) [87]. A Au working electrode (range: 10–100 ng/mL, LOD: 10 ng/mL) [88]
and comb-structured Au microelectrode array (range: 0.001–1 ng/mL, LOD: 1 pg/mL) [89]
-based biosensors were also employed for TNF-α detection. Thus, our sensor shows
sensitivity similar to the Au electrode (fabrication of Au electrodes requires complicated
processing and bears a high cost).

Table 2. Comparison of TNF-α detection of some electrochemical biosensors using different techniques.

Biosensor Structure Sensing Matrix Technique Detection Range LOD References

Poly(guanine)-functionalized silica NPs Antibody Square wave
voltammograms 0.1–100 ng/mL 50 pg/mL [86]

Alkaline
phosphatase functionalized nanospheres Antibody EIS 0.02–200 ng/mL 0.01 ng/mL [87]
Au working electrode Aptamer CV 10–100 ng/mL 10 ng/mL [88]
Comb-structured Au microelectrode
arrays Antibody EIS 0.001-1 ng/mL 1 pg/mL [89]
MoS2 nanoflower Antibody CV & EIS 1-200 pg/mL 0.202 pg/mL [90]
Au W.E. Antibody EIS 266–666,000 pg/mL 266 pg/mL [91]
Si3N4/SiO2/Si[P]/Al Antibody Capacitive 1–30 pg/mL 1 pg/mL [92]
G-PEDOT:PSS Antibody EIS 0.005–50 ng/mL 5.97 pg/mL This work
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3.4. IL-6 Detection

For IL-6 detection in a wide range (0.002–2000 ng/mL), EIS was performed in a sim-
ilar fashion to TNF-α. Figure 6a,b shows the Nyquist plot for IL-6 detection (the same
equivalent circuit fit was used, as depicted in Figure 3d). Charge transfer resistance (Rct)
increases with IL-6 concentration (Figure 6c). Similar to dopamine and TNF-α detection,
the limit of detection of our paper-based biosensor was calculated using the formula,
LOD = 3.3σ

S , and LOD and LOQ were ~9.55 pg/mL, and ~31.5 pg/mL respectively. Pre-
viously, Russel et al. developed a Au-based needle-shaped microelectrode for IL-6 detec-
tion (range: 20–100 pg/mL, LOD: 20 pg/mL) [59]. Graphene oxide (GO)-based liquid-
gated FET biosensors were also used to detect IL-6 in a range of 4.7–300 pg/mL (LOD:
1.53 pg/mL) [93]. In comparison to our paper-based biosensor, the above-mentioned mi-
croelectrode/FET needs a complex and costly manufacturing process to obtain almost
similar sensitivity.

3.5. Selective Detection of IL-6

With the specific antibody attached to the biosensor, the specific antigen can bind with
the antibody. Otherwise, using a different antigen will not change the Rct. For the selective
detection test, the paper-based sensor was initially conjugated with IL-6 antibody. Thus,
the signal or charge transfer resistance will change when the IL-6 antibody conjugates
only with the IL-6 antigen. Firstly, controlled PBS and IL-6 were added, and there was a
significant shift from PBS signal to IL-6 due to antigen attachment. However, there was
no significant charge transfer resistance change after Serpin A1 addition, which means
no Serpin A1 attachment to the IL-6 antibody (Figure 6d). Adding up to 6 µL of Serpin
A1 antigen, no resistance change was observed compared to IL-6, thus signifying that
our paper-based biosensor is highly selective. An additional plot for selective detection
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is shown in Figure S9; the charge transfer resistance did not change significantly after the
addition of Serpin A1. Hence, this proves the highly selective detection of antigen/antibody
via our paper-based biosensor.
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3.6. IL-6 Detection with Human Serum

Figure 7 shows that the as-produced G-PEDOT:PSS biosensor provides a nearly linear
relation for IL-6 detection in human serum from the concentration 2 pg/mL to 200 ng/mL.
The Nyquist plot shown in Figure 7a indicates that the charge transfer resistance, Rct (semi-
circle diameter), increased with the concentration (due to more IL-6 antigen molecules
becoming attached to the working electrode with increasing concentration and acting as a
barrier for charge transfer). Each of the concentrations for IL-6 was replicated 3 times to
obtain the uncertainty related to the specific concentration, and Figure 7b shows that each
of the IL-6 concentrations maintained the charge transfer resistance within an acceptable
range and Rct for no two concentrations overlap each other. The reason behind this linearity
and selectivity could be ascribed to the large surface area of the graphene-based working
electrode due to graphene nanomaterial and strong covalent bonding between IL-6 antibody
and graphene. Additionally, the abundant active sites on graphene for antibodies attached
after UV–ozone treatment allows for detection of a wide range of concentrations spanning
from pg/mL to ng/ML. The complex environment of human serum did not hinder the
detectability of this sensor, and the performance was similar to what was observed in PBS
solution (Figure 6). In a healthy subject, the average range of Il-6 is 4.631–5.740 pg/mL [94],
whereas the average cut-off Il-6 range for different cancer patients is 1.9–130 pg/mL [95].
As our sensor is capable of detecting the Il-6 concentrations mentioned in the above range,
the sensor can be calibrated for early-stage cancer detection.
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4. Conclusions

Paper-based microfluidic biosensors have shown a great deal of promise in recent
years due to their simplicity, high sensitivity, porosity, ease of use, portability, accessibility,
and low cost. Furthermore, these sensors can provide data quickly without the need for
a laboratory or a skilled individual. One of the key issues to fabricate and functionalize
highly sensitive nanomaterials such as graphene to paper substrate has been addressed
in our work. In this study, a laser-cut, miniaturized, paper-based electrochemical sensor
coated with G-PEDOT:PSS (GCPPS) ink, prepared using a planetary mixer, was developed.
Unique planetary mixing with an optimized recipe led to a uniform, stable ink coating
of porous paper substrates. Additionally, an innovative dry oxidation step was utilized
to functionalize and strongly attach antibodies to the sensor surface. The developed sen-
sor demonstrated excellent performance in detecting dopamine, TNF-α, and IL-6 after
modification via mild dry oxidation. The detection range for dopamine, TNF-α, and IL-6
was 12.5–400 µM, 0.005–50 ng/mL, and 0.002–2000 ng/mL, respectively. The sensor also
demonstrated a linear relationship between charge transfer resistance and IL-6 concentra-
tion in human serum. Additionally, the detection limits were 3.4 µM, 5.97 pg/mL, and
9.55 pg/mL, respectively, indicating that our paper-based biosensor might be a promis-
ing avenue for early cancer detection, chronic wound monitoring, or immune sensing.
Moreover, the sensor was able to function in human serum, mimicking real-world testing
scenarios. Thus, these paper-based sensors offer an alternate, excellent, and reliable plat-
form for immune sensing or early diagnosis even in countries with limited resources. In
future, we will investigate the performance of the paper-based biosensor prepared using
additive manufacturing techniques for improved electrode fabrication efficiency.

5. Patents

This work resulted in the following patent applications.
Ashraf, A., Mazzeo, A.D., Pal, R.K. and Berthiaume, F., Rutgers State University of

New Jersey, 2023. Graphene-conductive polymer-coated, paper-based nano-biosensor for
cytokine detection. U.S. Patent Application 17/822,641.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s23198115/s1, Figure S1. Morphological characteriza-
tions at lower scale. Scanning Electron Microscopy (SEM) characterization of G-PEDOT:PSS ink
at a lower magnification of showing (a) the coating thickness of 120 µm, (b) graphene attached to
the conductive polymer; Figure S2. Effect of substrates and drying temperature on film stability.
(a) Film stability of GR-CP conductive film on different substrates. The film is stable on Whatman
filter paper but de-laminates on hydrophobic Fabriano paper and hard ITO substrate. (b) Effect
of drying tempera-ture on film stability. Film delaminates if dried at high temperature (~70 C);
Figure S3. Conductivity test for Cyrene and DMSO solvent. Cyclic voltammetry (CV) of GR-CP ink

https://www.mdpi.com/article/10.3390/s23198115/s1
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prepared with (A) Cyrene and (B,C) DMSO. Ink with DMSO show superior conductivity compared
to ink with Cyrene. (C) shows CV with different scan rates in 10 mM Ferri-Ferro solution; Figure S4.
Morphology of thick ink coating. SEM images of sensor prepared with thick ink coating (includes
double the amount of PEDOT-PSS as compared to original ink). After drying, forms a thick layer
or crust, preventing access to the micro-nanoporous structure underneath ex-cept at cracks; Figure
S5. Cyclic Voltammetry performance on single-layer paper-based biosensor. (a) Cy-clic Voltammetry
(CV) performance for single layer coated paper-based electrodes during do-pamine detection, (b) en-
larged view of Figure S5 (a), (c) Peak current-concentration plot of CV performed on paper-based
biosensor; Figure S6. Control run for dopamine detection. Control run test for dopamine detection in
paper-based electrodes (10 µL of Fe2+, 10 µL of Fe3+, 2 µL PBS). Charge transfer resistance was similar
each time; Figure S7: Effect of concentration higher than the saturation. Nyquist plot for dopamine
detection from 12.5 µM to 800 µM. The charge transfer resistance increased from 12.5 µM to 400 µM,
however, the charge transfer resistance decreased for 800 µM; Figure S8: Effect of UV ozonation on
paper-based biosensor. Control run test to examine the effect of UV ozonation. The test was done by
using 10 mL of Fe2+, 10 mL of Fe3+, and 2 mL of PBS solution before and after UV ozonation. The plot
shifted due to surface medication caused by UV ozone (change in resistance); Figure S9: Additional
selective detection test. Additional selective detection of IL-6 with Serpin A1 antigen. The charge
transfer resistance did not change significantly after the addition of Serpin A1(semicircular portion
was added for visual reference).
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