Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = port resilience

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 936 KiB  
Article
Prioritizing ERP System Selection Challenges in UAE Ports: A Fuzzy Delphi and Relative Importance Index Approach
by Nadin Alherimi, Alyaa Alyaarbi, Sara Ali, Zied Bahroun and Vian Ahmed
Logistics 2025, 9(3), 98; https://doi.org/10.3390/logistics9030098 - 23 Jul 2025
Viewed by 482
Abstract
Background: Selecting enterprise resource planning (ERP) systems for complex port environments is a significant challenge. This study addresses a key research gap by identifying and prioritizing the critical factors for ERP selection within the strategic context of United Arab Emirates (UAE) ports, which [...] Read more.
Background: Selecting enterprise resource planning (ERP) systems for complex port environments is a significant challenge. This study addresses a key research gap by identifying and prioritizing the critical factors for ERP selection within the strategic context of United Arab Emirates (UAE) ports, which function as vital hubs in global trade. Methods: A hybrid methodology was employed, first using the Fuzzy Delphi Method (FDM) to validate thirteen challenges with five industry experts. Subsequently, the Relative Importance Index (RII) was used to rank these challenges based on survey data from 48 UAE port professionals. Results: The analysis revealed “Cybersecurity concerns” as the highest-ranked challenge (RII = 0.896), followed by “Engagement with external stakeholders” (RII = 0.842), and both “Process optimization” and “Technical capabilities” (RII = 0.808). Notably, factors traditionally seen as critical in other sectors, such as “Organizational readiness” (RII = 0.746), were ranked significantly lower. Conclusions: The findings indicate a strategic shift in ERP selection priorities toward digital resilience and external integration rather than internal organizational factors. This research provides a sector-specific decision-support framework and offers actionable insights for port authorities, vendors, and policymakers to enhance ERP implementation in the maritime industry. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

21 pages, 2089 KiB  
Article
Assessing Port Connectivity from the Perspective of the Supply Chain: A Bayesian Network-Based Integrated Approach
by Yuan Ji, Jing Lu, Wan Su and Danlan Xie
Sustainability 2025, 17(14), 6643; https://doi.org/10.3390/su17146643 - 21 Jul 2025
Viewed by 373
Abstract
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this [...] Read more.
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this gap, this study develops an integrated Bayesian Network (BN) modeling approach that, for the first time, simultaneously incorporates international connectivity, port competitiveness, and hinterland connectivity within a unified probabilistic framework. Drawing on empirical data from 26 major coastal countries in Asia, the model quantifies the multi-layered and interdependent determinants of port connectivity. The results demonstrate that port competitiveness and hinterland connectivity are the dominant drivers, while the impact of international shipping links is comparatively limited in the current Asian context. Sensitivity analysis further highlights the critical roles of rail transport development and trade facilitation in enhancing port connectivity. The proposed BN framework supports comprehensive scenario analysis under uncertainty and offers targeted, practical policy recommendations for port authorities and regional planners. By systematically capturing the interactions among maritime, port, and inland factors, this study advances both the theoretical understanding and practical management of port connectivity. Full article
Show Figures

Figure 1

20 pages, 7353 KiB  
Article
Comparative Analysis of Robust Entanglement Generation in Engineered XX Spin Chains
by Eduardo K. Soares, Gentil D. de Moraes Neto and Fabiano M. Andrade
Entropy 2025, 27(7), 764; https://doi.org/10.3390/e27070764 - 18 Jul 2025
Viewed by 266
Abstract
We present a numerical investigation comparing two entanglement generation protocols in finite XX spin chains with varying spin magnitudes (s=1/2,1,3/2). Protocol 1 (P1) relies on staggered couplings to steer correlations toward [...] Read more.
We present a numerical investigation comparing two entanglement generation protocols in finite XX spin chains with varying spin magnitudes (s=1/2,1,3/2). Protocol 1 (P1) relies on staggered couplings to steer correlations toward the ends of the chain. At the same time, Protocol 2 (P2) adopts a dual-port architecture that uses optimized boundary fields to mediate virtual excitations between terminal spins. Our results show that P2 consistently outperforms P1 in all spin values, generating higher-fidelity entanglement in shorter timescales when evaluated under the same system parameters. Furthermore, P2 exhibits superior robustness under realistic imperfections, including diagonal and off-diagonal disorder, as well as dephasing noise. To further assess the resilience of both protocols in experimentally relevant settings, we employ the pseudomode formalism to characterize the impact of non-Markovian noise on the entanglement dynamics. Our analysis reveals that the dual-port mechanism (P2) remains effective even when memory effects are present, as it reduces the excitation of bulk modes that would otherwise enhance environment-induced backflow. Together, the scalability, efficiency, and noise resilience of the dual-port approach position it as a promising framework for entanglement distribution in solid-state quantum information platforms. Full article
(This article belongs to the Special Issue Entanglement in Quantum Spin Systems)
Show Figures

Figure 1

18 pages, 5796 KiB  
Article
Analysis of Carbon Density Influencing Factors and Ecological Effects of Green Space Planning in Dongjiakou Port Area
by Yuanhao Guo, Yaou Ji, Qianqian Sheng, Cheng Zhang, Ning Feng, Guodong Xu, Dexing Ma, Qingling Yin, Yingdong Yuan and Zunling Zhu
Plants 2025, 14(14), 2145; https://doi.org/10.3390/plants14142145 - 11 Jul 2025
Viewed by 420
Abstract
Port green spaces are essential protective barriers, enhancing safety and environmental resilience in high-activity port regions. Given the intensity of human activities in these areas, understanding the factors influencing the carbon sequestration capacity and ecological benefits of port green spaces is crucial for [...] Read more.
Port green spaces are essential protective barriers, enhancing safety and environmental resilience in high-activity port regions. Given the intensity of human activities in these areas, understanding the factors influencing the carbon sequestration capacity and ecological benefits of port green spaces is crucial for developing sustainable green ports. This study integrated field investigations and remote sensing data to estimate carbon density and carbon sequestration capacity in the Dongjiakou Port area, examining their relationship with port green space planning. The results indicated that carbon density in green spaces showed a significant negative correlation with the number of lanes in adjacent roads, where an increase in lane numbers corresponded to lower carbon density. Additionally, carbon density decreased significantly with increasing distance from the shipping center. In contrast, a significant positive correlation was observed between carbon density and distance from large water bodies, indicating that green spaces closer to large water bodies exhibited smaller carbon density. Infrastructure development in Dongjiakou substantially negatively impacted vegetation carbon sequestration capacity, with effects not reversible in the short term. However, green space enhancement efforts provided additional ecological benefits, leading to a 50.9 ha increase in green space area. When assessing carbon density in urbanizing areas, geographical influences should be prioritized. Furthermore, the long-term environmental impacts of urban expansion must be considered at the early planning stages, ensuring the implementation of proactive protective measures to mitigate potential ecological disruptions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

30 pages, 878 KiB  
Article
Berth Efficiency Under Risk Conditions in Seaports Through Integrated DEA and AHP Analysis
by Deda Đelović, Marinko Aleksić, Oto Iker and Michail Chalaris
J. Mar. Sci. Eng. 2025, 13(7), 1324; https://doi.org/10.3390/jmse13071324 - 10 Jul 2025
Viewed by 316
Abstract
In the context of increasingly complex and dynamic maritime logistics, seaports serve as critical nodes for intermodal transport, energy distribution, and global trade. Ensuring the safe and uninterrupted operation of port infrastructure—particularly berths—is vital for maintaining supply chain resilience. This study explores the [...] Read more.
In the context of increasingly complex and dynamic maritime logistics, seaports serve as critical nodes for intermodal transport, energy distribution, and global trade. Ensuring the safe and uninterrupted operation of port infrastructure—particularly berths—is vital for maintaining supply chain resilience. This study explores the impact of multiple risk categories on berth efficiency in a seaport, aligning with the growing emphasis on maritime safety and risk-informed decision-making. A two-stage methodology is adopted. In the first phase, the DEA CCR input-oriented model is employed to assess the efficiency of selected berths considered as Decision Making Units (DMUs). In the second phase, the Analytical Hierarchy Process (AHP) is used to categorize and quantify the impact of four major risk classes—operational, technical, safety, and environmental—on berth efficiency. The results demonstrate that operational and safety risks contribute 63.91% of the composite weight in the AHP risk assessment hierarchy. These findings are highly relevant to contemporary efforts in maritime risk modeling, especially for individual ports and port systems with high berth utilization and vulnerability to system disruptions. The proposed integrated approach offers a scalable and replicable decision-support tool for port authorities, port operators, planners, and maritime safety stakeholders, enabling proactive risk mitigation, optimal utilization of available resources in a port, and improved berth performance. Its methodological design is appropriately suited to support further applications in port resilience frameworks and maritime safety strategies, being one of the bases for establishing collision avoidance strategies related to an individual port and/or port system, too. Full article
(This article belongs to the Special Issue Recent Advances in Maritime Safety and Ship Collision Avoidance)
Show Figures

Figure 1

20 pages, 4616 KiB  
Article
Temporal Convolutional Network with Attention Mechanisms for Strong Wind Early Warning in High-Speed Railway Systems
by Wei Gu, Guoyuan Yang, Hongyan Xing, Yajing Shi and Tongyuan Liu
Sustainability 2025, 17(14), 6339; https://doi.org/10.3390/su17146339 - 10 Jul 2025
Viewed by 398
Abstract
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions [...] Read more.
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions that are critical for ensuring safe train operations. Numerous WSF schemes based on deep learning have been proposed. However, accurately forecasting strong wind events remains challenging due to the complex and dynamic nature of wind. In this study, we propose a novel hybrid network architecture, MHSETCN-LSTM, for forecasting strong wind. The MHSETCN-LSTM integrates temporal convolutional networks (TCNs) and long short-term memory networks (LSTMs) to capture both short-term fluctuations and long-term trends in wind behavior. The multi-head squeeze-and-excitation (MHSE) attention mechanism dynamically recalibrates the importance of different aspects of the input sequence, allowing the model to focus on critical time steps, particularly when abrupt wind events occur. In addition to wind speed, we introduce wind direction (WD) to characterize wind behavior due to its impact on the aerodynamic forces acting on trains. To maintain the periodicity of WD, we employ a triangular transform to predict the sine and cosine values of WD, improving the reliability of predictions. Massive experiments are conducted to evaluate the effectiveness of the proposed method based on real-world wind data collected from sensors along the Beijing–Baotou railway. Experimental results demonstrated that our model outperforms state-of-the-art solutions for WSF, achieving a mean-squared error (MSE) of 0.0393, a root-mean-squared error (RMSE) of 0.1982, and a coefficient of determination (R2) of 99.59%. These experimental results validate the efficacy of our proposed model in enhancing the resilience and sustainability of railway infrastructure.Furthermore, the model can be utilized in other wind-sensitive sectors, such as highways, ports, and offshore wind operations. This will further promote the achievement of Sustainable Development Goal 9. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

40 pages, 7119 KiB  
Article
Optimizing Intermodal Port–Inland Hub Systems in Spain: A Capacitated Multiple-Allocation Model for Strategic and Sustainable Freight Planning
by José Moyano Retamero and Alberto Camarero Orive
J. Mar. Sci. Eng. 2025, 13(7), 1301; https://doi.org/10.3390/jmse13071301 - 2 Jul 2025
Viewed by 423
Abstract
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net [...] Read more.
This paper presents an enhanced hub location model tailored to port–hinterland logistics planning, grounded in the Capacitated Multiple-Allocation Hub Location Problem (CMAHLP). The formulation incorporates nonlinear cost structures, hub-specific operating costs, adaptive capacity constraints, and a feasibility condition based on the Social Net Present Value (NPVsocial) to support the design of intermodal freight networks under asymmetric spatial and socio-environmental conditions. The empirical case focuses on Spain, leveraging its strategic position between Asia, North Africa, and Europe. The model includes four major ports—Barcelona, Valencia, Málaga, and Algeciras—as intermodal gateways connected to the 47 provinces of peninsular Spain through calibrated cost matrices based on real distances and mode-specific road and rail costs. A Genetic Algorithm is applied to evaluate 120 scenarios, varying the number of active hubs (4, 6, 8, 10, 12), transshipment discounts (α = 0.2 and 1.0), and internal parameters. The most efficient configuration involved 300 generations, 150 individuals, a crossover rate of 0.85, and a mutation rate of 0.40. The algorithm integrates guided mutation, elitist reinsertion, and local search on the top 15% of individuals. Results confirm the central role of Madrid, Valencia, and Barcelona, frequently accompanied by high-performance inland hubs such as Málaga, Córdoba, Jaén, Palencia, León, and Zaragoza. Cities with active ports such as Cartagena, Seville, and Alicante appear in several of the most efficient network configurations. Their recurring presence underscores the strategic role of inland hubs located near seaports in supporting logistical cohesion and operational resilience across the system. The COVID-19 crisis, the Suez Canal incident, and the persistent tensions in the Red Sea have made clear the fragility of traditional freight corridors linking Asia and Europe. These shocks have brought renewed strategic attention to southern Spain—particularly the Mediterranean and Andalusian axes—as viable alternatives that offer both geographic and intermodal advantages. In this evolving context, the contribution of southern hubs gains further support through strong system-wide performance indicators such as entropy, cluster diversity, and Pareto efficiency, which allow for the assessment of spatial balance, structural robustness, and optimal trade-offs in intermodal freight planning. Southern hubs, particularly in coordination with North African partners, are poised to gain prominence in an emerging Euro–Maghreb logistics interface that demands a territorial balance and resilient port–hinterland integration. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

26 pages, 2803 KiB  
Article
Research on Spatial–Temporal Coupling and Driving Factors of Regional Economic Resilience and Port Logistics: Empirical Evidence from Southern Guangxi, China
by Haoran Yin, Zhidong Zhu, Liurong Pan, Fangyang Zhu and Xuehua Wu
Systems 2025, 13(7), 524; https://doi.org/10.3390/systems13070524 - 30 Jun 2025
Viewed by 271
Abstract
Based on a comprehensive evaluation index system for regional economic resilience and port logistics development, this study employs multiple methodologies including coupling coordination degree model, kernel density estimation, gravity center model, spatial autocorrelation model, and geographic detector model to explore the spatial–temporal evolution [...] Read more.
Based on a comprehensive evaluation index system for regional economic resilience and port logistics development, this study employs multiple methodologies including coupling coordination degree model, kernel density estimation, gravity center model, spatial autocorrelation model, and geographic detector model to explore the spatial–temporal evolution patterns and driving factors of coupling coordination between regional economic resilience and port logistics in the Guangxi Beibu Gulf Economic Zone from 2012 to 2022. The results indicate that: (1) The coupling coordination degree between the two systems showed an upward trend during the study period, although with stage-specific bipolar differentiation that weakened in the later stages. (2) The spatial distribution pattern of coupling coordination evolved from a “single-core” driven by Nanning to a “dual-core” led by Nanning and Yulin, forming a distinct concentric layer structure; the gravity center of coupling coordination exhibited a “southeast–northwest” dynamic migration pattern. (3) Spatial autocorrelation analysis revealed significant positive spatial dependence of coupling coordination within the study area, with spatial agglomeration values showing a “core–transition–depression” differentiation pattern. (4) Information technology level emerged as the dominant driving factor, forming a “technology–finance–infrastructure” ternary collaborative driving model with financial development level and logistics infrastructure level, which became the main force promoting the coordinated development of the coupled systems. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

23 pages, 2708 KiB  
Article
Strategizing Artificial Intelligence Transformation in Smart Ports: Lessons from Busan’s Resilient AI Governance Model
by Jeong-min Lee, Min-seop Sim, Yul-seong Kim, Ha-ram Lim and Chang-hee Lee
J. Mar. Sci. Eng. 2025, 13(7), 1276; https://doi.org/10.3390/jmse13071276 - 30 Jun 2025
Viewed by 625
Abstract
The global port and maritime industry is experiencing a new paradigm shift known as the artificial intelligence transformation (AX). Thus, domestic container-terminal companies should focus beyond mere automation to a paradigm shift in AI that encompasses operational strategy, organizational structure, system, and human [...] Read more.
The global port and maritime industry is experiencing a new paradigm shift known as the artificial intelligence transformation (AX). Thus, domestic container-terminal companies should focus beyond mere automation to a paradigm shift in AI that encompasses operational strategy, organizational structure, system, and human resource management. This study proposes a resilience-based AX strategy and implementation system that allows domestic container-terminal companies to proactively respond to the upcoming changes in the global supply chain, thus securing sustainable competitiveness. In particular, we aim to design an AI-based governance model to establish a trust-based logistics supply chain (trust value chain). As a research method, the core risk factors of AX processes were scientifically identified via text-mining and fault-tree analysis, and a step-by-step execution strategy was established by applying a backcasting technique based on scenario planning. Additionally, by integrating social control theory with new governance theory, we designed a flexible, adaptable, and resilience-oriented AI governance system. The results of this study suggest that the AI paradigm shift should be promoted by enhancing the risk resilience, trust, and recovery of organizations. By suggesting AX strategies and policy as well as institutional improvement directions that embed resilience to secure the sustainable competitiveness of AI-based smart ports in Korea, this study serves as a basis for establishing strategies for the domestic container-terminal industry and for constructing a global leading model. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Data Analysis)
Show Figures

Figure 1

46 pages, 7883 KiB  
Article
Energy Transition Framework for Nearly Zero-Energy Ports: HRES Planning, Storage Integration, and Implementation Roadmap
by Dimitrios Cholidis, Nikolaos Sifakis, Alexandros Chachalis, Nikolaos Savvakis and George Arampatzis
Sustainability 2025, 17(13), 5971; https://doi.org/10.3390/su17135971 - 29 Jun 2025
Viewed by 418
Abstract
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of [...] Read more.
Ports are vital nodes in global trade networks but are also significant contributors to greenhouse gas emissions. Their transition toward sustainable, nearly zero-energy operations require comprehensive and structured strategies. This study proposes a practical and scalable framework to support the energy decarbonization of ports through the phased integration of hybrid renewable energy systems (HRES) and energy storage systems (ESS). Emphasizing a systems-level approach, the framework addresses key aspects such as energy demand assessment, resource potential evaluation, HRES configuration, and ESS sizing, while incorporating load characterization protocols and decision-making thresholds for technology deployment. Special consideration is given to economic performance, particularly the minimization of the Levelized Cost of Energy (LCOE), alongside efforts to meet energy autonomy and operational resilience targets. In parallel, the framework integrates digital tools, including smart grid infrastructure and digital shadow technologies, to enable real-time system monitoring, simulation, and long-term optimization. It also embeds mechanisms for regulatory compliance and continuous adaptation to evolving standards. To validate its applicability, the framework is demonstrated using a representative case study based on a generic port profile. The example illustrates the transition process from conventional energy models to a sustainable port ecosystem, confirming the framework’s potential as a decision-making tool for port authorities, engineers, and policymakers aiming to achieve effective, compliant, and future-proof energy transitions in maritime infrastructure. Full article
Show Figures

Figure 1

23 pages, 1549 KiB  
Review
Digital Transitions of Critical Energy Infrastructure in Maritime Ports: A Scoping Review
by Emmanuel Itodo Daniel, Augustine Makokha, Xin Ren and Ezekiel Olatunji
J. Mar. Sci. Eng. 2025, 13(7), 1264; https://doi.org/10.3390/jmse13071264 - 29 Jun 2025
Viewed by 540
Abstract
This scoping review investigates the digital transition of critical energy infrastructure (CEI) in maritime ports, which are increasingly vital as energy hubs amid global decarbonisation efforts. Recognising the growing role of ports in integrating offshore renewables, hydrogen, and LNG systems, the study examines [...] Read more.
This scoping review investigates the digital transition of critical energy infrastructure (CEI) in maritime ports, which are increasingly vital as energy hubs amid global decarbonisation efforts. Recognising the growing role of ports in integrating offshore renewables, hydrogen, and LNG systems, the study examines how digital technologies (such as automation, IoT, and AI) support the resilience, efficiency, and sustainability of port-based CEI. A multifaceted search strategy was implemented to identify relevant academic and grey literature. The search was performed between January 2025 and 30 April 2025. The strategy focused on databases such as Scopus. Due to limitations encountered in retrieving sufficient, directly relevant academic papers from databases alone, the search strategy was systematically expanded to include grey literature such as reports, policy documents, and technical papers from authoritative industry, governmental, and international organisations. Employing Arksey and O’Malley’s framework and PRISMA-ScR (scoping review) guidelines, the review synthesises insights from 62 academic and grey literature sources to address five core research questions relating to the current state, challenges, importance, and future directions of digital CEI in ports. Literature distribution of articles varies across continents, with Europe contributing the highest number of publications (53%), Asia (24%) and North America (11%), while Africa and Oceania account for only 3% of the publications. Findings reveal significant regional disparities in digital maturity, fragmented governance structures, and underutilisation of digital systems. While smart port technologies offer operational gains and support predictive maintenance, their effectiveness is constrained by siloed strategies, resistance to collaboration, and skill gaps. The study highlights a need for holistic digital transformation frameworks, cross-border cooperation, and tailored approaches to address these challenges. The review provides a foundation for future empirical work and policy development aimed at securing and optimising maritime port energy infrastructure in line with global sustainability targets. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 9809 KiB  
Article
Assessing Coastal Degradation Through Spatiotemporal Earth Observation Data Cubes Analytics and Multidimensional Visualization
by Ioannis Kavouras, Ioannis Rallis, Nikolaos Bakalos and Anastasios Doulamis
J. Mar. Sci. Eng. 2025, 13(7), 1239; https://doi.org/10.3390/jmse13071239 - 27 Jun 2025
Viewed by 237
Abstract
Coastal and maritime regions and their entities face accelerated degradation due to the combined effects of environmental stressors and anthropogenic activities. Coastal degradation can be identified, visualized and estimated through periodic monitoring over a region of interest using earth observation, climate, meteorological, seasonal, [...] Read more.
Coastal and maritime regions and their entities face accelerated degradation due to the combined effects of environmental stressors and anthropogenic activities. Coastal degradation can be identified, visualized and estimated through periodic monitoring over a region of interest using earth observation, climate, meteorological, seasonal, waves, sea level rising, and other ocean- and maritime-related datasets. Usually, these datasets are provided through different sources, in different structures or data types; in many cases, a complete dataset can be large in size and needs some kind of preprocessing (information filtering) before use in the intended application. Recently, the term data cube introduced in the scientific community and frameworks like Google Earth Engine and Open Data Cubes have emerged as a solution to earth observation data harmonization, federation, and exchange framework; however, these sources either completely lack the ability to process climate, meteorological, waves, sea lever rising, etc., data from open sources, like CORDEX and WCRP, or preprocessing is required. This study describes and utilizes the Ocean-DC framework for modular earth observation and other data types to resolve major big data challenges. Compared to the already existing approaches, the Ocean-DC framework harmonizes several types of data and generates ready-to-use data cubes products, which can be merged together to produce high-dimensionality visualization products. To prove the efficiency of the Ocean-DC framework, a case study at Crete Island, emphasizing the Port of Heraklion, demonstrates the practical utility by revealing degradation trends via time-series analysis of several related remote sensing indices calculated using the Ocean-DC framework. The results show a significant reduction in processing time (up to 89%) compared to traditional remote sensing approaches and optimized data storage management, proving its value as a scalable solution for environmental resilience, highlighting its potential use in early warning systems and decision support systems for sustainable coastal infrastructure management. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 1044 KiB  
Article
Container Traffic in the Colombian Caribbean: A Competitiveness Analysis of the Port of Santa Marta Through a Technical–Economic Combination Framework
by Adriana del Socorro Pabón Noguera, María del Mar Cerbán Jiménez and Juan Jesús Ruiz Aguilar
Logistics 2025, 9(3), 84; https://doi.org/10.3390/logistics9030084 - 27 Jun 2025
Viewed by 564
Abstract
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to [...] Read more.
Background: The Port of Santa Marta, located on Colombia’s northern Caribbean coast, plays a vital role in the country’s maritime trade, particularly in the export of agricultural and perishable goods. This raises the question: how competitive is Santa Marta’s container terminal compared to national and regional ports, and what strategic factors shape its performance within the Colombia and Latin American maritime logistics system? Methods: This study evaluates the port’s competitiveness by applying Porter’s Extended Diamond Model. A mixed-methods ap-proach was employed, combining structured surveys and interviews with port stakeholders and operational data analysis. A competitiveness matrix was developed and examined using standardized residuals and L1 regression to identify critical performance gaps and strengths. Results: The analysis reveals several competitive advantages, including the port’s strategic location, natural deep-water access, and advanced infrastructure for refrigerated cargo. It also benefits from skilled labour and proximity to global shipping routes, such as the Panama Canal. Nonetheless, challenges remain in storage capacity, limited road connectivity, and insufficient public investment in hinterland infrastructure. Conclusions: While the Port of Santa Marta shows strong maritime capabilities and spe-cialized services, addressing its land-side and institutional constraints is essential for positioning it as a resilient, competitive logistics hub in the Latin American and Caribbean region. Full article
Show Figures

Figure 1

31 pages, 10755 KiB  
Article
Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment
by Isavela N. Monioudi, Dimitris Chatzistratis, Konstantinos Moschopoulos, Adonis F. Velegrakis, Amalia Polydoropoulou, Theodoros Chalazas, Efstathios Bouhouras, Georgios Papaioannou, Ioannis Karakikes and Helen Thanopoulou
Water 2025, 17(13), 1897; https://doi.org/10.3390/w17131897 - 26 Jun 2025
Viewed by 688
Abstract
This study assesses the exposure of the 155 Greek seaports to marine flooding and extreme heat under climate change. Flood exposure was estimated through a threshold approach that compared projected mean and extreme sea levels to high-resolution port quay elevation data. It was [...] Read more.
This study assesses the exposure of the 155 Greek seaports to marine flooding and extreme heat under climate change. Flood exposure was estimated through a threshold approach that compared projected mean and extreme sea levels to high-resolution port quay elevation data. It was found that while relatively few ports will face quay inundation, the majority will experience operational disruptions due to insufficient freeboard for berthing of commercial vessels under both the mean (80%) and extreme sea (96%) levels by 2050. For selected ports, 2-D flood modelling was undertaken that showed that the used ‘static’ flood threshold approach likely underestimates flood exposure. Future heat exposure was studied through the comparison of extreme temperature and humidity projections to operational and health/safety thresholds. Port infrastructure and personnel/users will be exposed to large material, operational and health risks, whereas energy demand will rise steeply. Deadly heat days (due to mean temperature/humidity combination) will increase, particularly at island ports: 20% of Greek ports might face more than 50 such days annually by end-century. As ports are associated with large urban clusters, these findings suggest a broader health risk. Our findings suggest an urgent climate adaptation need given the strategic socio-economic importance of ports. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

29 pages, 2057 KiB  
Article
Analysis of Hydrological and Meteorological Conditions in the Southern Baltic Sea for the Purpose of Using LNG as Bunkering Fuel
by Ewelina Orysiak, Jakub Figas, Maciej Prygiel, Maksymilian Ziółek and Bartosz Ryłko
Appl. Sci. 2025, 15(13), 7118; https://doi.org/10.3390/app15137118 - 24 Jun 2025
Viewed by 393
Abstract
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the [...] Read more.
The southern Baltic Sea is characterized by highly variable weather conditions, particularly in autumn and winter, when storms, strong westerly winds, and temporary sea ice formation disrupt maritime operations. This study presents a climatographic overview and evaluates key hydrometeorological factors that influence the safe and efficient use of liquefied natural gas (LNG) as bunkering fuel in the region. The analysis draws on long-term meteorological and hydrological datasets (1971–2020), including satellite observations and in situ measurements. It identifies operational constraints, such as wind speed, wave height, visibility, and ice cover, and assesses their impact on LNG logistics and terminal functionality. Thresholds for safe operations are evaluated in accordance with IMO and ISO safety standards. An ice severity forecast for 2011–2030 was developed using the ECHAM5 global climate model under the A1B emission scenario, indicating potential seasonal risks to LNG operations. While baseline safety criteria are generally met, environmental variability in the region may still cause temporary disruptions. Findings underscore the need for resilient port infrastructure, including anti-icing systems, heated transfer equipment, and real-time environmental monitoring, to ensure operational continuity. Integrating weather forecasting into LNG logistics supports uninterrupted deliveries and contributes to EU goals for energy diversification and emissions reduction. The study concludes that strategic investments in LNG infrastructure—tailored to regional climatic conditions—can enhance energy security in the southern Baltic, provided environmental risks are systematically accounted for in operational planning. Full article
Show Figures

Figure 1

Back to TopTop