Analysis of Carbon Density Influencing Factors and Ecological Effects of Green Space Planning in Dongjiakou Port Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Sources
2.3. Data Processing
2.3.1. Estimation of Carbon Storage and Vegetation Community Characteristics in Sample Plots
Tree Species | Plant Biomass Equations | Sources |
---|---|---|
Pinus tabuliformis | B = 0.8446 + 0.6640ln(D2H) | Ma [31] |
Robinia pseudoacacia | B = 0.312 + 0.016D2H | He [32] |
Ginkgo biloba | B = 0.044 + 0.042D2H | |
Populus przewalskii | B = 0.016(D2H)1.007 | Yang [33] |
Ligustrum lucidum | B = 0.907 + 0.01D2H | Hyun-Kil Jo [34] |
Camphora officinarum | B = 0.937 + 0.037D2H | |
Metasequoia glyptostroboides | B = Exp(−0.8168 + 2.1549logD) | |
Pinus thunbergii | B = 0.1309D2.4367 | |
Salix babylonica | B = 0.178D2.581 | |
Cedrus deodara | B = 1.26(0.3721D1.2928 + 0.2805D1.3313) | |
Lagerstroemia indica | B = 0.895 + 0.035D2H | |
Ulmus pumila | B = 0.1458(D2H)0.8191 | |
Angiosperms | B = 0.0396(D2H)0.933 | Liu [35] |
Gymnosperms | B = 0.0254(D2H)0.948 | Wang [36] |
Photinia serratifolia | B = 0.310(D2H)1.097 | Yao [37] |
Syringa oblata | B = 6.656H5.065 | |
Lagerstroemia indica | B = 11.109 + 17.91ln(H) | |
Pittosporum tobira | B = 0.264(D2H)0.916 | |
Hibiscus syriacus | B = 2.958(D2H)0.607 | |
Nandina domestica | B = 18.925(CH)1.565 | |
Buxus sinica | B = 15.572D1.325 | Yao [38] |
Berberis thunbergii ‘Atropurpurea’ | B = 224.662(CH)1.546 | |
Euonymus alatus | B = 68.016(AC)1.021 | Li [39] |
Arborescent Shrub | B = 0.182D2.487 | |
Shrubs | B = 100.71(AC)0.925 |
2.3.2. Estimation of Green Space Carbon Storage Using Remote Sensing-Based Inversion Methods
2.3.3. Data Processing and Visualization
3. Results
3.1. Vegetation Characteristics of Dongjiakou
3.1.1. Morphological Characteristics of Vegetation
3.1.2. Spatial Structure Characteristics of Vegetation Communities
3.2. Estimation of Aboveground Carbon Storage in Sample Plots
3.3. Estimation of Carbon Density in Dongjiakou
3.4. Correlation Analysis of Factors Influencing Carbon Density
3.5. Estimation of Carbon Storage in Dongjiakou from 2021 to 2024
4. Discussion
4.1. Factors Influencing Carbon Density in Dongjiakou
4.2. Impact of Port Development Planning on Green Spaces in Dongjiakou
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed]
- Green, J.K.; Keenan, T.F. The limits of forest carbon sequestration. Science 2022, 376, 692–693. [Google Scholar] [CrossRef] [PubMed]
- Fatichi, S.; Pappas, C.; Zscheischler, J.; Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. New Phytol. 2019, 221, 652–668. [Google Scholar] [CrossRef]
- Kaye, J.P.; Groffman, P.M.; Grimm, N.B.; Baker, L.A.; Pouyat, R.V. A distinct urban biogeochemistry? Trends Ecol. Evol. 2006, 21, 192–199. [Google Scholar] [CrossRef]
- Feng, R.; Wang, F.; Liu, S.; Qi, W.; Zhengchen, R.; Wang, D. Synergistic effects of urban forest on urban heat island-air pollution-carbon stock in mega-urban agglomeration. Urban For. Urban Green. 2025, 103, 128590. [Google Scholar] [CrossRef]
- Endreny, T.A. Strategically growing the urban forest will improve our world. Nat. Commun. 2018, 9, 1160. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, L.-Y.; Zuo, S.-D.; Song, X.-D.; Liao, Y.-L.; Xu, C.-D.; Chen, Q.; Hua, L.-Z.; Li, Z.-W. Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environ. Pollut. 2016, 216, 519–529. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef]
- Ahmad, B.; Wang, Y.; Hao, J.; Liu, Y.; Bohnett, E.; Zhang, K. Variation of carbon density components with overstory structure of larch plantations in northwest China and its implication for optimal forest management. For. Ecol. Manag. 2021, 496, 119399. [Google Scholar] [CrossRef]
- Uri, V.; Varik, M.; Aosaar, J.; Kanal, A.; Kukumägi, M.; Lõhmus, K. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 2012, 267, 117–126. [Google Scholar] [CrossRef]
- Li, C.; Zha, T.; Liu, J.; Jia, X. Carbon and nitrogen distribution across a chronosequence of secondary lacebark pine in China. For. Chron. 2013, 89, 192–198. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.-X.; Yang, R. Influence of the geographic proximity of city features on the spatial variation of urban carbon sinks: A case study on the Pearl River Delta. Environ. Pollut. 2018, 243, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, T.; Zhang, S.; Jia, Y.; Li, Y.; Xu, X. The role of land use, construction and road on terrestrial carbon stocks in a newly urbanized area of western Chengdu, China. Landsc. Urban Plan. 2016, 147, 88–95. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A. Multi-factor controls on terrestrial carbon dynamics in urbanized areas. Biogeosciences 2014, 11, 7107–7124. [Google Scholar] [CrossRef]
- Qiu, K.; Jia, B. The roles of landscape both inside the park and the surroundings in park cooling effect. Sustain. Cities Soc. 2020, 52, 101864. [Google Scholar] [CrossRef]
- Lin, B.-S.; Lin, C.-T. Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban For. Urban Green. 2016, 20, 348–357. [Google Scholar] [CrossRef]
- Hannouf, M.; Assefa, G.; Gates, I. Carbon intensity threshold for Canadian oil sands industry using planetary boundaries: Is a sustainable carbon-negative industry possible? Renew. Sustain. Energy Rev. 2021, 151, 111529. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, Y.; Dou, Y.; Chi, W.; Chen, G.; Gao, C.; Yang, T.; Liu, J.; Zhang, R. What are hot and what are not in an urban landscape: Quantifying and explaining the land surface temperature pattern in Beijing, China. Landsc. Ecol. 2015, 30, 357–373. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, D.; Liu, S. Data concurrency is required for estimating urban heat island intensity. Environ. Pollut. 2015, 208, 118–124. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D.; Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Terentev, A.; Dolzhenko, V.; Fedotov, A.; Eremenko, D. Current State of Hyperspectral Remote Sensing for Early Plant Disease Detection: A Review. Sensors 2022, 22, 757. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.F.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.J.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Wei, J.; Wu, M.; Zhou, M.; Zhao, P.; Zhan, T.; Zhang, J. Value-taking for vegetation carbon content rate based on the estimation of shrubbery carbon storage. Pratacult. Sci. 2016, 33, 2202–2208. [Google Scholar]
- Jiang, L.; Yangyuan, D.; Mei, Y.; Yang, X. Remote Sensing Estimation of Carbon Storage of Mangrove Communities in Shenzhen City. Wetl. Sci. 2018, 16, 618–625. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- National Public Resources Trading Platform (Qingdao, S.P.). Qingdao Municipal Government Services and Public Resources Trading Center. Available online: https://ggzy.qingdao.gov.cn/PortalQDManage/PortalQD/Index (accessed on 28 November 2024).
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Ma, Q. A Study on the Biomass of Chinese Pine Forests. J. Beijing For. Univ. 1989. [Google Scholar]
- He, H.; Huang, L.; Duan, X.; He, R. Study on Biomass in Main Afforrestation Tree Species of The Second Ring FOREST-BELT of GuiYang. Guizhou Sci. 2007, 25, 33–39. [Google Scholar]
- Li, Y. The build study of Populus tomentosa biomoss modelin Beijing Daxing District. For. Ecol. Sci. 2011, 26, 345–348. [Google Scholar]
- Jo, H.-K.; McPherson, G.E. Carbon Storage and Flux in Urban Residential Greenspace. J. Environ. Manag. 1995, 45, 109–133. [Google Scholar] [CrossRef]
- Liu, G.; Fu, B.; Fang, J. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta Ecol. Sin. 2000, 20, 733–740. [Google Scholar]
- Wang, R. Research on Hot Issues in Modern Ecology; China Science and Technology Press: Beijing, China, 1996. [Google Scholar]
- Yao, Z.; Liu, J.; Zhao, X.; Long, D.; Wang, L. Spatial dynamics of aboveground carbon stock in urban green space: A case study of Xi’an, China. J. Arid Land 2015, 7, 350–360. [Google Scholar] [CrossRef]
- Yao, Z.J.; Liu, J.J. Models for biomass estimation of four shrub species planted in urban area of Xi’an City, Northwest China. Chin. J. Appl. Ecol. 2014, 25, 111–116. [Google Scholar] [CrossRef]
- Li, X.; Guo, Q.; Wang, X.; Zheng, H. Allometry of Understory Tree Species in a Natural Secondary Forest in Northeast China. Sci. Silvae Sin. 2010, 46, 22–32. [Google Scholar]
- Kong, L.; Shi, Z.; Chu, L.M. Carbon emission and sequestration of urban turfgrass systems in Hong Kong. Sci. Total Environ. 2014, 473–474, 132–138. [Google Scholar] [CrossRef]
- Chen, C.-T.A.; Borges, A.V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 578–590. [Google Scholar] [CrossRef]
- Enríquez-de-Salamanca, Á.; Martín-Aranda, R.M.; Díaz-Sierra, R. Potential of land use activities to offset road traffic greenhouse gas emissions in Central Spain. Sci. Total Environ. 2017, 590–591, 215–225. [Google Scholar] [CrossRef]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Goodall, K.E.; Bacon, C.M.; Mendez, V.E. Shade tree diversity, carbon sequestration, and epiphyte presence in coffee agroecosystems: A decade of smallholder management in San Ramón, Nicaragua. Agric. Ecosyst. Environ. 2015, 199, 200–206. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Song, K.; Zhang, G.; Zhong, Q.; Han, Y.; Da, L. Individual carbon sequestration capacity of four common tree species and their impact factors in Shanghai. Acta Ecol. Sin. 2024, 44, 5532–5541. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, B.; Luo, D. Effects of land use and transportation on carbon sources and carbon sinks: A case study in Shenzhen, China. Landsc. Urban Plan. 2014, 122, 175–185. [Google Scholar] [CrossRef]
- Zoderer, B.M.; Hainz-Renetzeder, C.; Vuolo, F. Mapping wild nature areas to identify priority areas for urban rewilding in cities: A process-oriented approach. Urban For. Urban Green. 2024, 101, 128549. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Buerkert, A.; Plieninger, T. Effects of land abandonment on nature contributions to people and good quality of life components in the Mediterranean region: A review. Land Use Policy 2022, 116, 106053. [Google Scholar] [CrossRef]
- Ren, Z.; He, J.; Yue, Q. Assessing the Impact of Urban Expansion on Surrounding Forested Landscape Connectivity across Space and Time. Land 2021, 10, 359. [Google Scholar] [CrossRef]
- Jaworek-Jakubska, J.; Filipiak, M.; Michalski, A.; Napierała-Filipiak, A. Spatio-Temporal Changes of Urban Forests and Planning Evolution in a Highly Dynamical Urban Area: The Case Study of Wrocław, Poland. Forests 2020, 11, 17. [Google Scholar] [CrossRef]
Structure | Vertical Structure Type | Proportion of Sample Plots (%) |
---|---|---|
Multi-layer Structure | Tree-Shrub-Grass (T-S-G) | 16.67% |
Two-layer Structure | Tree-Shrub (T-S) | 78.57% |
Single-layer Structure | Tree (T) | 2.38% |
Shrub (S) | 1.19% |
Name | Sample | Dominant Tree Species | Carbon Storage (kg) | Carbon Density (kg/m2) |
---|---|---|---|---|
Wei’yi Road | 5 | Fraxinus chinensis, Platanus acerifolia, Pterocarya stenoptera, Photinia × fraseri | 9099.62 | 4.55 |
Wei’er Road | 4 | Koelreuteria paniculata, Juniperus chinensis ‘Kaizuca’, Metasequoia glyptostroboides, Euonymus fortunei, | 2987.62 | 1.87 |
Jing’er Road | 2 | Juniperus chinensis ‘Kaizuca’, Cedrus deodara, Koelreuteria paniculata, Styphnolobium japonicum, Buxus sinica var. parvifolia, Euonymus fortunei | 2960.83 | 3.70 |
Jing’wu Road | 3 | Juniperus chinensis ‘Kaizuca’, Cedrus deodara, Styphnolobium japonicum, Prunus × yedoensis | 3300.03 | 2.75 |
Shugang’yi Road | 12 | Cedrus deodara, Juniperus chinensis ‘Kaizuca’, Fraxinus chinensis, Hibiscus syriacus, Photinia × fraseri | 3726.88 | 0.78 |
Wei’shiwu Road | 5 | Ginkgo biloba, Platanus acerifolia, Zelkova serrata, Malus spectabilis, Photinia × fraseri, Euonymus fortune | 4671.69 | 2.34 |
Ban’nan Road | 8 | Platanus acerifolia, Lagerstroemia indica, Photinia × fraseri, Euonymus fortunei | 3803.39 | 1.19 |
Wei’shisi Road | 3 | Malus spectabilis, Platanus acerifolia, Photinia × fraseri | 4483.24 | 3.74 |
Jing’shi Road | 12 | Juniperus chinensis, Cedrus deodara, Platanus acerifolia, Fraxinus chinensis, Lagerstroemia indica, Cercis chinensis | 5106.69 | 1.06 |
Jing’yi Road | 6 | Juniperus chinensis ‘Kaizuca’, Celtis sinensis, Ligustrum japonicum, Photinia × fraseri | 1098.36 | 0.46 |
Toal | 60 | - | - | 2.24 |
Year | Carbon Storage (t) | Carbon Sequestration (t) | Green Space Area (ha) | Green Space Development Area (ha) | Green Space Area Change (ha) |
---|---|---|---|---|---|
2021 | 108,180.9 | 2803.59 | |||
−17,365.9 | 24.1 | −5.22 | |||
2022 | 90,815.4 | 2798.37 | |||
23,325.3 | −131.04 | ||||
2023 | 114,140.7 | 2667.33 | |||
5097.6 | 168.78 | 219.68 | |||
2024 | 119,238.3 | 2887.01 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Ji, Y.; Sheng, Q.; Zhang, C.; Feng, N.; Xu, G.; Ma, D.; Yin, Q.; Yuan, Y.; Zhu, Z. Analysis of Carbon Density Influencing Factors and Ecological Effects of Green Space Planning in Dongjiakou Port Area. Plants 2025, 14, 2145. https://doi.org/10.3390/plants14142145
Guo Y, Ji Y, Sheng Q, Zhang C, Feng N, Xu G, Ma D, Yin Q, Yuan Y, Zhu Z. Analysis of Carbon Density Influencing Factors and Ecological Effects of Green Space Planning in Dongjiakou Port Area. Plants. 2025; 14(14):2145. https://doi.org/10.3390/plants14142145
Chicago/Turabian StyleGuo, Yuanhao, Yaou Ji, Qianqian Sheng, Cheng Zhang, Ning Feng, Guodong Xu, Dexing Ma, Qingling Yin, Yingdong Yuan, and Zunling Zhu. 2025. "Analysis of Carbon Density Influencing Factors and Ecological Effects of Green Space Planning in Dongjiakou Port Area" Plants 14, no. 14: 2145. https://doi.org/10.3390/plants14142145
APA StyleGuo, Y., Ji, Y., Sheng, Q., Zhang, C., Feng, N., Xu, G., Ma, D., Yin, Q., Yuan, Y., & Zhu, Z. (2025). Analysis of Carbon Density Influencing Factors and Ecological Effects of Green Space Planning in Dongjiakou Port Area. Plants, 14(14), 2145. https://doi.org/10.3390/plants14142145