Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (685)

Search Parameters:
Keywords = population-land-industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2092 KiB  
Article
Land Use Conflict Under Different Scenarios Based on the PLUS Model: A Case Study of the Development Pilot Zone in Jilin, China
by Shengyue Zhang, Yanjun Zhang, Xiaomeng Wang and Yuefen Li
Sustainability 2025, 17(15), 7161; https://doi.org/10.3390/su17157161 (registering DOI) - 7 Aug 2025
Abstract
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify [...] Read more.
In rapidly urbanizing regions, escalating land use conflicts have raised concerns over sustainable development and ecological security. This study focuses on the Chang-Ji-Tu Development and Opening Pilot Zone in Jilin Province, aiming to reveal the spatiotemporal evolution of land use conflicts and identify their driving factors, based on land use data from 2000 to 2023. The study employs land use data, the PLUS model, SCCI, and the geographic detector to analyze conflict dynamics and influencing factors. Cropland and forest land have steadily declined, while construction land has expanded. Conflicts exhibit a spatial gradient of “western pressure, central alleviation, and eastern stability,” with hotspots in Changchun, Jilin, and Yanji. Conflict evolution is categorized into three phases: intensification (2000–2010), peak (2010–2015), and mitigation (2015–2023), as shaped by industrialization and later policy interventions. Among four simulated scenarios, the Sustainable Development (SD) scenario most effectively postpones conflict escalation. Population density and DEM emerged as dominant driving factors. Natural factors have greater explanatory power for land use conflicts than do socio-economic or locational factors. Strengthening spatial planning coordination and refining conflict governance are key to balancing human–environment interactions in the region. Full article
Show Figures

Figure 1

19 pages, 22713 KiB  
Article
Geospatial and Correlation Analysis of Heavy Metal Distribution on the Territory of Integrated Steel and Mining Company Qarmet JSC
by Yryszhan Zhakypbek, Kanay Rysbekov, Vasyl Lozynskyi, Sergey Mikhalovsky, Ruslan Salmurzauly, Yerkezhan Begimzhanova, Gulmira Kezembayeva, Bakhytzhan Yelikbayev and Assel Sankabayeva
Sustainability 2025, 17(15), 7148; https://doi.org/10.3390/su17157148 - 7 Aug 2025
Abstract
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, [...] Read more.
This paper provides geospatial and correlation analysis of heavy metal distribution in the soil cover of the city of Temirtau and its industrial zones. Based on 25 soil samples taken in 2024, concentrations of nine heavy metals (As, Pb, Zn, Cu, Ni, Co, Mn, Cr, Ba) were determined using X-ray fluorescence analysis. Spatial data interpolation was performed using the Kriging method in the ArcGIS Pro environment. The results showed the presence of localized extreme pollution zones, primarily near the Qarmet JSC metallurgical plant. The most significant exceedances of maximum permissible concentrations (MPC), up to 348× MPC for Cr, 160× MPC for Zn, and 72× MPC for As, were recorded at individual locations. Correlation analysis revealed a moderate positive relationship between several elements, particularly Mn and Cu (r = 0.64). Comparison of the spatial distribution of pollution with population data allowed for the assessment of potential environmental risks. This research emphasizes the need to implement systematic monitoring, sustainable land management practices, ecological maps, and preventive measures to reduce the long-term impact of heavy metals on ecosystems and public health, and to promote environmental sustainability in industrial regions. Full article
Show Figures

Figure 1

28 pages, 10144 KiB  
Article
Decoding the Spatial–Temporal Coupling Dynamics of Land Use Intensity and Balance in China’s Chengdu–Chongqing Economic Circle: A 1 km Grid-Based Analysis
by Zijia Yan, Chenxi Zhou, Ziyi Tang, Hanfei Wang and Hao Li
Land 2025, 14(8), 1597; https://doi.org/10.3390/land14081597 - 5 Aug 2025
Abstract
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and [...] Read more.
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and integrating emerging spatiotemporal hotspot analysis, BFAST, and geographic detectors, we systematically analyzed spatiotemporal patterns and drivers of LUI, BDLUS, and their Coupling Coordination Degree (CCD) from 2000 to 2022. Key findings: (1) LUI strongly correlated with economic growth, with core areas reaching high-intensity development (average > 2.96) versus ecologically constrained marginal zones (<2.42), marked by abrupt changes during 2011–2014; (2) BDLUS improvements covered 82.22% of the study area, driven by the Yangtze River Economic Belt strategy (21.96% hotspot concentration), yet structural imbalance persisted in transitional zones (18.81% cold spots); (3) CCD exhibited center-edge dichotomy, contrasting high-value cores (CCD > 0.68) with ecologically sensitive edges (9.80% cold spots), peaking in regulatory shifts around 2010; (4) terrain constraints and intensified human activities (the interaction effect between nighttime lighting and population density increased by 219.49% after 2020) jointly governed coupling mechanisms, with urbanization and industrial transition becoming dominant drivers. This research advances an “intensity–structure–coordination” framework and elucidates “dual-core resonance” dynamics, offering theoretical foundations for spatial optimization and ecological civilization. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

25 pages, 6507 KiB  
Article
Sustainable Urban Heat Island Mitigation Through Machine Learning: Integrating Physical and Social Determinants for Evidence-Based Urban Policy
by Amatul Quadeer Syeda, Krystel K. Castillo-Villar and Adel Alaeddini
Sustainability 2025, 17(15), 7040; https://doi.org/10.3390/su17157040 - 3 Aug 2025
Viewed by 303
Abstract
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to [...] Read more.
Urban heat islands (UHIs) are a growing sustainability challenge impacting public health, energy use, and climate resilience, especially in hot, arid cities like San Antonio, Texas, where land surface temperatures reach up to 47.63 °C. This study advances a data-driven, interdisciplinary approach to UHI mitigation by integrating Machine Learning (ML) with physical and socio-demographic data for sustainable urban planning. Using high-resolution spatial data across five functional zones (residential, commercial, industrial, official, and downtown), we apply three ML models, Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosting Machine (GBM), to predict land surface temperature (LST). The models incorporate both environmental variables, such as imperviousness, Normalized Difference Vegetation Index (NDVI), building area, and solar influx, and social determinants, such as population density, income, education, and age distribution. SVM achieved the highest R2 (0.870), while RF yielded the lowest RMSE (0.488 °C), confirming robust predictive performance. Key predictors of elevated LST included imperviousness, building area, solar influx, and NDVI. Our results underscore the need for zone-specific strategies like more greenery, less impervious cover, and improved building design. These findings offer actionable insights for urban planners and policymakers seeking to develop equitable and sustainable UHI mitigation strategies aligned with climate adaptation and environmental justice goals. Full article
Show Figures

Figure 1

27 pages, 19737 KiB  
Article
Effect of Landscape Architectural Characteristics on LST in Different Zones of Zhengzhou City, China
by Jiayue Xu, Le Xuan, Cong Li, Tianji Wu, Yajing Wang, Yutong Wang, Xuhui Wang and Yong Wang
Land 2025, 14(8), 1581; https://doi.org/10.3390/land14081581 - 2 Aug 2025
Viewed by 334
Abstract
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects [...] Read more.
The process of urbanization has intensified the urban heat environment, with the degradation of thermal conditions closely linked to the morphological characteristics of different functional zones. This study delineated urban functional areas using a multivariate dataset and investigated the seasonal and threshold effects of landscape and architectural features on land surface temperature (LST) through boosted regression tree (BRT) modeling and Spearman correlation analysis. The key findings are as follows: (1) LST exhibits significant seasonal variation, with the strongest urban heat island effect occurring in summer, particularly within industry, business, and public service zones; residence zones experience the greatest temperature fluctuations, with a seasonal difference of 24.71 °C between spring and summer and a peak temperature of 50.18 °C in summer. (2) Fractional vegetation cover (FVC) consistently demonstrates the most pronounced cooling effect across all zones and seasons. Landscape indicators generally dominate the regulation of LST, with their relative contribution exceeding 45% in green land zones. (3) Population density (PD) exerts a significant, seasonally dependent dual effect on LST, where strategic population distribution can effectively mitigate extreme heat events. (4) Mean building height (MBH) plays a vital role in temperature regulation, showing a marked cooling influence particularly in residence and business zones. Both the perimeter-to-area ratio (LSI) and frontal area index (FAI) exhibit distinct seasonal variations in their impacts on LST. (5) This study establishes specific indicator thresholds to optimize thermal comfort across five functional zones; for instance, FVC should exceed 13% in spring and 31.6% in summer in residence zones to enhance comfort, while maintaining MBH above 24 m further aids temperature regulation. These findings offer a scientific foundation for mitigating urban heat waves and advancing sustainable urban development. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

19 pages, 5031 KiB  
Article
Measurement, Differences, and Driving Factors of Land Use Environmental Efficiency in the Context of Energy Utilization
by Lingyao Wang, Huilin Liu, Xiaoyan Liu and Fangrong Ren
Land 2025, 14(8), 1573; https://doi.org/10.3390/land14081573 - 31 Jul 2025
Viewed by 241
Abstract
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to [...] Read more.
Land urbanization enables a thorough perspective to explore the decoupling of land use environmental efficiency (LUEE) and energy use, thereby supporting the shift into low-carbon land use by emphasizing energy conservation and reducing carbon emissions. This paper first calculates LUEE from 2011 to 2021 by using the EBM-DEA model in China. The geographical detector model is used to examine the driving factors of land use environmental efficiency. The results show the following: (1) China’s LUEE is high in general but shows a clear pattern of spatial differentiation internally, with the highest values in the eastern region represented by Beijing, Jiangsu, and Zhejiang, while the central and western regions show lower LUEE because of their irrational industrial structure and lagging green development. (2) Energy consumption, economic development, industrial upgrading, population size, and urban expansion are the driving factors. Their explanatory power for the spatial stratification heterogeneity of land use environmental impacts varies. (3) Urban expansion has the greatest impact on the spatial differentiation of land use environmental effects, while energy consumption also shows significant explanatory strength. In contrast, economic development and population size exhibit relatively weaker explanatory effects. (4) The interaction of the two driving factors has a greater impact on LUEE than their individual effects, and the interaction is a two-factor enhancement. Finally, we make targeted recommendations to help improve land use environmental efficiency. Full article
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 313
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 340
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

32 pages, 23752 KiB  
Article
Investigation of Ground Surface Temperature Increases in Urban Textures with Different Characteristics: The Case of Denizli City
by Gizem Karacan Tekin and Duygu Gökce
Sustainability 2025, 17(15), 6818; https://doi.org/10.3390/su17156818 - 27 Jul 2025
Viewed by 389
Abstract
Today, urban areas have started to grow and expand with the urbanization and industrialization processes brought about by rapid population growth. The increase in urban density brought about by this growth process has led to the destruction of natural areas and created surfaces [...] Read more.
Today, urban areas have started to grow and expand with the urbanization and industrialization processes brought about by rapid population growth. The increase in urban density brought about by this growth process has led to the destruction of natural areas and created surfaces such as concrete, asphalt, etc., that absorb solar energy. The expansion/proliferation of impervious surfaces in the city has changed the urban climate in the direction of temperature increase compared to the surrounding rural areas. When this change is combined with the temperature increases due to global climate change, it creates urban heat islands, especially in high density areas, and directly affects land surface temperatures. In this study, ground surface temperature analysis for the years 2012–2022 was carried out in order to determine the temperature changes in Denizli city. As a result of the analysis, eight urban textures with different characteristics with very high and high temperature increase were determined. Analyses were made in the context of urban heat island criteria in the determined textures, and the effect of the settlement pattern on urban heat island formation was examined by making use of the analysis results and related literature findings. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 369
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 3848 KiB  
Article
Residential Location Preferences in a Post-Conflict Context: An Agent-Based Modeling Approach to Assess High-Demand Areas in Kabul New City, Afghanistan
by Vineet Chaturvedi and Walter Timo de Vries
Land 2025, 14(7), 1502; https://doi.org/10.3390/land14071502 - 21 Jul 2025
Viewed by 493
Abstract
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into [...] Read more.
As part of the post-conflict reconstruction and recovery, the development of Kabul New City aims to bring relief to the existing capital city, Kabul, which has experienced exponential population growth, putting heavy pressure on its existing resources. Kabul New City is divided into four subsectors, and each of them is being developed and is expected to reach a target population by 2025, as defined by the master plan. The study’s objective is to determine which of the four zones are in demand and need to be prioritized for development, as per the model results. The data collection involves an online questionnaire, and the responses are collected from residents of Kabul and Herat. Agent-based modeling (ABM) is an emerging method of simulating urban dynamics. Cities are evolving continuously and are forming unique spatial patterns that result from the movement of residents in search of new locations that accommodate their needs and preferences. An agent-based model is developed using the weighted random selection process based on household size and income levels. The agents are the residents of Kabul and Herat, and the environment is the land use classification image using the Sentinel 2 image of Kabul New City. The barren class is treated as the developable area and is divided into four sub-sectors. The model simulates three alternative growth rate scenarios, i.e., ambitious, moderate, and steady. The results of the simulation reveal that the sub-sector Dehsabz South, being closer to Kabul city, is in higher demand. Barikab is another sub-sector high in demand, which has connectivity through the highway and is an upcoming industrial hub. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

27 pages, 8650 KiB  
Article
Exploring the Impact of Architectural Landscape Characteristics of Urban Functional Areas in Xi’an City on the Thermal Environment in Summer Using Explainable Machine Learning
by Jiayue Xu, Le Xuan, Cong Li, Mengxue Zhang and Xuhui Wang
Sustainability 2025, 17(14), 6489; https://doi.org/10.3390/su17146489 - 16 Jul 2025
Viewed by 385
Abstract
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban [...] Read more.
Rapid urbanization has exacerbated the urban heat island effect, posing a significant threat to human health and urban ecosystems. While numerous studies have demonstrated that urban morphology significantly influences land surface temperatures (LSTs), few have systematically explored the impact and contribution of urban morphology on LST across different functional zones. Therefore, this study takes Xi’an as a case and employs an interpretable CatBoost-SHAP machine learning model to evaluate the nonlinear influence of building landscape features on LST in different functional zones during summer. The results indicate the following: (1) The highest LST in the study area reached 52.68 °C, while the lowest was 21.68 °C. High-temperature areas were predominantly concentrated in the urban center and industrial zones with dense buildings, whereas areas around water bodies and green spaces exhibited relatively lower temperatures. (2) SHAP analysis revealed that landscape indicators exerted the most substantial impact across all functional zones, with green space zones contributing up to 62%. Among these, fractional vegetation coverage (FVC), as a core landscape factor, served as the primary cooling factor in all six functional zones and consistently demonstrated a negative effect. (3) Population density (POP) exhibited a generally high SHAP contribution across all functional zones, showing a positive correlation. Its effect was most pronounced in commercial zones, accounting for 16%. When POP ranged between 0 and 250 people, the warming effect was particularly prominent. (4) The mean building height (MBH) constituted a major influencing factor in most functional zones, especially in residential zones, where the SHAP value reached 0.7643. Within the range of 10–20 m, the SHAP value increased sharply, indicating a significant warming effect. (5) This study proposes targeted cooling strategies tailored to six functional zones, providing a scientific basis for formulating targeted mitigation strategies for different functional zones to alleviate the urban heat island effect. Full article
Show Figures

Figure 1

29 pages, 3782 KiB  
Article
Land Use Evolution and Multi-Scenario Simulation of Shrinking Border Counties Based on the PLUS Model: A Case Study of Changbai County
by Bingxin Li, Chennan He, Xue Jiang, Qiang Zheng and Jiashuang Li
Sustainability 2025, 17(14), 6441; https://doi.org/10.3390/su17146441 - 14 Jul 2025
Viewed by 408
Abstract
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is [...] Read more.
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is crucial for the high-quality development of border areas. Taking Changbai County on the northeastern border as an example, based on multi-source data such as land use, the natural environment, climate conditions, transportation location, and social economy from 2000 to 2020, the land use transfer matrix, spatial kernel density, and PLUS model were used to analyze the spatio-temporal evolution characteristics of land use and explore simulation scenarios and optimization strategies under different planning concepts. This study reveals the following: (1) During the study period, the construction land continued to increase, but the growth rate slowed down, mainly transferred from cultivated land and forest land, and the spatial structure evolved from a single center to a double center, with the core always concentrated along the border. (2) The distance to the port (transportation location), night light (social economy), slope (natural environment), and average annual temperature (climate conditions) are the main driving factors for the change in construction land, and the PLUS model can effectively simulate the land use trend under population contraction. (3) In the reduction scenario, the construction land decreased by 1.67 km2, the scale of Changbai Town slightly reduced, and the contraction around Malugou Town and Badagou Town was more significant. The study shows that the reduction scenario is more conducive to the population aggregation and industrial carrying capacity improvement of shrinking county towns, which is in line with the high-quality development needs of border areas in our country. Full article
Show Figures

Figure 1

10 pages, 2030 KiB  
Proceeding Paper
Enhancing Urban Resource Management Through Urban and Peri-Urban Agriculture
by Asmaa Moussaoui, Hicham Bahi, Imane Sebari and Kenza Ait El Kadi
Eng. Proc. 2025, 94(1), 6; https://doi.org/10.3390/engproc2025094006 - 10 Jul 2025
Viewed by 266
Abstract
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve [...] Read more.
Urbanization is one of the most important challenges contributing to the trend of replacing agricultural land with high-value land uses, such as housing, as well as industrial and commercial activities, as a result of significant population growth. To face these challenges and improve urban sustainability, integrating an embedded concept of spatial planning, taking into account urban and peri-urban agriculture, will contribute to mitigating food security issues and the negative impact of climate change, while improving social and economic development. This project aims to analyze land use/cover changes in the Casablanca metropolitan area and its surrounding cities, which are undergoing rapid urban growth. To achieve this, time series of remote sensing data were analyzed in order to investigate the spatio-temporal changes in LU/LC and to evaluate the dynamics and spatial pattern of the city’s expansion over the past three decades, which has come at the expense of agricultural land. The study will also examine the relationship between urbanization and agricultural land use change over time. The results of this study show that Casablanca and its outskirts experience significant urban expansion and a decline in arable lands, with rates of 45% and 42%, respectively. The analysis of SDG indicator 11.3.1 has also shown that land consumption in the provinces of Mediouna, Mohammadia, and Nouaceur has exceeded population growth, due to rapid, uncontrolled urbanization at the expense of agricultural land, which highlights the need to develop a new conceptual framework for regenerating land systems based on the implementation of urban and peri-urban agriculture in vacant sites within urban and peri-urban areas. This will offer valuable insights for policymakers to investigate measures that can ensure sustainable land use planning strategies that effectively integrate agriculture into urban development. Full article
Show Figures

Figure 1

18 pages, 1123 KiB  
Article
Corrosion Risk Assessment in Coastal Environments Using Machine Learning-Based Predictive Models
by Marta Terrados-Cristos, Marina Diaz-Piloneta, Francisco Ortega-Fernández, Gemma Marta Martinez-Huerta and José Valeriano Alvarez-Cabal
Sensors 2025, 25(13), 4231; https://doi.org/10.3390/s25134231 - 7 Jul 2025
Viewed by 449
Abstract
Atmospheric corrosion, especially in coastal environments, presents a major challenge for the long-term durability of metallic and concrete infrastructure due to chloride deposition from marine aerosols. With a significant portion of the global population residing in coastal zones—often associated with intense industrial activity—there [...] Read more.
Atmospheric corrosion, especially in coastal environments, presents a major challenge for the long-term durability of metallic and concrete infrastructure due to chloride deposition from marine aerosols. With a significant portion of the global population residing in coastal zones—often associated with intense industrial activity—there is growing demand for accurate and early corrosion prediction methods. Traditional standards for assessing atmospheric corrosivity depend on long-term empirical data, limiting their usefulness during the design stage of infrastructure projects. To address this limitation, this study develops predictive models using machine-learning techniques, namely gradient boosting, support vector machine, and neural networks, to estimate chloride deposition levels based on easily accessible climatic and geographical parameters. Our models were trained on a comprehensive dataset that included variables such as land coverage, wind speed, and orientation. Among the models tested, tree-based algorithms, particularly gradient boosting, provided the highest prediction accuracy (F1 score: 0.8673). This approach not only highlights the most influential environmental variables driving chloride deposition but also offers a scalable and cost-effective solution to support corrosion monitoring and structural life assessment in coastal infrastructure. Full article
(This article belongs to the Special Issue Advanced Sensor Technologies for Corrosion Monitoring)
Show Figures

Figure 1

Back to TopTop