Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = polyvinyl alcohol–alginate beads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9929 KB  
Article
Development of an Acid-Protective Polymer Encapsulation Formulation for Oral Delivery of Salmonella Phages
by Manju Bernela, Nitin Virmani, Bidhan Chand Bera, Rajesh Kumar Vaid, Medhavi Vashisth and Taruna Anand
Viruses 2025, 17(9), 1205; https://doi.org/10.3390/v17091205 - 2 Sep 2025
Cited by 2 | Viewed by 1058
Abstract
Bacteriophage therapy can successfully provide additional treatment to control Salmonella infection, but low gastric pH limits its oral application. The present study aimed to develop an improved encapsulation formulation with enhanced acid protection for oral delivery of Salmonella phages using polymers. This was [...] Read more.
Bacteriophage therapy can successfully provide additional treatment to control Salmonella infection, but low gastric pH limits its oral application. The present study aimed to develop an improved encapsulation formulation with enhanced acid protection for oral delivery of Salmonella phages using polymers. This was achieved by encapsulating a phage cocktail containing three different bacteriophages against Salmonella sp. in alginate beads incorporating polyvinyl alcohol (PVA), PVP-K30, and calcium carbonate as viscosity modifiers and acid protection enhancers. Further, the beads were coated with poly-L-lysine to improve the stability and tested for their efficacy for improved phage viability under in vitro acidic conditions for subsequent use in oral delivery. Moist beads were slimy, and semi-dried beads presented a coarse surface as observed using FE-SEM. In vitro studies revealed that the free phage cocktail exhibited complete inactivation when exposed to acidic pH 2.5 after 15 min incubation. In contrast, the encapsulated phage cocktail showed a decrease of only 1.66 log units in viability when incubated for 90 min at pH 2.5. Furthermore, oral delivery of the encapsulated phage cocktail in the poultry model significantly reduced bacterial load in infected birds’ intestines. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Graphical abstract

16 pages, 3251 KB  
Article
Optimizing the Nitrogen Removal Efficiency of an Intermittent Biological Sponge Iron Reactor by Immobilizing Aerobic Denitrifying Bacteria in the Biological Sponge Iron System
by Jing Li, Jie Li, Yae Wang, Hao Mu, Huina Xie and Wei Zhao
Water 2025, 17(9), 1308; https://doi.org/10.3390/w17091308 - 27 Apr 2025
Viewed by 1047
Abstract
This study investigates the enhancement of nitrogen removal performance in an intermittent biological sponge iron system (BSIS) through the immobilization of aerobic denitrifying bacteria. The aim is to improve the efficiency of simultaneous nitrification and denitrification (SND) in the BSIS by optimizing the [...] Read more.
This study investigates the enhancement of nitrogen removal performance in an intermittent biological sponge iron system (BSIS) through the immobilization of aerobic denitrifying bacteria. The aim is to improve the efficiency of simultaneous nitrification and denitrification (SND) in the BSIS by optimizing the microbial community involved in nitrogen conversion. The immobilization technique not only stabilizes the microbial activity and abundance of aerobic denitrifying bacteria, but also promotes a more efficient denitrification process. The optimal material ratio of polyvinyl alcohol–sodium alginate gel beads was determined as 10 g/100 mL PVA, 4 g/100 mL SA, 2 g/100 mL CaCl2, and 2 g/100 mL of bacterial suspension, achieving a maximum NO3-N removal rate of 91.73%. A response surface model (RSM), established for the operational conditions, (shaker speed, temperature, and pH) showed a high fitting degree (R2 = 0.9960) and predicted the optimal conditions for maximum NO3-N removal as 109.24 rpm, 23.6 °C, and pH 7.9. Compared to R1 (47.82%), R3 achieved a higher average total nitrogen (TN) removal rate of 95.49%, following the addition of immobilized aerobic denitrifying bacteria to the BSIS. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

20 pages, 8566 KB  
Article
Simultaneous Removal of Heavy Metals and Dyes on Sodium Alginate/Polyvinyl Alcohol/κ-Carrageenan Aerogel Beads
by Taesoon Jang, Soyeong Yoon, Jin-Hyuk Choi, Narae Kim and Jeong-Ann Park
Gels 2025, 11(3), 211; https://doi.org/10.3390/gels11030211 - 16 Mar 2025
Cited by 5 | Viewed by 4853
Abstract
Industrial textile wastewater containing both heavy metals and dyes has been massively produced. In this study, semi-interpenetrating polymer network structures of sodium alginate (SA)/polyvinyl alcohol (PVA)/κ-carrageenan (CG) aerogel beads were synthesized for their simultaneous reduction. The SA/PVA/CG aerogel beads were synthesized through a [...] Read more.
Industrial textile wastewater containing both heavy metals and dyes has been massively produced. In this study, semi-interpenetrating polymer network structures of sodium alginate (SA)/polyvinyl alcohol (PVA)/κ-carrageenan (CG) aerogel beads were synthesized for their simultaneous reduction. The SA/PVA/CG aerogel beads were synthesized through a cost-effective and environmentally friendly method using naturally abundant biopolymers without toxic cross-linkers. The SA/PVA/CG aerogel beads were spheres with a size of 3.8 ± 0.1 mm, exhibiting total pore areas of 15.2 m2/g and porous structures (pore size distribution: 0.04–242.7 μm; porosity: 93.97%) with abundant hydrogen bonding, high water absorption capacity, and chemical resistance. The adsorption capacity and mechanisms of the SA/PVA/CG aerogel beads were investigated through kinetic and isotherm experiments for heavy metals (Cu(II), Pb(II)), cationic dye (methylene blue, MB), and anionic dye (acid blue 25, AB)) in both single and binary systems. The maximum adsorption capacities of the SA/PVA/CG aerogel beads based on the Langmuir model of Cu(II), Pb(II), and MB were 85.17, 265.98, and 1324.30 mg/g, respectively. Pb(II) showed higher adsorption affinity than Cu(II) based on ionic properties, such as electronegativity and hydration radius. The adsorption of Cu(II), Pb(II), and MB on the SA/PVA/CG aerogel beads was spontaneous, with heavy metals and MB exhibiting endothermic and exothermic natures, respectively. Full article
(This article belongs to the Special Issue Eco-Friendly Gels for Adsorption)
Show Figures

Figure 1

17 pages, 3699 KB  
Article
Application of Immobilized Microorganism Gel Beads in Black-Odor Water with High Nitrogen and Phosphorus Removal Performance
by Fengbin Zhao, Shumin Liu, Xin Fang and Ning Yang
Water 2024, 16(17), 2534; https://doi.org/10.3390/w16172534 - 7 Sep 2024
Cited by 4 | Viewed by 2486
Abstract
Black-odor water, which is caused by the excessive accumulation of nitrogen and phosphorus in water, is a significant problem. Immobilized microorganisms are considered to be an effective technical solution, but there are still many key parameters to be determined, such as organic matter [...] Read more.
Black-odor water, which is caused by the excessive accumulation of nitrogen and phosphorus in water, is a significant problem. Immobilized microorganisms are considered to be an effective technical solution, but there are still many key parameters to be determined, such as organic matter dissolution, insufficient stability, and insufficient phosphorus removal capacity, among other problems. In this study, the optimum raw material ratios of immobilized microorganism gel beads were determined by means of a response surface experiment. The optimal ratio of raw materials was 5% polyvinyl alcohol (PVA), 1% sodium alginate (SA), and 6% bacterial powder. In addition, the nitrogen and phosphorus removal performance of the materials was improved by loading inorganic compounds, such as 0.5 wt.% zeolite, 0.5 wt.% iron powder, and 0.2 wt.% activated carbon. Tolerance analysis determined that these gel beads could maintain a good performance in a series of harsh environments, such as during intense agitation, at high temperatures, and at low pH values, etc. The total nitrogen (TN), ammonia nitrogen (NH3-N), and phosphorus (TP) removal efficiencies were 88.9%, 90%, and 95%. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

11 pages, 3809 KB  
Article
Inhibiting Biofilm Formation via Simultaneous Application of Nitric Oxide and Quorum Quenching Bacteria
by Youkyoung Kim, Parthiban Anburajan, Hyeok Kim and Hyun-Suk Oh
Membranes 2023, 13(10), 836; https://doi.org/10.3390/membranes13100836 - 20 Oct 2023
Cited by 2 | Viewed by 2715
Abstract
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum [...] Read more.
Membrane biofouling is an inevitable challenge in membrane-based water treatment systems such as membrane bioreactors. Recent studies have shown that biological approaches based on bacterial signaling can effectively control biofilm formation. Quorum quenching (QQ) is known to inhibit biofilm growth by disrupting quorum sensing (QS) signaling, while nitric oxide (NO) signaling helps to disperse biofilms. In this study, batch biofilm experiments were conducted to investigate the impact of simultaneously applying NO signaling and QQ for biofilm control using Pseudomonas aeruginosa PAO1 as a model microorganism. The NO treatment involved the injection of NONOates (NO donor compounds) into mature biofilms, while QQ was implemented by immobilizing QQ bacteria (Escherichia coli TOP10-AiiO or Rhodococcus sp. BH4) in alginate or polyvinyl alcohol/alginate beads to preserve the QQ activity. When QQ beads were applied together with (Z)-1-[N-(3-aminopropyl)-N-(n-propyl) amino]diazen-1-ium-1,2-diolate (PAPA NONOate), they achieved a 39.0% to 71.3% reduction in biofilm formation, which was substantially higher compared to their individual applications (16.0% to 54.4%). These findings highlight the significant potential of combining QQ and NO technologies for effective biofilm control across a variety of processes that require enhanced biofilm inhibition. Full article
Show Figures

Figure 1

17 pages, 3262 KB  
Article
Antibacterial Effect of Polyvinyl Alcohol/Biochar–Nano Silver/Sodium Alginate Gel Beads
by Licheng Xie, Zhichao Zhang and Yucai He
Processes 2023, 11(8), 2330; https://doi.org/10.3390/pr11082330 - 3 Aug 2023
Cited by 11 | Viewed by 3388
Abstract
To date, biochar bacteriostatic material has attracted much attention from researchers. The compact porous structure of fish-scale biochar provides good application prospects. In this study, silver-carrying biochar–polyvinyl alcohol–alginate gel beads (C/PVA/SA) were designed for suppressing bacteria. The biochar was loaded with nano silver [...] Read more.
To date, biochar bacteriostatic material has attracted much attention from researchers. The compact porous structure of fish-scale biochar provides good application prospects. In this study, silver-carrying biochar–polyvinyl alcohol–alginate gel beads (C/PVA/SA) were designed for suppressing bacteria. The biochar was loaded with nano silver particles as the filler, alginate as the substrate, and polyvinyl alcohol (PVA) as the additive to enhance the mechanical properties. The composite gel beads were characterized using Fourier-transform infrared spectrometry (FT-IR). The results indicated that adjusting the PVA concentration could retain the bacteriostatic performance of the gel beads in different pH value solutions. It was found that C/PVA/SA gel beads had a strong inhibitory effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. After ten consecutive antibacterial tests, the antibacterial rate remained high (above 99%) for 15 days. The adhesive effect of SA and PVA resulted in a tight spatial structure of the gel beads. The C/PVA/SA gel composition could effectively prevent water loss and enhance the shrinkage ability of the gel beads. The good degradation performance of C/PVA/SA was also in line with the concept of environmental protection. In general, the C/PVA/SA gel beads showed high potential for application in the treatment of microbial contamination and environmental protection. Full article
(This article belongs to the Special Issue Preparation of Biochar and Biochar Composites and Their Application)
Show Figures

Figure 1

21 pages, 7481 KB  
Article
Manganese Removal Using Functionalised Thiosalicylate-Based Ionic Liquid: Water Filtration System Application
by Ain Aqilah Basirun, Wan Azlina Wan Ab Karim, Ng Cheah Wei, Jiquan Wu and Cecilia Devi Wilfred
Molecules 2023, 28(15), 5777; https://doi.org/10.3390/molecules28155777 - 31 Jul 2023
Cited by 4 | Viewed by 3130
Abstract
Aiming at the generation of new functionalised thiosalicylate-based ionic liquids, a polymeric hydrogel consisting of 1-hexylimidazole propionitrile thiosalicylate [HIMP][TS], with a solid biomaterial support based on polyvinyl alcohol (PVA)–alginate beads, was produced. This study aimed to develop a treatment method for removing manganese [...] Read more.
Aiming at the generation of new functionalised thiosalicylate-based ionic liquids, a polymeric hydrogel consisting of 1-hexylimidazole propionitrile thiosalicylate [HIMP][TS], with a solid biomaterial support based on polyvinyl alcohol (PVA)–alginate beads, was produced. This study aimed to develop a treatment method for removing manganese (Mn) heavy metal from industrial wastewater, which is known to be toxic and harmful towards the environment and human health. The method utilised an adsorption-based approach with an alginate adsorbent that incorporated a functionalised thiosalicylate-based ionic liquid. The synthesised smooth round beads of PVA–alginate–[HIMP][TS] adsorbent were structurally characterised using Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The Mn concentration and removal efficiency were evaluated using atomic absorption spectroscopy (AAS). Three important parameters were evaluated: pH, adsorbent dosage, and contact time. During optimisation using the interactive factor design of experiments through the Box–Behnken model, the results showed that the system achieved a maximum Mn removal efficiency of 98.91% at an initial pH of 7.15, with a contact time of 60 min, using a bead dosage of 38.26 g/L. The beads were also tested in an available water filtration prototype system to illustrate their industrial application, and the performance showed a removal efficiency of 99.14% with 0 NTU total suspended solid (TSS) and 0.13 mg/L turbidity analysis. The recyclability of PVA–alginate–[HIMP][TS] beads using 0.5 M HCl resulted in four cycles with constant 99% Mn removal. The adsorption capacity of Mn was also determined in optimum conditions with 56 mg/g. Therefore, the alginate–thiosalicylate-based ionic liquid system is considered an effective and environmentally friendly method for removing Mn heavy metal due to the high removal efficiency achieved. Full article
(This article belongs to the Collection Green Energy and Environmental Materials)
Show Figures

Figure 1

16 pages, 2964 KB  
Article
Phenol Degradation Performance in Batch and Continuous Reactors with Immobilized Cells of Pseudomonas putida
by Yen-Hui Lin and Yi-Jie Gu
Processes 2023, 11(3), 739; https://doi.org/10.3390/pr11030739 - 2 Mar 2023
Cited by 4 | Viewed by 3079
Abstract
Phenol is a highly persistent environmental pollutant and is toxic to living organisms. The main objective of this study is to observe the phenol degradation performance by free and immobilized Pseudomonas putida (P. putida) in batch and continuous reactors, respectively. Batch [...] Read more.
Phenol is a highly persistent environmental pollutant and is toxic to living organisms. The main objective of this study is to observe the phenol degradation performance by free and immobilized Pseudomonas putida (P. putida) in batch and continuous reactors, respectively. Batch experiments were evaluated to determine the maximum specific growth rate, saturation constant, inhibition constant, and cell yield. These kinetic parameters were used as the input values for the continuous-flow immobilized cells model. The immobilized cells model was validated by experimental results obtained from an immobilized cells continuous reactor. The model-predicted and experimental results showed good agreement for phenol effluent concentration in the continuous mode. In the steady-state condition, high phenol removal was achieved under various hydraulic retention times. The corresponding removal of phenol ranged from 93.3 to 95.9%, while the hydraulic retention times were maintained at 3.1–10.5 h. Furthermore, polyvinyl alcohol-immobilized cells with nanoscale particles were also prepared. The polyvinyl alcohol-immobilized P. putida cells with nanoscale Fe3O4 enhanced the ability of phenol degradation. The experimental results revealed that immobilized cells with nano-Fe3O4 had the highest phenol degradation performance at a low salinity of 1%. However, the advantage of the addition of nano-Fe3O4 was insignificant for phenol degradation at a higher salinity of 5%. The approaches of the batch and continuous column tests were practical in the treatment of actual phenol-containing wastewater. Full article
Show Figures

Figure 1

12 pages, 702 KB  
Review
Production of the Polysaccharide Pullulan by Aureobasidium pullulans Cell Immobilization
by Thomas P. West
Polysaccharides 2022, 3(3), 544-555; https://doi.org/10.3390/polysaccharides3030032 - 9 Aug 2022
Cited by 13 | Viewed by 5344
Abstract
This review examines the immobilization of A. pullulans cells for production of the fungal polysaccharide pullulan. Pullulan is a water-soluble gum that exists structurally as a glucan consisting primarily of maltotriose units, which has a variety of food, non-food and biomedical applications. [...] Read more.
This review examines the immobilization of A. pullulans cells for production of the fungal polysaccharide pullulan. Pullulan is a water-soluble gum that exists structurally as a glucan consisting primarily of maltotriose units, which has a variety of food, non-food and biomedical applications. Cells can be immobilized by carrier-binding or entrapment techniques. The number of studies utilizing carrier-binding as a method to immobilize A. pullulans cells appears to outnumber the investigations using cell entrapment. A variety of solid supports, including polyurethane foam, sponge, diatomaceous earth, ion-exchanger, zeolite and plastic composite, have been employed to immobilize pullulan-producing A. pullulans cells. The most effective solid support that was used to adsorb the fungal cells was polyurethane foam which produced polysaccharide after 18 cycles of use. To entrap pullulan-producing fungal cells, agents such as polyurethane foam, polyvinyl alcohol, calcium alginate, agar, agarose, carrageenan and chitosan were investigated. Polysaccharide production by cells entrapped in polyurethane foam, polyvinyl alcohol or calcium alginate was highest and the immobilized cells could be reutilized for several cycles. It was shown that the pullulan content of the polysaccharide synthesized by cells entrapped in calcium alginate beads was low, which limits the method’s usefulness for pullulan production. Further, many of the entrapped fungal cells synthesized polysaccharide with a low pullulan content. It was concluded that carrier-binding techniques may be more effective than entrapment techniques for A. pullulans cell immobilization, since carrier-binding is less likely to affect the pullulan content of the polysaccharide being synthesized. Full article
Show Figures

Graphical abstract

19 pages, 7740 KB  
Article
Environmentally Friendly Polyvinyl Alcohol−Alginate/Bentonite Semi-Interpenetrating Polymer Network Nanocomposite Hydrogel Beads as an Efficient Adsorbent for the Removal of Methylene Blue from Aqueous Solution
by Mona A. Aziz Aljar, Suad Rashdan and Ahmed Abd El-Fattah
Polymers 2021, 13(22), 4000; https://doi.org/10.3390/polym13224000 - 19 Nov 2021
Cited by 52 | Viewed by 5361
Abstract
Hazardous chemicals like toxic organic dyes are very harmful to the environment and their removal is quite challenging. Therefore there is a necessity to develop techniques, which are environment friendly, cost-effective and easily available in nature for water purification and remediation. The present [...] Read more.
Hazardous chemicals like toxic organic dyes are very harmful to the environment and their removal is quite challenging. Therefore there is a necessity to develop techniques, which are environment friendly, cost-effective and easily available in nature for water purification and remediation. The present research work is focused on the development` and characterization of the ecofriendly semi-interpenetrating polymer network (semi-IPN) nanocomposite hydrogels composed of polyvinyl alcohol (PVA) and alginate (Alg) hydrogel beads incorporating natural bentonite (Bent) clay as a beneficial adsorbent for the removal of toxic methylene blue (MB) from aqueous solution. PVA−Alg/Bent nanocomposite hydrogel beads with different Bent content (0, 10, 20, and 30 wt%) were synthesized via external ionic gelation method. The designed porous and steady structure beads were characterized by the use of Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM). The performance of the beads as MB adsorbents was investigated by treating aqueous solutions in batch mode. The experimental results indicated that the incorporation of Bent (30 wt%) in the nanocomposite formulation sustained the porous structure, preserved water uptake, and increased MB removal efficiency by 230% compared to empty beads. Designed beads possessed higher affinity to MB at high pH 8, 30 °C, and fitted well to pseudo-second-order kinetic model with a high correlation coefficient. Moreover, the designed beads had good stability and reusability as they exhibited excellent removal efficiency (90%) after six consecutive adsorption-desorption cycles. The adsorption process was found be combination of both monolayer adsorption on homogeneous surface and multilayer adsorption on heterogeneous surface. The maximum adsorption capacity of the designed beads system as calculated by Langmuir isotherm was found to be 51.34 mg/g, which is in good agreement with the reported clay-related adsorbents. The designed semi-IPN PVA−Alg/Bent nanocomposite hydrogel beads demonstrated good adsorbent properties and could be potentially used for MB removal from polluted water. Full article
Show Figures

Graphical abstract

9 pages, 1250 KB  
Communication
Encapsulation of Combi-CLEAs of Glycosidases in Alginate Beads and Polyvinyl Alcohol for Wine Aroma Enhancement
by Luigi Tavernini, Carla Aburto, Oscar Romero, Andrés Illanes and Lorena Wilson
Catalysts 2021, 11(7), 866; https://doi.org/10.3390/catal11070866 - 20 Jul 2021
Cited by 6 | Viewed by 2827
Abstract
The aromatic expression of wines can be enhanced by the addition of specific glycosidases, although their poor stability remains a limitation. Coimmobilization of glycosidases as cross-linked enzyme aggregates (combi-CLEAs) offers a simple solution yielding highly stable biocatalysts. Nevertheless, the small particle size of [...] Read more.
The aromatic expression of wines can be enhanced by the addition of specific glycosidases, although their poor stability remains a limitation. Coimmobilization of glycosidases as cross-linked enzyme aggregates (combi-CLEAs) offers a simple solution yielding highly stable biocatalysts. Nevertheless, the small particle size of combi-CLEAs hinders their recovery, preventing their industrial application. Encapsulation of combi-CLEAs of glycosidases in alginate beads and in polyvinyl alcohol is proposed as a solution. Combi-CLEAS of β-d-glucosidase and α-l-arabinofuranosidase were prepared and encapsulated. The effects of combi-CLEA loading and particle size on the expressed specific activity (IU/gbiocatalyst) of the biocatalysts were evaluated. Best results were obtained with 2.6 mm diameter polyvinyl alcohol particles at a loading of 60 mgcombi-CLEA/gpolyvinyl alcohol, exhibiting activities of 1.9 and 1.0 IU/gbiocatalyst for β-d-glucosidase and α-l-arabinofuranosidase, respectively. Afterwards, the stability of the biocatalysts was tested in white wine. All the encapsulated biocatalysts retained full activity after 140 incubation days, outperforming both free enzymes and nonencapsulated combi-CLEAs. Nevertheless, the alginate-encapsulated biocatalysts showed a brittle consistency, making recovery unfeasible. Conversely, the polyvinyl-encapsulated biocatalyst remained intact throughout the assay. The encapsulation of combi-CLEAs in polyvinyl alcohol proved to be a simple methodology that allows their recovery and reuse to harness their full catalytic potential. Full article
(This article belongs to the Special Issue Multienzymatic Catalysis and/or Enzyme Co-immobilization)
Show Figures

Figure 1

10 pages, 1015 KB  
Article
Magnetophoretic Harvesting of Nannochloropsis oculata Using Iron Oxide Immobilized Beads
by Feng-Jen Chu, Terng-Jou Wan, His Chen, Chih-Hung Wu and Po-Min Kao
Water 2020, 12(1), 236; https://doi.org/10.3390/w12010236 - 15 Jan 2020
Cited by 15 | Viewed by 4110
Abstract
In this work, the harvesting of Nannochloropsis oculata microalgae through the use of nanosized Fe3O4 immobilized in polyvinyl alcohol (PVA)/sodium alginate (SA) as a flocculant (Fe3O4/PS) is investigated. Using the Fe3O4/PS immobilized [...] Read more.
In this work, the harvesting of Nannochloropsis oculata microalgae through the use of nanosized Fe3O4 immobilized in polyvinyl alcohol (PVA)/sodium alginate (SA) as a flocculant (Fe3O4/PS) is investigated. Using the Fe3O4/PS immobilized beads could reduce the amount of soluble ferrous ions (Fe2+) released from naked Fe3O4 in acid treatment, leading to easy recovery. The characterization was performed under different dosages and pH values of Fe3O4/PS. The results show that the Fe3O4/PS, when applied to the algae culture (500 mg dry cell weight/L), achieves a 96% harvesting efficiency under conditions of a pH of 4 with 200 mT magnetic field intensity. Fe3O4/PS can be directly reused without adjusting the pH value. The recycled Fe3O4/PS shows stability in terms of its surface properties, maintaining more than 80% harvesting efficiency after five recycles. Magnetophoretic harvesting, using immobilized magnetic iron oxide as a particle-based flocculant, is a potential method to reduce challenges related to the cost-effective microalgae-harvesting method. Full article
(This article belongs to the Special Issue Advances in Microalgal Harvesting)
Show Figures

Graphical abstract

13 pages, 2380 KB  
Article
Screening and Immobilizing the Denitrifying Microbes in Sediment for Bioremediation
by Yixin Yan, Dafang Fu and Jiayuan Shi
Water 2019, 11(3), 614; https://doi.org/10.3390/w11030614 - 25 Mar 2019
Cited by 17 | Viewed by 6793
Abstract
In this study, immobilized microbial beads were proposed as a solution for excessive nitrogen concentration of the river sediment. The predominant denitrifying microbes were screened from the river sediment. The optimized production of immobilized microbial beads and long-term nitrogen removal efficiency were investigated. [...] Read more.
In this study, immobilized microbial beads were proposed as a solution for excessive nitrogen concentration of the river sediment. The predominant denitrifying microbes were screened from the river sediment. The optimized production of immobilized microbial beads and long-term nitrogen removal efficiency were investigated. 16S rRNA gene sequencing analysis showed that denitrifying bacteria such as Pseudomonas, Alcaligenes, Proteiniclasticum, Achromobacter and Methylobacillus were dominant microflora in the enriched microbial agent, which accounted for 94.43% of the total microbes. Pseudomonas belongs to Gammaproteo bacteria, accounting for 49.22% and functioned as the most predominant denitrifying bacteria. The material concentration of 8% polyvinyl alcohol, 0.5% sodium alginate and 12.5% microbial biomass were found to be the optimal immobilizing conditions. The NH4+-N and total nitrogen (TN) removal rates in sediment with dosing immobilized microbial beads were estimated as 68.1% and 67.8%, respectively, when compared to the dosing liquid microbial agent were 50.5% and 49.3%. Meanwhile, the NH4+-N and TN removal rates in overlying water went up from 53.14% to 59.69% and from 68.03% to 78.13%, respectively, by using immobilized microbial beads. Full article
(This article belongs to the Special Issue Urban Water Accounting)
Show Figures

Figure 1

Back to TopTop