Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = polystyrene-block-poly(methyl methacrylate)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10921 KB  
Article
Effect of Solvent Polarity on the Photo-Induced Polymerization-Induced Self-Assembly of Poly(tert-butyl acrylate)-block-Polystyrene near Room Temperature
by Tianyi Zhou, Jiawei Song and Gerald Guerin
Polymers 2026, 18(2), 165; https://doi.org/10.3390/polym18020165 - 7 Jan 2026
Viewed by 329
Abstract
Reversible addition-fragmentation chain transfer mediated polymerization-induced self-assembly (RAFT-PISA) offers an efficient approach for the preparation of polymeric nanomaterials, giving access not only to common structures such as spheres, worm-like micelles and vesicles, but also to much more complex meso-objects. However, when the core [...] Read more.
Reversible addition-fragmentation chain transfer mediated polymerization-induced self-assembly (RAFT-PISA) offers an efficient approach for the preparation of polymeric nanomaterials, giving access not only to common structures such as spheres, worm-like micelles and vesicles, but also to much more complex meso-objects. However, when the core forming block polymer possesses a high glass transition temperature (Tg), like poly(methyl methacrylate) or polystyrene (PS), high-order morphologies are particularly difficult to achieve since the glassy core can prevent polymer chain reorganization during PISA. To overcome this issue, we chose to perform visible light-initiated RAFT-PISA of poly(tert-butyl acrylate)-block-polystyrene (PtBA-b-PS) in solvent systems with varying degrees of polarity. More specifically, we prepared different mixtures of diisopropyl ether and ethanol and chose PtBA as macro-CTA due to its broad range of solubility. By varying the ratio between ethanol and diisopropyl ether, we could observe a transition from spherical micelles to vesicles via intermediate structures (e.g., necklace-like micelles, network-like micellar aggregates and wedding rings). This result was particularly remarkable since the experiments were performed near room temperature. We believe that these multiple morphologies were induced by the interactions between the solvent and the corona and the change in swelling of the polystyrene core with styrene monomer that facilitated its rearrangement. We anticipate that this approach could be applied to other polymeric systems with high Tgs. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

22 pages, 9565 KB  
Article
Directed Self-Assembly of an Acid-Responsive Block Copolymer for Hole-Shrink Process and Pattern Transfer
by Jianghao Zhan, Jiacheng Luo, Zixin Zhuo, Caiwei Shang, Zili Li and Shisheng Xiong
Nanomaterials 2025, 15(20), 1571; https://doi.org/10.3390/nano15201571 - 16 Oct 2025
Viewed by 2181
Abstract
Directed self-assembly (DSA) of polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) has garnered substantial interest for semiconductor manufacturing, particularly for fabricating contact holes and vias. However, its application is limited by the low etch selectivity between the PS and PMMA domains. Here, we report [...] Read more.
Directed self-assembly (DSA) of polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) has garnered substantial interest for semiconductor manufacturing, particularly for fabricating contact holes and vias. However, its application is limited by the low etch selectivity between the PS and PMMA domains. Here, we report an acid-responsive block copolymer, PS-N=CH-PMMA, incorporating a Schiff base (-N=CH-) linkage between the two blocks to impart acid sensitivity. The copolymer is synthesized via aldehyde-terminated PMMA (PMMA-CHO) precursors and is fully compatible with conventional thermal annealing workflows used for PS-b-PMMA. Uniform thin films with vertically oriented cylindrical domains were obtained, which could be directly converted into high-fidelity PS masks through acetic acid immersion without UV exposure. Graphoepitaxial DSA in 193i pre-patterned templates produced shrink-hole patterns with reduced critical dimension (CD) and improved local CD uniformity (LCDU). The shrink-hole CD was tunable by varying PMMA-CHO molecular weights. XPS confirmed selective cleavage of Schiff base linkages at the PS/PMMA interface under acidic conditions, while Ohta–Kawasaki simulations indicated interfacial wetting asymmetry governs etch fidelity and residual layer formation. Pattern transfer into TEOS layers was achieved with minimal CD loss. Overall, the acid-cleavable BCP enables scalable, high-fidelity nanopatterning with improved etch contrast, tunable process windows, and seamless integration into existing PS-b-PMMA lithography platforms. Full article
Show Figures

Figure 1

23 pages, 30393 KB  
Article
An Acid-Cleavable Lamellar Block Copolymer for Sub-30-nm Line Spacing Patterning via Graphoepitaxial Directed Self-Assembly and Direct Wet Etching
by Jianghao Zhan, Caiwei Shang, Muqiao Niu, Jiacheng Luo, Shengguang Gao, Zhiyong Wu, Shengru Niu, Yiming Xu, Xingmiao Zhang, Zili Li and Shisheng Xiong
Polymers 2025, 17(18), 2435; https://doi.org/10.3390/polym17182435 - 9 Sep 2025
Cited by 1 | Viewed by 2050
Abstract
Graphoepitaxial directed self-assembly (DSA) of block copolymers (BCPs) has emerged as a promising strategy for sub-30 nm line spacing patterning in semiconductor nanofabrication. Among the available BCP systems, polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) has been extensively utilized due to its well-characterized phase [...] Read more.
Graphoepitaxial directed self-assembly (DSA) of block copolymers (BCPs) has emerged as a promising strategy for sub-30 nm line spacing patterning in semiconductor nanofabrication. Among the available BCP systems, polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) has been extensively utilized due to its well-characterized phase behavior and compatibility with standard lithographic processes. However, achieving a high-fidelity pattern with PS-b-PMMA remains challenging, owing to its limited etch contrast and reliance on UV-assisted degradation for PMMA removal. In this study, we report the synthesis of an acid-cleavable lamellar BCP, PS-N=CH-PMMA, incorporating a dynamic Schiff base (-N=CH-) linkage at the junction. This functional design enables UV-free wet etching, allowing selective removal of PMMA domains using glacial acetic acid. The synthesized copolymers retain the self-assembly characteristics of PS-b-PMMA and form vertically aligned lamellar nanostructures, with domain spacings tunable from 36.1 to 40.2 nm by varying the PMMA block length. When confined within 193i-defined trench templates with a critical dimension (CD) of 55 nm (trench width), these materials produced well-ordered one-space-per-trench patterns with interline spacings tunable from 15 to 25 nm, demonstrating significant line spacing shrinkage relative to the original template CD. SEM and FIB-TEM analyses confirmed that PS-N=CH-PMMA exhibits markedly improved vertical etch profiles and reduced PMMA residue compared to PS-b-PMMA, even without UV exposure. Furthermore, Ohta–Kawasaki simulations revealed that trench sidewall angle critically influences PS distribution and residual morphology. Collectively, this work demonstrates the potential of dynamic covalent chemistry to enhance the wet development fidelity of BCP lithography and offers a thermally compatible, UV-free strategy for sub-30 nm nanopatterning. Full article
Show Figures

Figure 1

25 pages, 4573 KB  
Article
Synthesis and Characterization of ABA-Type Triblock Copolymers Using Novel Bifunctional PS, PMMA, and PCL Macroinitiators Bearing p-xylene-bis(2-mercaptoethyloxy) Core
by Murat Mısır, Sevil Savaskan Yılmaz and Ahmet Bilgin
Polymers 2023, 15(18), 3813; https://doi.org/10.3390/polym15183813 - 18 Sep 2023
Cited by 10 | Viewed by 3784
Abstract
Syntheses of novel bifunctional poly(methyl methacrylate) (PMMA)-, poly(styrene) (PS)-, and (poly ε-caprolactone) (PCL)-based atom transfer radical polymerization (ATRP) macroinitiators derived from p-xylene-bis(1-hydroxy-3-thia-propanoloxy) core were carried out to obtain ABA-type block copolymers. Firstly, a novel bifunctional ATRP initiator, 1,4-phenylenebis(methylene-thioethane-2,1-diyl)bis(2-bromo-2-methylpropanoat) (PXTBR), synthesized the [...] Read more.
Syntheses of novel bifunctional poly(methyl methacrylate) (PMMA)-, poly(styrene) (PS)-, and (poly ε-caprolactone) (PCL)-based atom transfer radical polymerization (ATRP) macroinitiators derived from p-xylene-bis(1-hydroxy-3-thia-propanoloxy) core were carried out to obtain ABA-type block copolymers. Firstly, a novel bifunctional ATRP initiator, 1,4-phenylenebis(methylene-thioethane-2,1-diyl)bis(2-bromo-2-methylpropanoat) (PXTBR), synthesized the reaction of p-xylene-bis(1-hydroxy-3-thia-propane) (PXTOH) with α-bromoisobutryl bromide. The PMMA and PS macroinitiators were prepared by ATRP of methyl methacrylate (MMA) and styrene (S) as monomers using (PXTBR) as the initiator and copper(I) bromide/N,N,N′,N″,N″-pentamethyldiethylenetriamine (CuBr/PMDETA) as a catalyst system. Secondly, di(α-bromoester) end-functionalized PCL–based ATRP macronitiator (PXTPCLBr) was prepared by esterification of hydroxyl end groups of PCL-diol (PXTPCLOH) synthesized by Sn(Oct)2–catalyzed ring opening polymerization (ROP) of ε-CL in bulk using (PXTOH) as initiator. Finally, ABA-type block copolymers, PXT(PS-b-PMMA-b-PS), PXT(PMMA-b-PS-b-PMMA), PXT(PS-b-PCL-b-PS), and PXT(PMMA-b-PCL-b-PMMA), were synthesized by ATRP of MMA and S as monomers using PMMA-, PS-, and PCL-based macroinitiators in the presence of CuBr/PMDETA as the catalyst system in toluene or N,N-dimethylformamide (DMF) at different temperatures. In addition, the extraction abilities of PCL and PS were investigated under liquid–liquid phase conditions using heavy metal picrates (Ag+, Cd2+, Cu2+, Hg2+, Pb2+, and Zn2+) as substrates and measuring with UV-Vis the amounts of picrate in the 1,2–dichloroethane phase before and after treatment with the polymers. The extraction affinity of PXTPCL and PXTPS for Hg2+ was found to be highest in the liquid–liquid phase extraction experiments. Characterizations of the molecular structures for synthesized novel initiators, macroinitiators, and the block copolymers were made by spectroscopic (FT–IR, ESI–MS, 1H NMR, 13C NMR), DSC, TGA, chromatographic (GPC), and morphologic SEM. Full article
(This article belongs to the Special Issue Characterization and Application of Block Copolymers)
Show Figures

Graphical abstract

17 pages, 3529 KB  
Article
Polyoxometalate-Modified Amphiphilic Polystyrene-block-poly(2-(dimethylamino)ethyl methacrylate) Membranes for Heterogeneous Glucose to Formic Acid Methyl Ester Oxidation
by Yurii Utievskyi, Christof Neumann, Julia Sindlinger, Konstantin Schutjajew, Martin Oschatz, Andrey Turchanin, Nico Ueberschaar and Felix H. Schacher
Nanomaterials 2023, 13(18), 2498; https://doi.org/10.3390/nano13182498 - 5 Sep 2023
Cited by 3 | Viewed by 2182
Abstract
Herein, we present a new heterogeneous catalyst active toward glucose to formic acid methyl ester oxidation. The catalyst was fabricated via electrostatic immobilization of the inorganic polyoxometalate HPA-5 catalyst H8[PMo7V5O40] onto the pore surface of [...] Read more.
Herein, we present a new heterogeneous catalyst active toward glucose to formic acid methyl ester oxidation. The catalyst was fabricated via electrostatic immobilization of the inorganic polyoxometalate HPA-5 catalyst H8[PMo7V5O40] onto the pore surface of amphiphilic block copolymer membranes prepared via non-solvent-induced phase separation (NIPS). The catalyst immobilization was achieved via wet impregnation due to strong coulombic interactions between protonated tertiary amino groups of the polar poly(2-(dimethylamino)ethyl methacrylate) block and the anionic catalyst. Overall, three sets of five consecutive catalytic cycles were performed in an autoclave under 90 °С and 11.5 bar air pressure in methanol, and the corresponding yields of formic acid methyl ester were quantified via head-space gas chromatography. The obtained results demonstrate that the membrane maintains its catalytic activity over multiple cycles, resulting in high to moderate yields in comparison to a homogeneous catalytic system. Nevertheless, presumably due to leaching, the catalytic activity declines over five catalytic cycles. The morphological and chemical changes of the membrane during the prolonged catalysis under harsh conditions were examined in detail using different analytic tools, and it seems that the underlying block copolymer is not affected by the catalytic process. Full article
Show Figures

Graphical abstract

14 pages, 2859 KB  
Article
Self-Assembly of Polymer-Modified FePt Magnetic Nanoparticles and Block Copolymers
by Frank Hartmann, Martin Bitsch, Bart-Jan Niebuur, Marcus Koch, Tobias Kraus, Christian Dietz, Robert W. Stark, Christopher R. Everett, Peter Müller-Buschbaum, Oliver Janka and Markus Gallei
Materials 2023, 16(16), 5503; https://doi.org/10.3390/ma16165503 - 8 Aug 2023
Cited by 6 | Viewed by 2852
Abstract
The fabrication of nanocomposites containing magnetic nanoparticles is gaining interest as a model for application in small electronic devices. The self-assembly of block copolymers (BCPs) makes these materials ideal for use as a soft matrix to support the structural ordering of the nanoparticles. [...] Read more.
The fabrication of nanocomposites containing magnetic nanoparticles is gaining interest as a model for application in small electronic devices. The self-assembly of block copolymers (BCPs) makes these materials ideal for use as a soft matrix to support the structural ordering of the nanoparticles. In this work, a high-molecular-weight polystyrene-b-poly(methyl methacrylate) block copolymer (PS-b-PMMA) was synthesized through anionic polymerization. The influence of the addition of different ratios of PMMA-coated FePt nanoparticles (NPs) on the self-assembled morphology was investigated using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The self-assembly of the NPs inside the PMMA phase at low particle concentrations was analyzed statistically, and the negative effect of higher particle ratios on the lamellar BCP morphology became visible. The placement of the NPs inside the PMMA phase was also compared to theoretical descriptions. The magnetic addressability of the FePt nanoparticles inside the nanocomposite films was finally analyzed using bimodal magnetic force microscopy and proved the magnetic nature of the nanoparticles inside the microphase-separated BCP films. Full article
Show Figures

Figure 1

24 pages, 9902 KB  
Article
Next-Generation Reconfigurable Nanoantennas and Polarization of Light
by Tannaz Farrahi and George K. Giakos
Micromachines 2023, 14(6), 1132; https://doi.org/10.3390/mi14061132 - 28 May 2023
Cited by 1 | Viewed by 2617
Abstract
This study is aimed at the design, calibration, and development of a near-infrared (NIR) liquid crystal multifunctional automated optical polarimeter, which is aimed at the study and characterization of the polarimetric properties of polymer optical nanofilms. The characterization of these novel nanophotonic structures [...] Read more.
This study is aimed at the design, calibration, and development of a near-infrared (NIR) liquid crystal multifunctional automated optical polarimeter, which is aimed at the study and characterization of the polarimetric properties of polymer optical nanofilms. The characterization of these novel nanophotonic structures has been achieved, in terms of Mueller matrix and Stokes parameter analyses. The nanophotonic structures of this study consisted of (a) a matrix consisting of two different polymer domains, namely polybutadiene (PB) and polystyrene (PS), functionalized with gold nanoparticles; (b) cast and annealed Poly (styrene-b-methyl methacrylate) (PS-PMMA) diblock copolymers; (c) a matrix of a block copolymer (BCP) domain, PS-b-PMMA or Poly (styrene-block-methy methacrylate), functionalized with gold nanoparticles; and (d) different thicknesses of PS-b-P2VP diblock copolymer functionalized with gold nanoparticles. In all cases, backscattered infrared light was studied and related to the polarization figures-of-merit (FOM). The outcome of this study indicates that functionalized polymer nanomaterials, depending upon their structure and composition, exhibit promising optical characteristics, modulating and manipulating the polarimetric properties of light. The fabrication of technologically useful, tunable, conjugated polymer blends with an optimized refractive index, shape, size, spatial orientation, and arrangement would lead to the development of new nanoantennas and metasurfaces. Full article
(This article belongs to the Special Issue Micro/Nano-Structure Based Optoelectronics and Photonics Devices)
Show Figures

Figure 1

15 pages, 2766 KB  
Article
Synthesis and Characterization of Spirocyclic Mid-Block Containing Triblock Copolymer
by Suraj Aswale, Minji Kim, Dongwoo Kim, Aruna Kumar Mohanty, Heung Bae Jeon, Hong Y. Cho and Hyun-jong Paik
Polymers 2023, 15(7), 1677; https://doi.org/10.3390/polym15071677 - 28 Mar 2023
Cited by 1 | Viewed by 2755
Abstract
Polymers containing cyclic derivatives are a new class of macromolecular topologies with unique properties. Herein, we report the synthesis of a triblock copolymer containing a spirocyclic mid-block. To achieve this, a spirocyclic polystyrene (cPS) mid-block was first synthesized by atom transfer radical polymerization [...] Read more.
Polymers containing cyclic derivatives are a new class of macromolecular topologies with unique properties. Herein, we report the synthesis of a triblock copolymer containing a spirocyclic mid-block. To achieve this, a spirocyclic polystyrene (cPS) mid-block was first synthesized by atom transfer radical polymerization (ATRP) using a tetra-functional initiator, followed by end-group azidation and a copper (I)-catalyzed azide-alkyne cycloaddition reaction. The resulting functional cPS was purified using liquid chromatography techniques. Following the esterification of cPS, a macro-ATRP initiator was obtained and used to synthesize a poly (methyl methacrylate)-block-cPS-block-poly (methyl methacrylate) (PMMA-b-cPS-b-PMMA) triblock copolymer. This work provides a synthetic strategy for the preparation of a spirocyclic macroinitiator for the ATRP technique and as well as liquid chromatographic techniques for the purification of (spiro) cyclic polymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

13 pages, 1896 KB  
Article
Conducting Polymer-Infused Electrospun Fibre Mat Modified by POEGMA Brushes as Antifouling Biointerface
by Jesna Ashraf, Sandy Lau, Alireza Akbarinejad, Clive W. Evans, David E. Williams, David Barker and Jadranka Travas-Sejdic
Biosensors 2022, 12(12), 1143; https://doi.org/10.3390/bios12121143 - 7 Dec 2022
Cited by 8 | Viewed by 3613
Abstract
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting [...] Read more.
Biofouling on surfaces, caused by the assimilation of proteins, peptides, lipids and microorganisms, leads to contamination, deterioration and failure of biomedical devices and causes implants rejection. To address these issues, various antifouling strategies have been extensively studied, including polyethylene glycol-based polymer brushes. Conducting polymers-based biointerfaces have emerged as advanced surfaces for interfacing biological tissues and organs with electronics. Antifouling of such biointerfaces is a challenge. In this study, we fabricated electrospun fibre mats from sulphonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (sSEBS), infused with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) (sSEBS-PEDOT), to produce a conductive (2.06 ± 0.1 S/cm), highly porous, fibre mat that can be used as a biointerface in bioelectronic applications. To afford antifouling, here the poly(oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes were grafted onto the sSEBS-PEDOT conducting fibre mats via surface-initiated atom transfer radical polymerization technique (SI-ATRP). For that, a copolymer of EDOT and an EDOT derivative with SI-ATRP initiating sites, 3,4-ethylenedioxythiophene) methyl 2-bromopropanoate (EDOTBr), was firstly electropolymerized on the sSEBS-PEDOT fibre mat to provide sSEBS-PEDOT/P(EDOT-co-EDOTBr). The POEGMA brushes were grafted from the sSEBS-PEDOT/P(EDOT-co-EDOTBr) and the polymerization kinetics confirmed the successful growth of the brushes. Fibre mats with 10-mers and 30-mers POEGMA brushes were studied for antifouling using a BCA protein assay. The mats with 30-mers grafted brushes exhibited excellent antifouling efficiency, ~82% of proteins repelled, compared to the pristine sSEBS-PEDOT fibre mat. The grafted fibre mats exhibited cell viability >80%, comparable to the standard cell culture plate controls. Such conducting, porous biointerfaces with POEGMA grafted brushes are suitable for applications in various biomedical devices, including biosensors, liquid biopsy, wound healing substrates and drug delivery systems. Full article
(This article belongs to the Special Issue Electrochemical (Bio-) Sensors in Biological Applications)
Show Figures

Figure 1

18 pages, 2035 KB  
Article
Amphiphilic Diblock Copolymers Bearing Poly(Ethylene Glycol) Block: Hydrodynamic Properties in Organic Solvents and Water Micellar Dispersions, Effect of Hydrophobic Block Chemistry on Dispersion Stability and Cytotoxicity
by Anastasiia A. Elistratova, Alexander S. Gubarev, Alexey A. Lezov, Petr S. Vlasov, Anastasia I. Solomatina, Yu-Chan Liao, Pi-Tai Chou, Sergey P. Tunik, Pavel S. Chelushkin and Nikolai V. Tsvetkov
Polymers 2022, 14(20), 4361; https://doi.org/10.3390/polym14204361 - 16 Oct 2022
Cited by 3 | Viewed by 2973
Abstract
Despite the fact that amphiphilic block copolymers have been studied in detail by various methods both in common solvents and aqueous dispersions, their hydrodynamic description is still incomplete. In this paper, we present a detailed hydrodynamic study of six commercial diblock copolymers featuring [...] Read more.
Despite the fact that amphiphilic block copolymers have been studied in detail by various methods both in common solvents and aqueous dispersions, their hydrodynamic description is still incomplete. In this paper, we present a detailed hydrodynamic study of six commercial diblock copolymers featuring the same hydrophilic block (poly(ethylene glycol), PEG; degree of polymerization is ca. 110 ± 25) and the following hydrophobic blocks: polystyrene, PS35-b-PEG115; poly(methyl methacrylate), PMMA55-b-PEG95; poly(1,4-butadyene), PBd90-b-PEG130; polyethylene PE40-b-PEG85; poly(dimethylsiloxane), PDMS15-b-PEG115; and poly(ɛ-caprolactone), PCL45-b-PEG115. The hydrodynamic properties of block copolymers are investigated in both an organic solvent (tetrahydrofuran) and in water micellar dispersions by the combination of static/dynamic light scattering, viscometry, and analytical ultracentrifugation. All the micellar dispersions demonstrate bimodal particle distributions: small compact (hydrodynamic redii, Rh ≤ 17 nm) spherical particles ascribed to “conventional” core–shell polymer micelles and larger particles ascribed to micellar clusters. Hydrodynamic invariants are (2.4 ± 0.4) × 10−10 g cm2 s−2 K−1 mol−1/3 for all types of micelles used in the study. For aqueous micellar dispersions, in view of their potential biomedical applications, their critical micelle concentration values and cytotoxicities are also reported. The investigated micelles are stable towards precipitation, possess low critical micelle concentration values (with the exception of PDMS15-b-PEG115), and demonstrate low toxicity towards Chinese Hamster Ovarian (CHO-K1) cells. Full article
(This article belongs to the Special Issue Properties and Characterization of Polymers in Nanomaterials)
Show Figures

Graphical abstract

10 pages, 2625 KB  
Article
Polymerization Initiated by Graphite Intercalation Compounds Revisited: One-Pot Synthesis of Amphiphilic Pentablock Copolymers
by Nikolay G. Vladimirov and Ivan Gitsov
Macromol 2022, 2(2), 184-193; https://doi.org/10.3390/macromol2020012 - 14 May 2022
Cited by 3 | Viewed by 2534
Abstract
This study reports the first attempt to employ a potassium–graphite intercalation compound (KC24) as an initiator for the one-pot synthesis of a multi-block copolymer. The results obtained show that KC24 successfully initiated the copolymerization, leading to a copolymer consisting of [...] Read more.
This study reports the first attempt to employ a potassium–graphite intercalation compound (KC24) as an initiator for the one-pot synthesis of a multi-block copolymer. The results obtained show that KC24 successfully initiated the copolymerization, leading to a copolymer consisting of poly(styrene), poly(methyl methacrylate) and poly(ethylene oxide) blocks. When all three comonomers were introduced simultaneously or in a specific sequence, the resulting copolymers had molecular masses in the range between 170,000 Da and 280,000 Da. Their composition was investigated by size-exclusion chromatography with triple detection (dRI/UV/IR) and 1H-NMR. The analyses indicated that all copolymers were enriched in methyl methacrylate (50–66 mol%) despite the fact that the comonomers were added in equimolar amounts. Due to the layered structure of the initiator, the polymerization took place in the graphite interlayer spaces and lead to extensive delamination, indicating at the potential to produce in situ graphite/copolymer composite materials. Full article
Show Figures

Graphical abstract

12 pages, 2183 KB  
Article
Block Copolymer Modified Nanonetwork Epoxy Resin for Superior Energy Dissipation
by Suhail K. Siddique, Hassan Sadek, Tsung-Lun Lee, Cheng-Yuan Tsai, Shou-Yi Chang, Hsin-Hsien Tsai, Te-Shun Lin, Gkreti-Maria Manesi, Apostolos Avgeropoulos and Rong-Ming Ho
Polymers 2022, 14(9), 1891; https://doi.org/10.3390/polym14091891 - 5 May 2022
Cited by 12 | Viewed by 3638
Abstract
Herein, this work aims to fabricate well-ordered nanonetwork epoxy resin modified with poly(butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) block copolymer (BCP) for enhanced energy dissipation using a self-assembled diblock copolymer of polystyrene-b-poly(dimethylsiloxane) (PS-b-PDMS) with gyroid and diamond [...] Read more.
Herein, this work aims to fabricate well-ordered nanonetwork epoxy resin modified with poly(butyl acrylate)-b-poly(methyl methacrylate) (PBA-b-PMMA) block copolymer (BCP) for enhanced energy dissipation using a self-assembled diblock copolymer of polystyrene-b-poly(dimethylsiloxane) (PS-b-PDMS) with gyroid and diamond structures as templates. A systematic study of mechanical properties using nanoindentation of epoxy resin with gyroid- and diamond-structures after modification revealed significant enhancement in energy dissipation, with the values of 0.36 ± 0.02 nJ (gyroid) and 0.43 ± 0.03 nJ (diamond), respectively, when compared to intrinsic epoxy resin (approximately 0.02 ± 0.002 nJ) with brittle characteristics. This enhanced property is attributed to the synergic effect of the deliberate structure with well-ordered nanonetwork texture and the toughening of BCP-based modifiers at the molecular level. In addition to the deliberate structural effect from the nanonetwork texture, the BCP modifier composed of epoxy-philic hard segment and epoxy-phobic soft segment led to dispersed soft-segment domains in the nanonetwork-structured epoxy matrix with superior interfacial strength for the enhancement of applied energy dissipation. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers)
Show Figures

Graphical abstract

22 pages, 4858 KB  
Article
Dispersion of Few-Layer Black Phosphorus in Binary Polymer Blend and Block Copolymer Matrices
by Serena Coiai, Elisa Passaglia, Simone Pinna, Stefano Legnaioli, Silvia Borsacchi, Franco Dinelli, Anna Maria Ferretti, Maria Caporali, Manuel Serrano-Ruiz, Maurizio Peruzzini and Francesca Cicogna
Nanomaterials 2021, 11(8), 1996; https://doi.org/10.3390/nano11081996 - 3 Aug 2021
Cited by 8 | Viewed by 3253
Abstract
Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation, is stable to air, light, and humidity, and can be further processed into devices without degrading its properties. Most of the examples of exfoliated bP/polymer composites involve a single polymer matrix. [...] Read more.
Exfoliated black phosphorus (bP) embedded into a polymer is preserved from oxidation, is stable to air, light, and humidity, and can be further processed into devices without degrading its properties. Most of the examples of exfoliated bP/polymer composites involve a single polymer matrix. Herein, we report the preparation of biphasic polystyrene/poly(methyl methacrylate) (50/50 wt.%) composites containing few-layer black phosphorus (fl-bP) (0.6–1 wt.%) produced by sonicated-assisted liquid-phase exfoliation. Micro-Raman spectroscopy confirmed the integrity of fl-bP, while scanning electron microscopy evidenced the influence of fl-bP into the coalescence of polymeric phases. Furthermore, the topography of thin films analyzed by atomic force microscopy confirmed the effect of fl-bP into the PS dewetting, and the selective PS etching of thin films revealed the presence of fl-bP flakes. Finally, a block copolymer/fl-bP composite (1.2 wt.%) was prepared via in situ reversible addition–fragmentation chain transfer (RAFT) polymerization by sonication-assisted exfoliation of bP into styrene. For this sample, 31P solid-state NMR and Raman spectroscopy confirmed an excellent preservation of bP structure. Full article
(This article belongs to the Special Issue Advances in Polymer Blend Nanocomposites)
Show Figures

Graphical abstract

17 pages, 5879 KB  
Article
Influence of Osmotic Pressure on Nanostructures in Thin Films of a Weakly-Segregated Block Copolymer and Its Blends with a Homopolymer
by Yi-Fang Chen, Jia-Wen Hong, Jung-Hong Chang, Belda Amelia Junisu and Ya-Sen Sun
Polymers 2021, 13(15), 2480; https://doi.org/10.3390/polym13152480 - 28 Jul 2021
Cited by 10 | Viewed by 3685
Abstract
We studied the influence of osmotic pressure on nanostructures in thin films of a symmetric weakly-segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer and its mixtures with a polystyrene (PS) homopolymer of various compositions. Thin films were deposited on substrates through surface neutralization. The [...] Read more.
We studied the influence of osmotic pressure on nanostructures in thin films of a symmetric weakly-segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer and its mixtures with a polystyrene (PS) homopolymer of various compositions. Thin films were deposited on substrates through surface neutralization. The surface neutralization results from the PS mats, which were oxidized and cross-linked by UV-light exposure. Thus, thermal annealing produced perpendicularly oriented lamellae and perforated layers, depending on the content of added PS chains. Nevertheless, a mixed orientation was obtained from cylinders in thin films, where a high content of PS was blended with the P(S-b-MMA). A combination of UV-light exposure and acetic acid rinsing was used to remove the PMMA block. Interestingly, the treatment of PMMA removal inevitably produced osmotic pressure and consequently resulted in surface wrinkling of perpendicular lamellae. As a result, a hierarchical structure with two periodicities was obtained for wrinkled films with perpendicular lamellae. The formation of surface wrinkling is due to the interplay between UV-light exposure and acetic acid rinsing. UV-light exposure resulted in different mechanical properties between the skin and the inner region of a film. Acetic acid rinsing produced osmotic pressure. It was found that surface wrinkling could be suppressed by reducing film thickness, increasing PS content and using high-molecular-weight P(S-b-MMA) BCPs. Full article
(This article belongs to the Special Issue Phase Behavior in Polymers: Morphology and Self-Assembly)
Show Figures

Graphical abstract

10 pages, 2417 KB  
Article
Lamellar Orientation of a Block Copolymer via an Electron-Beam Induced Polarity Switch in a Nitrophenyl Self-Assembled Monolayer or Si Etching Treatments
by Hiroki Yamamoto, Guy Dawson, Takahiro Kozawa and Alex P. G. Robinson
Quantum Beam Sci. 2020, 4(2), 19; https://doi.org/10.3390/qubs4020019 - 27 Mar 2020
Cited by 2 | Viewed by 7343
Abstract
Directed self-assembly (DSA) was investigated on self-assembled monolayers (SAMs) chemically modified by electron beam (EB) irradiation, which is composed of 6-(4-nitrophenoxy) hexane-1-thiol (NPHT). Irradiating a NPHT by EB could successfully induce the orientation and selective patterning of block copolymer domains. We clarified that [...] Read more.
Directed self-assembly (DSA) was investigated on self-assembled monolayers (SAMs) chemically modified by electron beam (EB) irradiation, which is composed of 6-(4-nitrophenoxy) hexane-1-thiol (NPHT). Irradiating a NPHT by EB could successfully induce the orientation and selective patterning of block copolymer domains. We clarified that spatially-selective lamellar orientations of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) could be achieved by a change of an underlying SAM. The change of an underlying SAM is composed of the transition of an NO2 group to an NH2 group, which is induced by EB. The modification in the polarity of different regions of the SAM with EB lithography controlled the lamellar orientation of PS-b-PMMA. The reduction of the NPHT SAM plays an important role in the orientation of block copolymer. This method might significantly simplify block copolymer DSA processes when it is compared to the conventional DSA process. By investigating the lamellae orientation with EB, it is clarified that only suitable annealing temperatures and irradiation doses lead to the vertical orientation. We also fabricated pre-patterned Si substrates by EB lithographic patterning and reactive ion etching (RIE). DSA onto such pre-patterned Si substrates was proven to be successful for subdivision of the lithographic patterns into line and space patterns. Full article
(This article belongs to the Special Issue Quantum Beams Applying to Innovative Industrial Materials)
Show Figures

Figure 1

Back to TopTop