Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (246)

Search Parameters:
Keywords = polymer-cement composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2138 KiB  
Article
Comparison Between Bond Strengths of a Resin Cement on Traditional Prosthetic Substrates and a 3D-Printed Resin for Permanent Restorations
by Alessandro Vichi, Hanan Al-Johani, Dario Balestra and Chris Louca
Coatings 2025, 15(8), 896; https://doi.org/10.3390/coatings15080896 (registering DOI) - 1 Aug 2025
Viewed by 261
Abstract
Recently, 3D-printed resins have been introduced as materials for definitive indirect restorations. Herein, a comparative assessment of the bond strengths of 3D-printed resins to a resin cement was performed. Methods: four definitive restorative materials were selected, i.e., a Feldspar ceramic (VITA Mark II, [...] Read more.
Recently, 3D-printed resins have been introduced as materials for definitive indirect restorations. Herein, a comparative assessment of the bond strengths of 3D-printed resins to a resin cement was performed. Methods: four definitive restorative materials were selected, i.e., a Feldspar ceramic (VITA Mark II, VM), a polymer-infiltrated ceramic network (VITA Enamic, VE), a nanohybrid resin composite (Grandio Bloc, GB), and one 3D-printed resin (Crown Permanent, CP). VM and VE were etched and silanized, GB was sandblasted, and CP was glass bead blasted; for one further experimental group, this was followed by sandblasting (CPs). A resin cement (RelyX Unicem) was then used for bonding, and then a notched shear bond strength test (nSBS) was performed. Failure modes were observed and classified as adhesive, cohesive, or mixed, and SEM representative images were taken. Data were statistically analyzed with one-way ANOVA, Tukey, and Chi-square tests. Significant differences were detected in nSBS among materials (p < 0.001). The highest nSBS was found in VM (30.3 ± 1.8 MPa) a, followed by CPb, GBbc, CPbc, and VEc. Failure modes were significantly different (p < 0.001), and with different prevalent failure modes. The bond strength for 3D-printed permanent resin materials was shown to be lower than that of the felspathic ceramic but comparable to that of the resin block and PICN substrates. Full article
(This article belongs to the Special Issue Advanced Polymer Coatings: Materials, Methods, and Applications)
Show Figures

Figure 1

27 pages, 7191 KiB  
Review
Advances in Nano-Reinforced Polymer-Modified Cement Composites: Synergy, Mechanisms, and Properties
by Yibo Gao, Jianlin Luo, Jie Zhang, Muhammad Asad Ejaz and Liguang Liu
Buildings 2025, 15(15), 2598; https://doi.org/10.3390/buildings15152598 - 23 Jul 2025
Viewed by 224
Abstract
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead [...] Read more.
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead to degradation in mechanical performances of polymer-modified cement-based composite (PMC). Nanomaterials provide unique advantages in enhancing the properties of PMC due to their characteristic ultrahigh specific surface area, quantum effects, and interface modulation capabilities. This review systematically examines recent advances in nano-reinforced PMC (NPMC), elucidating their synergistic optimization mechanisms. The synergistic effects of nanomaterials—nano-nucleation, pore-filling, and templating mechanisms—refine the microstructure, significantly enhancing the mechanical strength, impermeability, and erosion resistance of NPMC. Furthermore, nanomaterials establish interpenetrating network structures (A composite structure composed of polymer networks and other materials interwoven with each other) with polymer cured film (The film formed after the polymer loses water), enhancing load-transfer efficiency through physical and chemical action while optimizing dispersion and compatibility of nanomaterials and polymers. By systematically analyzing the synergy among nanomaterials, polymer, and cement matrix, this work provides valuable insights for advancing high-performance repair materials. Full article
Show Figures

Figure 1

19 pages, 5321 KiB  
Article
Influence of Polymers on the Performance and Protective Effect of Cement-Based Coating Materials
by Yihao Yin and Yingjun Mei
Materials 2025, 18(14), 3321; https://doi.org/10.3390/ma18143321 - 15 Jul 2025
Viewed by 240
Abstract
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of [...] Read more.
Traditional cementitious coating materials struggle to meet the performance criteria for protective coatings in complex environments. This study developed a polymer-modified cement-based coating material with polymer, silica fume (SF), and quartz sand (QS) as the principal admixtures. It also investigated the influence of material composition on the coating’s mechanical properties, durability, interfacial bond characteristics with concrete, and the durability enhancement of coated concrete. The results demonstrated that compared with ordinary cementitious coating material (OCCM), the interfacial bonding performance between 3% Styrene Butadiene Rubber Powder (SBR) coating material and concrete was improved by 42%; the frost resistance and sulfate erosion resistance of concrete protected by 6% polyurethane (PU) coating material were improved by 31.5% and 69.6%. The inclusion of polymers reduces the mechanical properties. The re-addition of silica fume can lower the porosity while increasing durability and strength. The coating material, mixed with 12% SF and 6% PU, exhibits mechanical properties not lower than those of OCCM. Meanwhile, the interfacial bonding performance and durability of the coated concrete have been improved by 45% and 48%, respectively. The grey relational analysis indicated that the coating material with the best comprehensive performance is the one mixed with 12% SF + 6% PU, and the grey correlation degree is 0.84. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 18015 KiB  
Article
Interaction Mechanisms in «Portland Cement—Functional Polymer Mineral Additives» Binder Produced by Different Methods
by Valeria Strokova, Svetlana Bondarenko, Irina Markova, Natalia Kozhukhova, Nikita Lukyanenko and Danil Potapov
Materials 2025, 18(13), 3178; https://doi.org/10.3390/ma18133178 - 4 Jul 2025
Viewed by 324
Abstract
The construction industry is the main consumer of mineral resources. At the same time, the Portland cement (PC) industry occupies a leading position, using expensive, high-quality raw materials. This is due to the high rate of construction in different areas (industrial, civil, road [...] Read more.
The construction industry is the main consumer of mineral resources. At the same time, the Portland cement (PC) industry occupies a leading position, using expensive, high-quality raw materials. This is due to the high rate of construction in different areas (industrial, civil, road construction, etc.). The widespread application of PC is due primarily to the strength and durability of composite materials based on it. Taking into account their specific purpose, PC-based composites are usually optimized to achieve specified characteristics and rational use of raw materials. To reduce PC consumption and justify the possibility of its use in complex binders, this manuscript analyzes the composition of a functional polymer–mineral additive; the nature and mechanisms of its interaction with PC depend on the method of introducing the additive (dry mixing/joint grinding of the clinker–gypsum mixture with the additive at the stage of binder preparation). Based on the data of XRD, IR, and SEM analysis, as well as taking into account patent information, the composition of the additive was clarified. The combined application of the above methods allowed us to establish the uniformity of the additive distribution in the binder depending on the introduction method and to evaluate the effect of each additive component and its mutual impact on the processes occurring during cement hydration. As a result, it was established that the most effective introduction method is combined grinding. A phenomenological model of the structure formation of additives containing cement paste is proposed. The binder production by the combined grinding method promotes the intensification of the processes occurring during hydration, as evidenced by the data of qualitative and quantitative XRD, IR, and DTA analysis, differential scanning calorimetry (DSC), and TGA analysis. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Figure 1

16 pages, 15082 KiB  
Article
Microstructure-Engineered Porous Cementitious Composites with Recycled Tire Particles: Orthogonal Optimization for Artificial Reef Applications
by Wei Qiao, Yiran Qin, Wei Liu, Mingsheng Wei, Zhihua Luo, Lei Li and Kun Yang
J. Mar. Sci. Eng. 2025, 13(7), 1261; https://doi.org/10.3390/jmse13071261 - 29 Jun 2025
Viewed by 316
Abstract
Porous artificial reef materials made of cement used in the offshore area can repair and improve the ecological environment and enrich fishery resources. In this study, quartz sand was used as the aggregate, high-alumina cement as the cementing agent, and crushed particles of [...] Read more.
Porous artificial reef materials made of cement used in the offshore area can repair and improve the ecological environment and enrich fishery resources. In this study, quartz sand was used as the aggregate, high-alumina cement as the cementing agent, and crushed particles of waste tires as the modifier to prepare porous cement–polymer composites. Through orthogonal tests, the effects of the aggregate particle size, the ratio of aggregate to cement, the rubber particle size, and the rubber ratio on the strength and permeability of the porous cement–polymer composites were studied. The significant degrees of different influencing factors were analyzed, and an appropriate configuration scheme for the porous cement–polymer composites was proposed. The experimental results show that the quantity of rubber particles added and the particle size of the rubber particles have a relatively large impact on the properties of the porous cement–polymer composites. Through response surface tests, the interactive effects of various factors in the porous cement–polymer composites on the compressive strength and permeability of the material were verified. The microstructure of the porous cement–polymer composites was observed by SEM. The differences in the microstructure and internal structure between the specimens with a low rubber content and large rubber particle size and those with a high rubber content and small rubber particle size were analyzed, and the influence mechanism of the differences in the microstructure and internal structure on the strength and permeability was proposed. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

19 pages, 2216 KiB  
Article
Study on the Design and Development of Advanced Inorganic Polymers for Thermal Energy Storage (TES) Systems
by Ioanna Giannopoulou, Loizos Georgiou, Konstantina Oikonomopoulou, Maria Spanou, Alexandros Michaelides and Demetris Nicolaides
Energies 2025, 18(12), 3107; https://doi.org/10.3390/en18123107 - 12 Jun 2025
Viewed by 519
Abstract
Thermal Energy Storage (TES) technologies improve solar power dispatchability by addressing the important challenge of energy intermittency. Sensible heat energy storage technology using materials based on Ordinary Portland Cement (OPC) is the simplest and most economical. However, the operation of these materials is [...] Read more.
Thermal Energy Storage (TES) technologies improve solar power dispatchability by addressing the important challenge of energy intermittency. Sensible heat energy storage technology using materials based on Ordinary Portland Cement (OPC) is the simplest and most economical. However, the operation of these materials is limited to temperatures below 400 °C due to the structural degradation of OPC at this temperature. This paper investigates the design and development of inorganic polymers based on Construction and Demolition Waste (CDW) as a sustainable, low-cost, and environmentally friendly alternative to OPC-based materials for high-temperature sensible TES applications. Based on the ternary systems Na2O-SiO2-Al2O3 and K2O-SiO2-Al2O3, representative compositions of CDW-based inorganic polymers were theoretically designed and evaluated using the thermochemical software FactSage 7.0. The experimental verification of the theoretically designed inorganic polymers confirmed that they can withstand temperatures higher than 500 and up to 700 °C. The optimized materials developed compressive strength around 20 MPa, which was improved with temperatures up to 500 °C and then decreased. Moreover, they presented thermal capacities from 600 to 1090 J kg−1 °C −1, thermal diffusivity in the range of 4.7–5.6 × 10−7 m2 s−1, and thermal conductivity from 0.6 to 1 W m−1 °C−1. These properties render the developed inorganic polymers significant candidates for TES applications. Full article
(This article belongs to the Special Issue Advanced Technologies and Materials for Thermal Energy Storage)
Show Figures

Figure 1

27 pages, 6842 KiB  
Article
Non-Conventional and Sustainable Retrofitting of Fire-Exposed Reinforced Concrete Columns Using Basalt Fiber–Engineered Geopolymer Composites
by Ruba Palanivelu, Bhuvaneshwari Panchanatham, Adamantis G. Zapris and Violetta K. Kytinou
Buildings 2025, 15(12), 1962; https://doi.org/10.3390/buildings15121962 - 6 Jun 2025
Cited by 2 | Viewed by 613
Abstract
The increasing demand for sustainable and resilient construction solutions calls for the integration of innovative, non-conventional materials in structural retrofitting. This study investigates the use of basalt fiber-based engineered geopolymer composites (BFEGC) as a retrofitting material for fire-damaged reinforced concrete (RC) short columns. [...] Read more.
The increasing demand for sustainable and resilient construction solutions calls for the integration of innovative, non-conventional materials in structural retrofitting. This study investigates the use of basalt fiber-based engineered geopolymer composites (BFEGC) as a retrofitting material for fire-damaged reinforced concrete (RC) short columns. A total of 14 columns (150 mm × 150 mm × 650 mm) were cast. Two columns were used as control specimens. The remaining 12 columns were exposed to various fire conditions: 300 °C for 30 min, 600 °C for 20 min, and 900 °C for 15 min, followed by gradual (GC) or rapid cooling (RC). Among the columns, six were left unwrapped (GC-NW, RC-NW), while six others were retrofitted with BFEGC (GC-W, RC-W) and subjected to axial loading until failure. The results showed that BFEGC wrapping improved the mechanical performance of fire-damaged columns, especially at 600 °C. The 600RC-W columns exhibited 1.85 times higher ultimate load, 1.56 times greater displacement ductility, and 2.99 times higher energy ductility compared to unwrapped columns. The strength index and confinement coefficient of the 600RC-W columns increased by 2.31 times and 40.2%, respectively. Microstructural analysis confirmed the formation of salient hydration products under elevated temperatures. BFEGC shows significant reduction in carbon emissions and embodied energy, compared to conventional cement-based binders for fiber-reinforced polymer systems. Full article
Show Figures

Figure 1

23 pages, 3631 KiB  
Article
Study on Shear Behavior of Reinforced Concrete Beams Strengthened with FRP Grid–PCM Composite Reinforcement
by Zhimei Zhang and Jiani Lan
Appl. Sci. 2025, 15(11), 6103; https://doi.org/10.3390/app15116103 - 29 May 2025
Viewed by 381
Abstract
In order to deeply investigate the effects of various factors on the shear behavior of RC beams strengthened with fiber-reinforced polymer (FRP) grid–polymer cement mortar (PCM) composite, and to construct a more accurate formula for the shear behavior of reinforced concrete beams, the [...] Read more.
In order to deeply investigate the effects of various factors on the shear behavior of RC beams strengthened with fiber-reinforced polymer (FRP) grid–polymer cement mortar (PCM) composite, and to construct a more accurate formula for the shear behavior of reinforced concrete beams, the following work is carried out in this investigation: Firstly, the finite element numerical simulation of FRP grid–PCM composite RC beams model is carried out using ABAQUS and compared with the test results to verify the correctness of the model; then, the effects of the amount of FRP grid reinforcement, the elastic modulus of the FRP grid, the shear span ratio of the beam, the concrete strength, and the shear reinforcement ratio on the shear performance of the strengthened beams are analyzed; finally, based on the effective strain of the FRP grid to quantify its actual shear contribution, a calculation formula of the shear behavior Capacity of RC Beams Strengthened with an FRP grid–PCM composite is proposed. The results show that the model established in this paper can effectively simulate the shear behavior of the beams in the test; additionally, the effects of the amount of FRP grid reinforcement, the shear span ratio, and the concrete strength are more significant. Finally, the theoretical results of the calculation formula fit well with the collected experimental ones. Full article
(This article belongs to the Special Issue Advances in Building Materials and Concrete, 2nd Edition)
Show Figures

Figure 1

22 pages, 3952 KiB  
Article
End-of-Life Management Strategies for Fe–Mn Nanocomposites Used in Arsenic Removal from Water
by Maja Vujić, Jasmina Nikić, Mirjana Vijatovic Petrovic, Đorđe Pejin, Malcolm Watson, Srđan Rončević and Jasmina Agbaba
Polymers 2025, 17(10), 1353; https://doi.org/10.3390/polym17101353 - 15 May 2025
Cited by 1 | Viewed by 452
Abstract
This study investigates the regeneration, reuse, stabilization, and environmental safety of Fe–Mn polymer nanocomposites for arsenic (As) removal and their environmental safety. The regeneration performance of Fe–Mn polymer nanocomposites (PS-FMBO) used in this study was assessed through batch adsorption–desorption cycles using various eluents, [...] Read more.
This study investigates the regeneration, reuse, stabilization, and environmental safety of Fe–Mn polymer nanocomposites for arsenic (As) removal and their environmental safety. The regeneration performance of Fe–Mn polymer nanocomposites (PS-FMBO) used in this study was assessed through batch adsorption–desorption cycles using various eluents, including NaOH, NaOH–NaCl, and NaOH–NaOCl mixtures. The results demonstrated that 0.1 M NaOH yielded the best regeneration performance, maintaining higher adsorption efficiency over multiple cycles. Stronger desorption agents caused a significant decline in removal efficiency due to possible structural degradation of the PS-FMBO nanocomposite, suggesting that aggressive desorption conditions could compromise its long-term effectiveness. The stabilization of PS-FMBO with cement and quicklime was evaluated for immobilizing As, iron (Fe), and manganese (Mn). Leaching tests indicated that the composites effectively immobilized these contaminants, with minimal leaching observed even after prolonged aging, ensuring compliance with environmental safety regulations. Furthermore, chitosan-based foams were analyzed for their chemical stability, with leaching tests confirming low concentrations of As, Fe, and Mn, even under aggressive conditions, further reinforcing the material’s safety and environmental compliance. These findings underscore the potential of PS-FMBO composites and chitosan-based foams as sustainable materials for hazardous waste management and eco-friendly construction applications. Their ability to immobilize contaminants while maintaining structural integrity highlights their practical significance in reducing environmental pollution and advancing circular economy principles. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Figure 1

27 pages, 8872 KiB  
Article
Mechanical Behavior and Durability Performance of Concrete Reinforced with Hybrid Date Palm and Polypropylene Polymer Fibers
by Musa Adamu, Wafa Abdelmajeed Labib, Yasser E. Ibrahim and Hani Alanazi
Polymers 2025, 17(10), 1350; https://doi.org/10.3390/polym17101350 - 15 May 2025
Viewed by 606
Abstract
Concrete faces challenges related to brittleness and crack propagation, which compromise its tensile strength and durability. Fiber reinforcement has emerged as a promising solution, yet research on hybrid systems combining natural fibers, such as date palm fiber (DPF), with synthetic polymer fibers, like [...] Read more.
Concrete faces challenges related to brittleness and crack propagation, which compromise its tensile strength and durability. Fiber reinforcement has emerged as a promising solution, yet research on hybrid systems combining natural fibers, such as date palm fiber (DPF), with synthetic polymer fibers, like polypropylene fiber (PPF), remains limited. This study investigates the mechanical and durability performance of concrete reinforced with hybrid DPF and PPF, aiming to address the gap in understanding the synergistic effects of combining natural and synthetic fibers in cementitious materials, and improving the tensile strength and crack resistance of the concrete. Both the DPF and PPF were added at varying dosages (0%, 0.25%, 0.5%, 0.75%, and 1% by weight of cement). Both DPF and PPF reduced the workability, fresh density and compressive strength of concrete, with DPF exhibiting a more significant reduction due to its higher hydrophilicity and poor compatibility with the cement matrix. A maximum reduction of 44.78% was observed in the mix containing 1% DPF and 0.5% PPF. The fibers improved tensile strength and ductility, with mixes containing up to 1% combinations of DPF and PPF showing up to a 14.6% increase in splitting tensile strength and 9.5% improvement in flexural strength compared to the control mix. However, durability was compromised—water absorption increased by up to 58% in hybrid mixes containing 1.5% total fiber content, while pore volume rose by as much as 17.5% compared to plain concrete. These increases were more pronounced with higher DPF content due to its hydrophilic nature and poor cement compatibility. This study highlights the potential of hybrid fibers to improve concrete performance while promoting eco-friendly and cost-effective solutions. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

12 pages, 5075 KiB  
Article
Stabilization of Styrene Pickering Emulsions Using SiO2 Derived from Waste Cement
by Guomei Xu, Jihua Zhang, Defei Long, Huayang Wang, Hanjie Ying and Hongxue Xie
Materials 2025, 18(10), 2281; https://doi.org/10.3390/ma18102281 - 14 May 2025
Viewed by 409
Abstract
The initial focus of this study was placed on the conversion of waste into valuable substances. Waste cement was systematically processed to extract silica powder, which was subsequently functionalized with γ-aminopropyl-trimethoxy-silane (KH550) via covalent grafting. The surface-modified silica particles demonstrated optimized amphiphilicity for [...] Read more.
The initial focus of this study was placed on the conversion of waste into valuable substances. Waste cement was systematically processed to extract silica powder, which was subsequently functionalized with γ-aminopropyl-trimethoxy-silane (KH550) via covalent grafting. The surface-modified silica particles demonstrated optimized amphiphilicity for interfacial stabilization, as confirmed by contact angle measurements. When employed in styrene/water Pickering emulsions, these modified silica particles exhibited exceptional stabilization efficiency, enabling the synthesis of core–shell polystyrene/silica composite microspheres visualized by SEM. It was demonstrated by the results that the Pickering emulsions could be stabilized by SiO2 when the appropriate polarity and concentration were achieved. XRD revealed successful silica integration without crystalline phase alteration. Thermogravimetric analysis demonstrated significantly enhanced thermal stability (50.6% residual mass at 800 °C), indicating substantial flame retardancy potential. This waste-to-functional-material strategy not only addresses environmental concerns but also provides an economically viable pathway for advanced polymer composites. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

17 pages, 7469 KiB  
Article
Effect of Cutting Conditions on the Size of Dust Particles Generated During Drilling of Carbon Fiber Reinforced Composite Systems
by Tomáš Knápek, Štěpánka Dvořáčková, Dora Kroisová and Martin Váňa
Polymers 2025, 17(10), 1323; https://doi.org/10.3390/polym17101323 - 13 May 2025
Viewed by 410
Abstract
The influence of machining parameters on the generation of dust particles during the machining of carbon fiber-reinforced polymer (CFRP) composites remains insufficiently understood. These particles, which stay suspended in the air, pose a serious health risk to operators. This study examined the effects [...] Read more.
The influence of machining parameters on the generation of dust particles during the machining of carbon fiber-reinforced polymer (CFRP) composites remains insufficiently understood. These particles, which stay suspended in the air, pose a serious health risk to operators. This study examined the effects of cutting conditions—specifically cutting speed, feed per tooth, and depth of cut—and the impact of delaminations formed during CFRP drilling on the size, shape, and quantity of hazardous dust particles. Experiments were conducted using a commercially available uncoated cemented carbide cutting tool. The analysis of dust particle size and morphology, as well as the evaluation of delamination, was performed using microscopic and tomographic methods. The results demonstrate that reducing the cutting speed led to a decrease in particle size for the investigated CFRP material. Furthermore, it was observed that tool wear results in the generation of smaller particles. Simultaneous delamination during drilling was found to significantly affect the structural integrity of the composite material. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 9938 KiB  
Article
Toughness Reinforcement Design of Grouting Materials for Semi-Flexible Pavements Through Water-Based Epoxy Resin and Emulsified Asphalt
by Peixia Lu and Minghui Gong
Coatings 2025, 15(4), 493; https://doi.org/10.3390/coatings15040493 - 21 Apr 2025
Viewed by 379
Abstract
Semi-flexible pavement (SFP) mixture consists of porous matrix asphalt mixture and cement-based grouting material. This composite material gains advantages from both the rigid cementitious material and flexible asphalt mixture. It exhibits excellent anti-rutting capability while no joints are needed. However, SFP is prone [...] Read more.
Semi-flexible pavement (SFP) mixture consists of porous matrix asphalt mixture and cement-based grouting material. This composite material gains advantages from both the rigid cementitious material and flexible asphalt mixture. It exhibits excellent anti-rutting capability while no joints are needed. However, SFP is prone to cracks in the field. This study employs water-based epoxy resin and emulsified asphalt as polymer additives to modify the grouting material. A response surface methodology (RSM) model was employed for multi-factor and multi-response optimization design. The ratio of water-based epoxy resin to emulsified asphalt (w/e ratio), polymer content, defoamer content, and mixing speed were considered in the model. Fluidity, compressive strength, and fracture energy were selected as response indicators. It was found that a low mixing speed was not able to produce grouting slurry with acceptable fluidity. The addition of higher polymer contents would lower the compressive strength of the grouting material due to the low stiffness of the polymer and entrained air produced during mixing. The addition of defoamer eliminated the bubbles and, therefore, increased the strength and fracture energy of the samples. By solving for the optimal model solution, the values of optimized parameters were determined to be a w/e ratio of 0.64, polymer content of 3.3%, defoamer content of 0.2%, and mixing speed of 2000 rpm. Microstructural analysis further confirmed that the synergistic effect of water-based epoxy resin and emulsified asphalt can effectively make the microstructure of the hardened samples denser. The anti-cracking ability of the SFP mixture can be increased by 22% using optimally designed grouting material. The findings in this study shed light on the design of toughness-reinforced SFP materials. Full article
Show Figures

Figure 1

18 pages, 1902 KiB  
Article
Upcycled Composite Derived from Polyacrylonitrile and Elemental Sulfur: Thermomechanical Properties and Microstructural Insight
by Shalini K. Wijeyatunga and Rhett C. Smith
Sustainability 2025, 17(8), 3702; https://doi.org/10.3390/su17083702 - 19 Apr 2025
Viewed by 649
Abstract
Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and [...] Read more.
Herein, a method to upcycle polyacrylonitrile (PAN) into high-sulfur-content materials (HSMs) by reacting 10 wt. % PAN with 90 wt. % elemental sulfur at 220 °C is reported. The resulting composites (PANS90) form glassy solids that display compressive, flexural, and tensile strengths comparable to or exceeding some common construction materials, including C62 brick. Comparison to other plastic-derived HSMs indicates that PANS90 exhibits mechanical properties including compressional strength (11.4 MPa), flexural strength (3.6 MPa) and tensile strength (2.5 MPa) within a similar or slightly improved range. Mechanistic investigations using small-molecule analogs (e.g., adiponitrile) suggest that thiophene ring formation and radical-driven sulfur–carbon bond formation are key reaction pathways, contributing to the composite’s crosslinked microstructure. Preliminary life cycle assessments estimate a global warming potential for PANS90 (0.33 kg CO2e/kg) that is about three times lower than that of Ordinary Portland Cement, underscoring its reduced environmental footprint. Overall, this sulfur-based upcycling strategy addresses two pressing waste-management concerns—surplus sulfur from petroleum refining and unrecycled PAN—while furnishing robust composites suitable for applications ranging from lightweight construction materials to specialty polymer systems. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

13 pages, 10456 KiB  
Article
Research on the Mechanical Properties and Modification Mechanisms of Orthogonal Optimization Composite Cement-Based Thin Spray On-Liner
by Diantao Zheng, Xinming Chen, Huazhe Jiao, Liuhua Yang, Xiaohui Liu, Yulong Han and Ziyang Liu
Materials 2025, 18(8), 1837; https://doi.org/10.3390/ma18081837 - 17 Apr 2025
Viewed by 362
Abstract
Thin spray on-liner (TSL) is a new type of rock support technology, but ordinary cement-based TSL has low tensile strength and poor toughness, which makes it difficult to meet the challenges of large deformation of coal mine roadway perimeter rock surface maintenance. A [...] Read more.
Thin spray on-liner (TSL) is a new type of rock support technology, but ordinary cement-based TSL has low tensile strength and poor toughness, which makes it difficult to meet the challenges of large deformation of coal mine roadway perimeter rock surface maintenance. A high-performance composite cement-based TSL was obtained by adding acrylic emulsion, basalt fiber and rubber powder to modify ordinary Portland cement. The orthogonal test and range analysis method were used to systematically study the change law of the physical and mechanical properties of the composite cement-based TSL, determine its reasonable ratio, and further microscopic analysis to find out the modification mechanism. The results show that the reasonable ratio of composite cement-based TSL is as follows: polymer–cement ratio is 1.75, basalt fiber content is 1%, and rubber powder content is 3%; that is, the viscosity is 20,000 mps, and the elongation, tensile strength and adhesive strength in 28 d are 121%, 2.28 Mpa, and 1.66 Mpa, respectively. When the acrylic emulsion-basalt fiber-rubber powder is compositely modified, the acrylic emulsion cures and the cement hydration product to form a three-dimensional space network structure, which increases the compactness, the basalt fiber reduces the porosity of the matrix, inhibits the development of matrix cracks, and the rubber powder improves the elongation of the matrix and jointly improves the mechanical properties of TSL. This study provides a theoretical basis for the preparation of composite cement-based TSL. Full article
Show Figures

Figure 1

Back to TopTop