Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = polymer-based smart materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5147 KiB  
Review
Next-Generation Wound Healing Materials: Role of Biopolymers and Their Composites
by Jonghyuk Park and Ranjit De
Polymers 2025, 17(16), 2244; https://doi.org/10.3390/polym17162244 - 19 Aug 2025
Viewed by 401
Abstract
The progress in biopolymers and their composites as advanced materials for wound healing has revolutionized therapeutic approaches for skin regeneration. These materials can effectively integrate their inherent biocompatibility and biodegradability with the enhanced mechanical strength and customizable properties of polymers and functional additives. [...] Read more.
The progress in biopolymers and their composites as advanced materials for wound healing has revolutionized therapeutic approaches for skin regeneration. These materials can effectively integrate their inherent biocompatibility and biodegradability with the enhanced mechanical strength and customizable properties of polymers and functional additives. This review presents a detailed investigation of the design principles, classifications, and biomedical applications of biopolymeric composites, focusing on their capabilities to promote angiogenesis, exhibit antimicrobial activities, and facilitate controlled drug delivery. By overcoming the challenges of conventional wound dressings, such as inadequate exudate management, mechanical fragility, and cytotoxicity, these composites provide dynamic, stimuli-responsive platforms that can adapt to the wound microenvironment. This study further highlights innovative advances in nanoparticle-assisted reinforcement, fiber-based scaffolds, and multi-stimuli responsive smart delivery systems. Finally, the future perspective illustrates how the challenges related to long-term physiological stability, scalable manufacturing, and clinical implementation can be addressed. Overall, this article delivers a comprehensive framework for understanding the transformative impact of biopolymeric composites in next-generation wound care. Full article
(This article belongs to the Special Issue Advanced Polymeric Composite for Drug Delivery Application)
Show Figures

Graphical abstract

12 pages, 4129 KiB  
Article
Magneto-Responsive Networks Filled with Polydopamine and Silane Coupling Agent Dual-Modified Carbonyl Iron Particles for Soft Actuators
by Xiushang Du, Zhenjie Zhao, Xuhang Zhang, Jingyi Zhu and Yingdan Liu
Polymers 2025, 17(16), 2228; https://doi.org/10.3390/polym17162228 - 15 Aug 2025
Viewed by 339
Abstract
Magnetorheological elastomers (MREs) are a type of smart materials formed by dispersing magneto-responsive micron particles in an elastic polymer matrix. They hold significant potential for various applications due to their tunable stiffness, capability to carry out non-contact actuation, and rapid responsiveness to magnetic [...] Read more.
Magnetorheological elastomers (MREs) are a type of smart materials formed by dispersing magneto-responsive micron particles in an elastic polymer matrix. They hold significant potential for various applications due to their tunable stiffness, capability to carry out non-contact actuation, and rapid responsiveness to magnetic fields. However, weak interfacial interactions and poor dispersion of magnetic particles within the polymer matrix often lead to diminished magnetorheological (MR) performance. In this study, carbonyl iron powder (CIP) was chemically modified via polydopamine (PDA) deposition followed by grafting with isobutyl (trimethoxy)silane (IBTMO) to enhance its compatibility with a silicone-based matrix. The resulting anisotropic MREs fabricated using the dual-modified CIP exhibited a reduced elastic modulus, enhanced elongation, a large magnetically induced bending angle of 38°, and a notably improved MR effect of 246.8%. Furthermore, a magnetic soft actuator was designed based on the anisotropic dual-modified CIP-based MRE. When used as flippers for a duck model, the actuator successfully propelled a load approximately 76.8 times its own weight at a speed of 3.48 mm/s, thereby demonstrating promising potential for applications requiring load-bearing actuation. Full article
Show Figures

Graphical abstract

30 pages, 3078 KiB  
Review
Smart Polymers and Adaptive Systems in Pilot Suit Engineering: Toward Autonomous, Responsive, and Wearable Flight Technologies
by Hanjing Ma, Yuan He, Yu Ma, Guannan Han, Zhetao Zhang and Baohua Tian
Nanomaterials 2025, 15(16), 1228; https://doi.org/10.3390/nano15161228 - 12 Aug 2025
Viewed by 560
Abstract
Next-generation pilot suits are evolving into intelligent, adaptive platforms that integrate advanced polymeric materials, smart textiles, and on-body artificial intelligence. High-performance polymers have advanced in mechanical strength, thermal regulation, and environmental resilience, with fabrication methods like electrospinning, weaving, and 3D/4D printing enabling structural [...] Read more.
Next-generation pilot suits are evolving into intelligent, adaptive platforms that integrate advanced polymeric materials, smart textiles, and on-body artificial intelligence. High-performance polymers have advanced in mechanical strength, thermal regulation, and environmental resilience, with fabrication methods like electrospinning, weaving, and 3D/4D printing enabling structural versatility and sensor integration. In particular, functional nanomaterials and hierarchical nanostructures contribute critical properties such as conductivity, flexibility, and responsiveness, forming the foundation for miniaturized sensing and integrated electronics. The integration of flexible fiber-based electronics such as biosensors, strain sensors, and energy systems enables real-time monitoring of physiological and environmental conditions. Coupled with on-body AI for multimodal data processing, autonomous decision-making, and adaptive feedback, these systems enhance pilot safety while reducing cognitive load during flight. This review places a special focus on system-level integration, where polymers and nanomaterials serve as both structural and functional components in wearable technologies. By highlighting the role of nanostructured and functional materials within intelligent textiles, we underline a potential shift toward active human–machine interfaces in aerospace applications. Future trends and advancements in self-healing materials, neuromorphic computing, and dynamic textile systems will further elevate the capabilities of intelligent pilot suits. This review discusses interdisciplinary strategies for developing pilot wearables capable of responding to real-time physiological and operational needs. Full article
(This article belongs to the Special Issue Nanomaterials and Textiles (Second Edition))
Show Figures

Figure 1

28 pages, 2546 KiB  
Systematic Review
Sustainable Polymer Composites for Thermal Insulation in Automotive Applications: A Systematic Literature Review
by Dan Dobrotă, Gabriela-Andreea Sava, Andreea-Mihaela Bărbușiu and Gabriel Tiberiu Dobrescu
Polymers 2025, 17(16), 2200; https://doi.org/10.3390/polym17162200 - 12 Aug 2025
Viewed by 355
Abstract
This systematic literature review explores recent advancements in polymer-based composite materials designed for thermal insulation in automotive applications, with a particular focus on sustainability, performance optimization, and scalability. The methodology follows PRISMA 2020 guidelines and includes a comprehensive bibliometric and thematic analysis of [...] Read more.
This systematic literature review explores recent advancements in polymer-based composite materials designed for thermal insulation in automotive applications, with a particular focus on sustainability, performance optimization, and scalability. The methodology follows PRISMA 2020 guidelines and includes a comprehensive bibliometric and thematic analysis of 229 peer-reviewed articles published over the past 15 years across major databases (Scopus, Web of Science, ScienceDirect, MDPI). The findings are structured around four central research questions addressing (1) the functional role of insulation in automotive systems; (2) criteria for selecting suitable polymer systems; (3) optimization strategies involving nanostructuring, self-healing, and additive manufacturing; and (4) future research directions involving smart polymers, bioinspired architectures, and AI-driven design. Results show that epoxy resins, polyurethane, silicones, and polymeric foams offer distinct advantages depending on the specific application, yet each presents trade-offs between thermal resistance, recyclability, processing complexity, and ecological impact. Comparative evaluation tables and bibliometric mapping (VOSviewer) reveal an emerging research trend toward hybrid systems that combine bio-based matrices with functional nanofillers. The study concludes that no single material system is universally optimal, but rather that tailored solutions integrating performance, sustainability, and cost-effectiveness are essential for next-generation automotive thermal insulation. Full article
(This article belongs to the Special Issue Sustainable Polymer Materials for Industrial Applications)
Show Figures

Figure 1

16 pages, 2576 KiB  
Article
Viscoelastic and Damping Behavior of Composed Modified Asphalt for Functional Interlayers in Photovoltaic Pavements
by Jianrong Rao, Yian Zhao, Xichun Cao, Jiantao Li and Jinbo Xie
Buildings 2025, 15(16), 2830; https://doi.org/10.3390/buildings15162830 - 9 Aug 2025
Viewed by 348
Abstract
This study presents the development and performance evaluation of a rock asphalt-modified damping asphalt binder tailored for interlayer applications in photovoltaic pavement systems. A series of composite binders was formulated by incorporating Qingchuan rock asphalt, crumb rubber powder, and SBS polymer into base [...] Read more.
This study presents the development and performance evaluation of a rock asphalt-modified damping asphalt binder tailored for interlayer applications in photovoltaic pavement systems. A series of composite binders was formulated by incorporating Qingchuan rock asphalt, crumb rubber powder, and SBS polymer into base asphalt using an orthogonal design approach. The effects of different modifiers and their interactions were systematically assessed through conventional physical tests, DSR, BBR and damping ratio measurements. Furthermore, full-scale specimens (30 cm × 30 cm) were subjected to both single-pass and 24 h sustained loading tests to simulate real-world stress conditions. The results revealed that rock asphalt (RA) significantly enhanced the high-temperature stiffness and rutting resistance, while SBS improved ductility and low-temperature flexibility. Rubber powder (RP) notably increased the damping ratio, demonstrating superior energy dissipation potential. Among the nine formulations, the ternary blend of SBS, RA, and RP (denoted as L5) exhibited the most balanced and optimal performance, with G*/sinδ exceeding 5.0 kPa at 64 °C, a ductility of 132 cm, and damping ratios above 0.14. Load testing confirmed the material’s capacity for both instantaneous deformation resistance and delayed elastic recovery. These findings suggest that the L5 formulation is well suited for use in smart pavements where both mechanical durability and vibration attenuation are required. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

15 pages, 3565 KiB  
Article
Controlled PolyDMAEMA Functionalization of Titanium Surfaces via Graft-To and Graft-From Strategies
by Chiara Frezza, Susanna Romano, Daniele Rocco, Giancarlo Masci, Giovanni Sotgiu, Monica Orsini and Serena De Santis
Micromachines 2025, 16(8), 899; https://doi.org/10.3390/mi16080899 - 31 Jul 2025
Viewed by 282
Abstract
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the [...] Read more.
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the integration of smart polymers, such as poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)—noted for its dual pH- and thermo-responsive behavior—has emerged as a promising approach to tailor surface properties for next-generation devices. This work compares two covalent immobilization strategies for PDMAEMA on titanium: the “graft-to” method, involving the attachment of pre-synthesized polymer chains, and the “graft-from” method, based on surface-initiated polymerization. The resulting materials were characterized with size exclusion chromatography (SEC) for molecular weight, Fourier-transform infrared spectroscopy (FTIR) for chemical structure, scanning electron microscopy (SEM) for surface morphology, and contact angle measurements for wettability. Electrochemical impedance spectroscopy and polarization studies were used to assess electrochemical performance. Both strategies yielded uniform and stable coatings, with the mode of grafting influencing both surface morphology and functional stability. These findings provide valuable insights into the development of adaptive, stimuli-responsive titanium-based interfaces in advanced electrochemical systems. Full article
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 1104
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

42 pages, 4253 KiB  
Review
Smart and Biodegradable Polymers in Tissue Engineering and Interventional Devices: A Brief Review
by Rashid Dallaev
Polymers 2025, 17(14), 1976; https://doi.org/10.3390/polym17141976 - 18 Jul 2025
Viewed by 479
Abstract
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled [...] Read more.
Recent advancements in polymer science have catalyzed a transformative shift in biomedical engineering, particularly through the development of biodegradable and smart polymers. This review explores the evolution, functionality, and application of these materials in areas such as tissue scaffolding, cardiovascular occluders, and controlled drug delivery systems. Emphasis is placed on shape-memory polymers (SMPs), conductive polymers, and polymer-based composites that combine tunable degradation, mechanical strength, and bioactivity. The synergy between natural and synthetic polymers—augmented by nanotechnology and additive manufacturing—enables the creation of intelligent scaffolds and implantable devices tailored for specific clinical needs. Key fabrication methods, including electrospinning, freeze-drying, and emulsion-based techniques, are discussed in relation to pore structure and functionalization strategies. Finally, the review highlights emerging trends, including ionic doping, 3D printing, and multifunctional nanocarriers, outlining their roles in the future of regenerative medicine and personalized therapeutics. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

38 pages, 5046 KiB  
Review
Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World
by Muhammad A. Butt
Micromachines 2025, 16(7), 813; https://doi.org/10.3390/mi16070813 - 15 Jul 2025
Viewed by 965
Abstract
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication [...] Read more.
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication techniques, device architectures, and application domains. Key polymer materials, including PMMA, SU-8, polyimides, COC, and PDMS, are evaluated for their optical properties, processability, and suitability for integration into sensing platforms. High-throughput fabrication methods such as nanoimprint lithography, soft lithography, roll-to-roll processing, and additive manufacturing are examined for their role in enabling large-area, low-cost device production. Various photonic structures, including planar waveguides, Bragg gratings, photonic crystal slabs, microresonators, and interferometric configurations, are discussed concerning their sensing mechanisms and performance metrics. Practical applications are highlighted in environmental monitoring, biomedical diagnostics, and structural health monitoring. Challenges such as environmental stability, integration with electronic systems, and reproducibility in mass production are critically analyzed. This review also explores future opportunities in hybrid material systems, printable photonics, and wearable sensor arrays. Collectively, these developments position polymer photonic sensors as promising platforms for widespread deployment in smart, connected sensing environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

29 pages, 7197 KiB  
Review
Recent Advances in Electrospun Nanofiber-Based Self-Powered Triboelectric Sensors for Contact and Non-Contact Sensing
by Jinyue Tian, Jiaxun Zhang, Yujie Zhang, Jing Liu, Yun Hu, Chang Liu, Pengcheng Zhu, Lijun Lu and Yanchao Mao
Nanomaterials 2025, 15(14), 1080; https://doi.org/10.3390/nano15141080 - 11 Jul 2025
Viewed by 748
Abstract
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high [...] Read more.
Electrospun nanofiber-based triboelectric nanogenerators (TENGs) have emerged as a highly promising class of self-powered sensors for a broad range of applications, particularly in intelligent sensing technologies. By combining the advantages of electrospinning and triboelectric nanogenerators, these sensors offer superior characteristics such as high sensitivity, mechanical flexibility, lightweight structure, and biocompatibility, enabling their integration into wearable electronics and biomedical interfaces. This review presents a comprehensive overview of recent progress in electrospun nanofiber-based TENGs, covering their working principles, operating modes, and material composition. Both pure polymer and composite nanofibers are discussed, along with various electrospinning techniques that enable control over morphology and performance at the nanoscale. We explore their practical implementations in both contact-type and non-contact-type sensing, such as human–machine interaction, physiological signal monitoring, gesture recognition, and voice detection. These applications demonstrate the potential of TENGs to enable intelligent, low-power, and real-time sensing systems. Furthermore, this paper points out critical challenges and future directions, including durability under long-term operation, scalable and cost-effective fabrication, and seamless integration with wireless communication and artificial intelligence technologies. With ongoing advancements in nanomaterials, fabrication techniques, and system-level integration, electrospun nanofiber-based TENGs are expected to play a pivotal role in shaping the next generation of self-powered, intelligent sensing platforms across diverse fields such as healthcare, environmental monitoring, robotics, and smart wearable systems. Full article
(This article belongs to the Special Issue Self-Powered Flexible Sensors Based on Triboelectric Nanogenerators)
Show Figures

Figure 1

20 pages, 2317 KiB  
Article
Multifunctional Amphiphilic Biocidal Copolymers Based on N-(3-(Dimethylamino)propyl)methacrylamide Exhibiting pH-, Thermo-, and CO2-Sensitivity
by Maria Filomeni Koutsougera, Spyridoula Adamopoulou, Denisa Druvari, Alexios Vlamis-Gardikas, Zacharoula Iatridi and Georgios Bokias
Polymers 2025, 17(14), 1896; https://doi.org/10.3390/polym17141896 - 9 Jul 2025
Viewed by 523
Abstract
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the [...] Read more.
Because of their potential “smart” applications, multifunctional stimuli-responsive polymers are gaining increasing scientific interest. The present work explores the possibility of developing such materials based on the hydrolytically stable N-3-dimethylamino propyl methacrylamide), DMAPMA. To this end, the properties in aqueous solution of the homopolymer PDMAPMA and copolymers P(DMAPMA-co-MMAx) of DMAPMA with the hydrophobic monomer methyl methacrylate, MMA, were explored. Two copolymers were prepared with a molar content x = 20% and 35%, as determined by Proton Nuclear Magnetic Resonance (1H NMR). Turbidimetry studies revealed that, in contrast to the homopolymer exhibiting a lower critical solution temperature (LCST) behavior only at pH 14 in the absence of salt, the LCST of the copolymers covers a wider pH range (pH > 8.5) and can be tuned within the whole temperature range studied (from room temperature up to ~70 °C) through the use of salt. The copolymers self-assemble in water above a critical aggregation Concentration (CAC), as determined by Nile Red probing, and form nanostructures with a size of ~15 nm (for P(DMAPMA-co-MMA35)), as revealed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The combination of turbidimetry with 1H NMR and automatic total organic carbon/total nitrogen (TOC/TN) results revealed the potential of the copolymers as visual CO2 sensors. Finally, the alkylation of the copolymers with dodecyl groups lead to cationic amphiphilic materials with an order of magnitude lower CAC (as compared to the unmodified precursor), effectively stabilized in water as larger aggregates (~200 nm) over a wide temperature range, due to their increased ζ potential (+15 mV). Such alkylated products show promising biocidal properties against microorganisms such as Escherichia coli and Staphylococcus aureus. Full article
(This article belongs to the Special Issue Development and Innovation of Stimuli-Responsive Polymers)
Show Figures

Figure 1

33 pages, 3171 KiB  
Review
Environmentally Responsive Hydrogels and Composites Containing Hydrogels as Water-Based Lubricants
by Song Chen, Zumin Wu, Lei Wei, Xiuqin Bai, Chengqing Yuan, Zhiwei Guo and Ying Yang
Gels 2025, 11(7), 526; https://doi.org/10.3390/gels11070526 - 7 Jul 2025
Viewed by 655
Abstract
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such [...] Read more.
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such as soft robots. However, external environments, whether within the human body or in engineering applications, often present a wide range of dynamic conditions, including variations in shear stress, temperature, light, pH, and electric fields. Additionally, hydrogels inherently possess low mechanical strength, and their dimensional stability can be compromised by changes during hydration. This review focuses on recent advancements in using environmentally responsive hydrogels as lubricants. It explores strategies involving physical or structural modifications, as well as the incorporation of smart chemical functional groups into hydrogel polymer chains, which enable diverse responsive mechanisms. Drawing on both the existing literature and our own research, we also examine how composite friction materials where hydrogels serve as water-based lubricants offer promising solutions for demanding engineering environments, such as bearing systems in marine vessels. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
Novel Magnetically Charged Grafts for Vascular Repair: Process Optimization, Mechanical Characterization and In Vitro Validation
by Iriczalli Cruz-Maya, Roberto De Santis, Luciano Lanotte and Vincenzo Guarino
Polymers 2025, 17(13), 1877; https://doi.org/10.3390/polym17131877 - 5 Jul 2025
Viewed by 537
Abstract
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. [...] Read more.
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. Two different polycarbonate urethanes—i.e., Corethane A80 (COT) and Chronoflex AL80 (CHF)—were used to fabricate 3D electrospun nanocomposite grafts. SEM analysis showed a homogeneous distribution of fibers, with slight differences in terms of average diameters as a function of the polymer used—(1.14 ± 0.18) µm for COT, and (1.33 ± 0.23) µm for CHF—that tend to disappear in the presence of MNPs—(1.26 ± 0.19) µm and (1.26 ± 0.213) µm for COT/NPs and CHF/NPs, respectively. TGA analyses confirmed the higher ability of CHF to entrap MNPs in the fibers—18.25% with respect to 14.63% for COT—while DSC analyses suggested an effect of MNPs on short-range rearrangements of hard/soft micro-domains of CHF. Accordingly, mechanical tests confirmed a decay of mechanical strength in the presence of MNPs with some differences depending on the matrix—from (6.16 ± 0.33) MPa to (4.55 ± 0.2) MPa (COT), and from (3.67 ± 0.18) MPa to (2.97 ± 0.22) MPa (CNF). The in vitro response revealed that the presence of MNPs did not negatively affect cell viability after 7 days in in vitro culture, suggesting a promising use of these materials as smart vascular grafts able to support the actuation function of vessel wall muscles. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 6057 KiB  
Review
Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation
by Tengfei Qu, Xiaowen Wang and Fengchun Zhang
Polymers 2025, 17(13), 1850; https://doi.org/10.3390/polym17131850 - 2 Jul 2025
Cited by 2 | Viewed by 1387
Abstract
With the increasing demand for food quality and the need for green and sustainable development of food packaging materials in the environment, the preparation and optimization of multifunctional natural and renewable antibacterial packaging materials have become an important trend. This article aims to [...] Read more.
With the increasing demand for food quality and the need for green and sustainable development of food packaging materials in the environment, the preparation and optimization of multifunctional natural and renewable antibacterial packaging materials have become an important trend. This article aims to explore the development of chitosan–cellulose composite materials with good antibacterial properties and promote the widespread application of chitosan and cellulose in food packaging materials. Combining various natural polysaccharide polymers, we discuss the application of chitosan cellulose in meat, dairy products, fruits and vegetables, and fishery products. Meanwhile, we explore their antibacterial and antioxidant behaviors during their use as food packaging materials. This provides a reference for effectively improving the performance of modified chitosan and cellulose food packaging materials in the future. Based on the above explanation, we analyzed the advantages and disadvantages of modified chitosan and cellulose and looked forward to the future development trends of chitosan and cellulose blend films in food preservation. Chitosan–cellulose blends not only have important prospects in food packaging and preservation applications, but can also be combined with intelligent manufacturing to enhance their food preservation performance. The aim of this review is to provide valuable references for basic research on the antimicrobial properties of these composites and their practical application in smart food packaging. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

29 pages, 8644 KiB  
Review
Recent Advances in Resistive Gas Sensors: Fundamentals, Material and Device Design, and Intelligent Applications
by Peiqingfeng Wang, Shusheng Xu, Xuerong Shi, Jiaqing Zhu, Haichao Xiong and Huimin Wen
Chemosensors 2025, 13(7), 224; https://doi.org/10.3390/chemosensors13070224 - 21 Jun 2025
Cited by 1 | Viewed by 1052
Abstract
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing [...] Read more.
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing on their fundamental working mechanisms, sensing material design, device architecture optimization, and intelligent system integration. These sensors primarily operate based on changes in electrical resistance induced by interactions between gas molecules and sensing materials, including physical adsorption, charge transfer, and surface redox reactions. In terms of materials, metal oxide semiconductors, conductive polymers, carbon-based nanomaterials, and their composites have demonstrated enhanced sensitivity and selectivity through strategies such as doping, surface functionalization, and heterojunction engineering, while also enabling reduced operating temperatures. Device-level innovations—such as microheater integration, self-heated nanowires, and multi-sensor arrays—have further improved response speed and energy efficiency. Moreover, the incorporation of artificial intelligence (AI) and Internet of Things (IoT) technologies has significantly advanced signal processing, pattern recognition, and long-term operational stability. Machine learning (ML) algorithms have enabled intelligent design of novel sensing materials, optimized multi-gas identification, and enhanced data reliability in complex environments. These synergistic developments are driving resistive gas sensors toward low-power, highly integrated, and multifunctional platforms, particularly in emerging applications such as wearable electronics, breath diagnostics, and smart city infrastructure. This review concludes with a perspective on future research directions, emphasizing the importance of improving material stability, interference resistance, standardized fabrication, and intelligent system integration for large-scale practical deployment. Full article
Show Figures

Figure 1

Back to TopTop