Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = polymer nanocrystal hybrid materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6431 KiB  
Article
Reactive Nanofiller Reinforced Hybrid Polyurea: The Role of CNC in Material Preparation and Characterization
by Kadir Duman, Madalina Ioana Necolau, Elena Iuliana Bîru, Anamaria Zaharia and Horia Iovu
Polymers 2025, 17(11), 1527; https://doi.org/10.3390/polym17111527 - 30 May 2025
Viewed by 571
Abstract
This study presents the development and analysis of hybrid polyurea composite materials. Neat polyurea was reinforced with cellulose nanocrystals (CNCs) and isocyanate-modified CNCs (CNC-ISOs) via a two-step prepolymer process. Introducing CNC considerably increased the mechanical strength and stiffness of the polyurea matrix. The [...] Read more.
This study presents the development and analysis of hybrid polyurea composite materials. Neat polyurea was reinforced with cellulose nanocrystals (CNCs) and isocyanate-modified CNCs (CNC-ISOs) via a two-step prepolymer process. Introducing CNC considerably increased the mechanical strength and stiffness of the polyurea matrix. The tensile strength increased by up to 16.4%, and the Young modulus improved by approximately 29% compared to the pure polyurea. When CNC was functionalized with isocyanate, the interfacial bonding was further improved, and superior dispersion and load transfer were achieved. At 1.5% CNC-ISO loading, the modulus increased by approximately 128% compared to the unmodified matrix. Comprehensive analyses using FT-IR, XPS, DSC, TGA, DMA, tensile testing, and SEM showed that CNC-ISO films not only achieved higher tensile strength and better thermal stability but also formed a denser polymer network as evidenced by the increased crosslinking density. These findings highlight the importance of tailored nanofiller modification to create advanced polyurea composites with enhanced performance suitable for demanding protective and structural applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

22 pages, 3536 KiB  
Review
Cellulose-Derived Battery Separators: A Minireview on Advances Towards Environmental Sustainability
by Tayse Circe Turossi, Heitor Luiz Ornaghi Júnior, Francisco Maciel Monticeli, Otávio Titton Dias and Ademir José Zattera
Polymers 2025, 17(4), 456; https://doi.org/10.3390/polym17040456 - 9 Feb 2025
Cited by 1 | Viewed by 2638
Abstract
Cellulose-derived battery separators have emerged as a viable sustainable alternative to conventional synthetic materials like polypropylene and polyethylene. Sourced from renewable and biodegradable materials, cellulose derivatives—such as nanofibers, nanocrystals, cellulose acetate, bacterial cellulose, and regenerated cellulose—exhibit a reduced environmental footprint while enhancing battery [...] Read more.
Cellulose-derived battery separators have emerged as a viable sustainable alternative to conventional synthetic materials like polypropylene and polyethylene. Sourced from renewable and biodegradable materials, cellulose derivatives—such as nanofibers, nanocrystals, cellulose acetate, bacterial cellulose, and regenerated cellulose—exhibit a reduced environmental footprint while enhancing battery safety and performance. One of the key advantages of cellulose is its ability to act as a hybrid separator, using its unique properties to improve the performance and durability of battery systems. These separators can consist of cellulose particles combined with supporting polymers, or even a pure cellulose membrane enhanced by the incorporation of additives. Nevertheless, the manufacturing of cellulose separators encounters obstacles due to the constraints of existing production techniques, including electrospinning, vacuum filtration, and phase inversion. Although these methods are effective, they pose challenges for large-scale industrial application. This review examines the characteristics of cellulose and its derivatives, alongside various processing techniques for fabricating separators and assessing their efficacy in battery applications. Additionally, it will consider the environmental implications and the primary challenges and opportunities associated with the use of cellulose separators in energy storage systems. Ultimately, the review underscores the significance of cellulose-based battery separators as a promising approach that aligns with the increasing demand for sustainable technologies in the energy storage domain. Full article
Show Figures

Figure 1

38 pages, 5633 KiB  
Review
Fundamental Aspects of Stretchable Mechanochromic Materials: Fabrication and Characterization
by Christina Tang
Materials 2024, 17(16), 3980; https://doi.org/10.3390/ma17163980 - 10 Aug 2024
Cited by 7 | Viewed by 3457
Abstract
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and [...] Read more.
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

10 pages, 1607 KiB  
Article
Piezoelectric and Pyroelectric Properties of Organic MDABCO-NH4Cl3 Perovskite for Flexible Energy Harvesting
by Rosa M. F. Baptista, Bruna Silva, João Oliveira, Bernardo Almeida, Cidália Castro, Pedro V. Rodrigues, Ana Machado, Etelvina de Matos Gomes and Michael Belsley
Micro 2024, 4(2), 196-205; https://doi.org/10.3390/micro4020014 - 27 Mar 2024
Viewed by 1673
Abstract
This study describes the synthesis and characterization of the lead-free organic ferroelectric perovskite N-methyl-N’-diazabicyclo [2.2.2]octonium)-ammonium trichloride (MDABCO-NH4Cl3). The electrospinning technique was employed to obtain nanofibers embedded with this perovskite in a PVC polymer for hybrid fiber [...] Read more.
This study describes the synthesis and characterization of the lead-free organic ferroelectric perovskite N-methyl-N’-diazabicyclo [2.2.2]octonium)-ammonium trichloride (MDABCO-NH4Cl3). The electrospinning technique was employed to obtain nanofibers embedded with this perovskite in a PVC polymer for hybrid fiber production. The dielectric, piezoelectric, and pyroelectric properties of these fibers were carefully examined. Based on measurements of the dielectric permittivity temperature and frequency dependence, together with the pyroelectric results, a transition from a high temperature paraelectric to a ferroelectric phase that persisted at room temperature was found to occur at 438 K. The measured pyroelectric coefficient yielded values as high as 290 μC K−1 m−2, which is in between the values reported for MDABCO-NH4I3 and the semiorganic ferroelectric triglycine sulfate (TGS). The hybrid nanofibers exhibited good morphological characteristics and demonstrated very good piezoelectric properties. Specifically, a piezoelectric coefficient of 42 pC/N was obtained when applying a periodical force of 3 N and a piezoelectric voltage coefficient of geff = 0.65 V mN−1. The performance of these fibers is on par with that of materials discussed in the existing literature for the fabrication of nano energy-harvesting generators. Importantly, the perovskite nanocrystals within the fibers are protected from degradation by the surrounding polymer, making them a promising environmentally friendly platform for flexible mechanical energy harvesting. Full article
(This article belongs to the Section Microscale Physics)
Show Figures

Figure 1

17 pages, 4228 KiB  
Article
Lead-Free MDABCO-NH4I3 Perovskite Crystals Embedded in Electrospun Nanofibers
by Rosa M. F. Baptista, Gonçalo Moreira, Bruna Silva, João Oliveira, Bernardo Almeida, Cidália Castro, Pedro V. Rodrigues, Ana Machado, Michael Belsley and Etelvina de Matos Gomes
Materials 2022, 15(23), 8397; https://doi.org/10.3390/ma15238397 - 25 Nov 2022
Cited by 10 | Viewed by 2949
Abstract
In this work, we introduce lead-free organic ferroelectric perovskite N-methyl-N′-diazabicyclo[2.2.2]octonium)–ammonium triiodide (MDABCO-NH4I3) nanocrystals embedded in three different polymer fibers fabricated by the electrospinning technique, as mechanical energy harvesters. Molecular ferroelectrics offer the advantage of structural diversity and tunability, easy [...] Read more.
In this work, we introduce lead-free organic ferroelectric perovskite N-methyl-N′-diazabicyclo[2.2.2]octonium)–ammonium triiodide (MDABCO-NH4I3) nanocrystals embedded in three different polymer fibers fabricated by the electrospinning technique, as mechanical energy harvesters. Molecular ferroelectrics offer the advantage of structural diversity and tunability, easy fabrication, and mechanical flexibility. Organic–inorganic hybrid materials are new low-symmetry emerging materials that may be used as energy harvesters because of their piezoelectric or ferroelectric properties. Among these, ferroelectric metal-free perovskites are a class of recently discovered multifunctional materials. The doped nanofibers, which are very flexible and have a high Young modulus, behave as active piezoelectric energy harvesting sources that produce a piezoelectric voltage coefficient up to geff = 3.6 VmN−1 and show a blue intense luminescence band at 325 nm. In this work, the pyroelectric coefficient is reported for the MDABCO-NH4I3 perovskite inserted in electrospun fibers. At the ferroelectric–paraelectric phase transition, the embedded nanocrystals display a pyroelectric coefficient as high as 194 × 10−6 Cm−2k−1, within the same order of magnitude as that reported for the state-of-the-art bulk ferroelectric triglycine sulfate (TGS). The perovskite nanocrystals embedded into the polymer fibers remain stable in their piezoelectric output response, and no degradation is caused by oxidation, making the piezoelectric perovskite nanofibers suitable to be used as flexible energy harvesters. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials: Synthesis, Properties, and Applications)
Show Figures

Figure 1

28 pages, 3584 KiB  
Review
Cesium Lead Iodide Perovskites: Optically Active Crystal Phase Stability to Surface Engineering
by Yixi Wang, Hairong Zhao, Marek Piotrowski, Xiao Han, Zhongsheng Ge, Lizhuang Dong, Chengjie Wang, Sowjanya Krishna Pinisetty, Praveen Kumar Balguri, Anil Kumar Bandela and Udayabhaskararao Thumu
Micromachines 2022, 13(8), 1318; https://doi.org/10.3390/mi13081318 - 15 Aug 2022
Cited by 17 | Viewed by 5574
Abstract
Among perovskites, the research on cesium lead iodides (CsPbI3) has attracted a large research community, owing to their all-inorganic nature and promising solar cell performance. Typically, the CsPbI3 solar cell devices are prepared at various heterojunctions, and working at fluctuating [...] Read more.
Among perovskites, the research on cesium lead iodides (CsPbI3) has attracted a large research community, owing to their all-inorganic nature and promising solar cell performance. Typically, the CsPbI3 solar cell devices are prepared at various heterojunctions, and working at fluctuating temperatures raises questions on the material stability-related performance of such devices. The fundamental studies reveal that their poor stability is due to a lower side deviation from Goldschmidt’s tolerance factor, causing weak chemical interactions within the crystal lattice. In the case of organic–inorganic hybrid perovskites, where their stability is related to the inherent chemical nature of the organic cations, which cannot be manipulated to improve the stability drastically whereas the stability of CsPbI3 is related to surface and lattice engineering. Thus, the challenges posed by CsPbI3 could be overcome by engineering the surface and inside the CsPbI3 crystal lattice. A few solutions have been proposed, including controlled crystal sizes, surface modifications, and lattice engineering. Various research groups have been working on these aspects and had accumulated a rich understanding of these materials. In this review, at first, we survey the fundamental aspects of CsPbI3 polymorphs structure, highlighting the superiority of CsPbI3 over other halide systems, stability, the factors (temperature, polarity, and size influence) leading to their phase transformations, and electronic band structure along with the important property of the defect tolerance nature. Fortunately, the factors stabilizing the most effective phases are achieved through a size reduction and the efficient surface passivation on the delicate CsPbI3 nanocrystal surfaces. In the following section, we have provided the up-to-date surface passivating methods to suppress the non-radiative process for near-unity photoluminescence quantum yield, while maintaining their optically active phases, especially through molecular links (ligands, polymers, zwitterions, polymers) and inorganic halides. We have also provided recent advances to the efficient synthetic protocols for optically active CsPbI3 NC phases to use readily for solar cell applications. The nanocrystal purification techniques are challenging and had a significant effect on the device performances. In part, we summarized the CsPbI3-related solar cell device performances with respect to the device fabrication methods. At the end, we provide a brief outlook on the view of surface and lattice engineering in CsPbI3 NCs for advancing the enhanced stability which is crucial for superior optical and light applications. Full article
Show Figures

Figure 1

25 pages, 9304 KiB  
Review
Cellulose Nanocrystals (CNC)-Based Functional Materials for Supercapacitor Applications
by Arulppan Durairaj, Moorthy Maruthapandi, Arumugam Saravanan, John H. T. Luong and Aharon Gedanken
Nanomaterials 2022, 12(11), 1828; https://doi.org/10.3390/nano12111828 - 26 May 2022
Cited by 30 | Viewed by 6213
Abstract
The growth of industrialization and the population has increased the usage of fossil fuels, resulting in the emission of large amounts of CO2. This serious environmental issue can be abated by using sustainable and environmentally friendly materials with promising novel and superior [...] Read more.
The growth of industrialization and the population has increased the usage of fossil fuels, resulting in the emission of large amounts of CO2. This serious environmental issue can be abated by using sustainable and environmentally friendly materials with promising novel and superior performance as an alternative to petroleum-based plastics. Emerging nanomaterials derived from abundant natural resources have received considerable attention as candidates to replace petroleum-based synthetic polymers. As renewable materials from biomass, cellulose nanocrystals (CNCs) nanomaterials exhibit unique physicochemical properties, low cost, biocompatibility and biodegradability. Among a plethora of applications, CNCs have become proven nanomaterials for energy applications encompassing energy storage devices and supercapacitors. This review highlights the recent research contribution on novel CNC-conductive materials and CNCs-based nanocomposites, focusing on their synthesis, surface functionalization and potential applications as supercapacitors (SCs). The synthesis of CNCs encompasses various pretreatment steps including acid hydrolysis, mechanical exfoliation and enzymatic and combination processes from renewable carbon sources. For the widespread applications of CNCs, their derivatives such as carboxylated CNCs, aldehyde-CNCs, hydride-CNCs and sulfonated CNC-based materials are more pertinent. The potential applications of CNCs-conductive hybrid composites as SCs, critical technical issues and the future feasibility of this endeavor are highlighted. Discussion is also extended to the transformation of renewable and low-attractive CNCs to conductive nanocomposites using green approaches. This review also addresses the key scientific achievements and industrial uses of nanoscale materials and composites for energy conversion and storage applications. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials for Energy Applications)
Show Figures

Graphical abstract

14 pages, 10821 KiB  
Article
Surfactant-Mediated Co-Existence of Single-Walled Carbon Nanotube Networks and Cellulose Nanocrystal Mesophases
by David Attia, Evgenee Yekymov, Yulia Shmidov, Yael Levi-Kalisman, Orit Mendelson, Ronit Bitton and Rachel Yerushalmi-Rozen
Nanomaterials 2021, 11(11), 3059; https://doi.org/10.3390/nano11113059 - 13 Nov 2021
Cited by 2 | Viewed by 2486
Abstract
Hybrids comprising cellulose nanocrystals (CNCs) and percolated networks of single-walled carbon nanotubes (SWNTs) may serve for the casting of hybrid materials with improved optical, mechanical, electrical, and thermal properties. However, CNC-dispersed SWNTs are depleted from the chiral nematic (N*) phase and [...] Read more.
Hybrids comprising cellulose nanocrystals (CNCs) and percolated networks of single-walled carbon nanotubes (SWNTs) may serve for the casting of hybrid materials with improved optical, mechanical, electrical, and thermal properties. However, CNC-dispersed SWNTs are depleted from the chiral nematic (N*) phase and enrich the isotropic phase. Herein, we report that SWNTs dispersed by non-ionic surfactant or triblock copolymers are incorporated within the surfactant-mediated CNC mesophases. Small-angle X-ray measurements indicate that the nanostructure of the hybrid phases is only slightly modified by the presence of the surfactants, and the chiral nature of the N* phase is preserved. Cryo-TEM and Raman spectroscopy show that SWNTs networks with typical mesh size from hundreds of nanometers to microns are distributed equally between the two phases. We suggest that the adsorption of the surfactants or polymers mediates the interfacial interaction between the CNCs and SWNTs, enhancing the formation of co-existing meso-structures in the hybrid phases. Full article
(This article belongs to the Special Issue Polysaccharides in High-Performance Nanostructured Materials)
Show Figures

Graphical abstract

47 pages, 7517 KiB  
Review
Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers
by Valentino Bervia Lunardi, Felycia Edi Soetaredjo, Jindrayani Nyoo Putro, Shella Permatasari Santoso, Maria Yuliana, Jaka Sunarso, Yi-Hsu Ju and Suryadi Ismadji
Polymers 2021, 13(13), 2052; https://doi.org/10.3390/polym13132052 - 23 Jun 2021
Cited by 64 | Viewed by 6228
Abstract
The ‘Back-to-nature’ concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial [...] Read more.
The ‘Back-to-nature’ concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial chemicals in the pharmaceutical industries is the natural polymers, including cellulose and its derivatives. The development of nanocelluloses as nanocarriers in drug delivery systems has reached an advanced stage. Cellulose nanofiber (CNF), nanocrystal cellulose (NCC), and bacterial nanocellulose (BC) are the most common nanocellulose used as nanocarriers in drug delivery systems. Modification and functionalization using various processes and chemicals have been carried out to increase the adsorption and drug delivery performance of nanocellulose. Nanocellulose may be attached to the drug by physical interaction or chemical functionalization for covalent drug binding. Current development of nanocarrier formulations such as surfactant nanocellulose, ultra-lightweight porous materials, hydrogel, polyelectrolytes, and inorganic hybridizations has advanced to enable the construction of stimuli-responsive and specific recognition characteristics. Thus, an opportunity has emerged to develop a new generation of nanocellulose-based carriers that can modulate the drug conveyance for diverse drug characteristics. This review provides insights into selecting appropriate nanocellulose-based hybrid materials and the available modification routes to achieve satisfactory carrier performance and briefly discusses the essential criteria to achieve high-quality nanocellulose. Full article
(This article belongs to the Special Issue Cellulose (Nano)Composites)
Show Figures

Graphical abstract

24 pages, 4353 KiB  
Review
Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications
by Madalina Oprea and Denis Mihaela Panaitescu
Molecules 2020, 25(18), 4045; https://doi.org/10.3390/molecules25184045 - 4 Sep 2020
Cited by 76 | Viewed by 7342
Abstract
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant [...] Read more.
Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles. The resultant hybrids are valuable materials for biomedical applications due to the novel optical, electronic, magnetic and antibacterial properties. In the present review, the preparation methods, properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed. Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of the synthesis methods and conditions on the thermal and mechanical properties, along with the bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed in this review. The current status of research in the field and future perspectives were also signaled. Full article
(This article belongs to the Special Issue Cellulose Nanomaterials: Production and Applications)
Show Figures

Figure 1

17 pages, 46416 KiB  
Review
Recent Progress in Hybrid Solar Cells Based on Solution-Processed Organic and Semiconductor Nanocrystal: Perspectives on Device Design
by Sihang Xie, Xueqi Li, Yasi Jiang, Rourou Yang, Muyi Fu, Wanwan Li, Yiyang Pan, Donghuan Qin, Wei Xu and Lintao Hou
Appl. Sci. 2020, 10(12), 4285; https://doi.org/10.3390/app10124285 - 22 Jun 2020
Cited by 13 | Viewed by 5469
Abstract
Solution-processed hybrid solar cells have been well developed in the last twenty years due to the advantages of low cost, low material-consuming and simple fabricating technology. However, the performance, stability and film quality of hybrid solar cells need to be further improved for [...] Read more.
Solution-processed hybrid solar cells have been well developed in the last twenty years due to the advantages of low cost, low material-consuming and simple fabricating technology. However, the performance, stability and film quality of hybrid solar cells need to be further improved for future commercial application (with a lifetime up to 20 years and power conversion efficiency higher than 15%). By combining the merits of organic polymers and nanocrystals (NC), the reasonable design of interface engineering and device architecture, the performance coupled with stability of hybrid solar cells can be significantly improved. This review gives a brief conclusive introduction to the progress on solution-processed organic/inorganic semiconductor hybrid solar cells, including a summary of the development of hybrid solar cells in recent years, the strategy of hybrid solar cells with different structures and the incorporation of new organic hole transport materials with new insight into device processing for high efficiency. This paper also puts forward some suggestions and guidance for the future development of high-performance NC-based photovoltaics. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Application of Hybrid Composites)
Show Figures

Figure 1

20 pages, 847 KiB  
Article
Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications
by Annamaria Panniello, Chiara Ingrosso, Paul Coupillaud, Michela Tamborra, Enrico Binetti, Maria Lucia Curri, Angela Agostiano, Daniel Taton and Marinella Striccoli
Materials 2014, 7(1), 591-610; https://doi.org/10.3390/ma7010591 - 21 Jan 2014
Cited by 6 | Viewed by 8895
Abstract
Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential [...] Read more.
Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites. Full article
(This article belongs to the Special Issue Nanocomposites of Polymers and Inorganic Particles 2013)
Show Figures

Graphical abstract

19 pages, 1076 KiB  
Review
Polymer-Nanocrystal Hybrid Materials for Light Conversion Applications
by Ying Yuan and Michael Krüger
Polymers 2012, 4(1), 1-19; https://doi.org/10.3390/polym4010001 - 27 Dec 2011
Cited by 33 | Viewed by 13527
Abstract
In this mini-review we report on current developments of hybrid materials based on semiconductor nanocrystals integrated into polymer matrices for direct light conversion, their present limitations, as well as their high potential for future applications. Full article
(This article belongs to the Special Issue Polymer-Inorganic Hybrids and Their Applications)
Show Figures

Figure 1

Back to TopTop