Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,188)

Search Parameters:
Keywords = polymer fillers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4403 KB  
Article
Enhanced Mechanical Performance of GFRP Rebars Using Plasma-Treated Natural Fiber Powder Fillers
by Thaloengsak Keereemasthong, Thidarat Kanthiya, Kittiphat Kochchapong, Sattaya Chaiwithee, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Jonghwan Suhr, Choncharoen Sawangrat and Pitiwat Wattanachai
Buildings 2025, 15(17), 3030; https://doi.org/10.3390/buildings15173030 (registering DOI) - 25 Aug 2025
Abstract
In this study, glass fiber-reinforced polymer (GFRP) rebars were fabricated using epoxy resin matrix filled with 5 wt.% of hemp and bamboo powder fillers, both untreated and dielectric barrier discharge (DBD) plasma treated. The tensile, flexural, transverse shear, and pull-out bond strengths were [...] Read more.
In this study, glass fiber-reinforced polymer (GFRP) rebars were fabricated using epoxy resin matrix filled with 5 wt.% of hemp and bamboo powder fillers, both untreated and dielectric barrier discharge (DBD) plasma treated. The tensile, flexural, transverse shear, and pull-out bond strengths were evaluated to investigate the effects of filler type and surface modification. The results show that the incorporation of untreated fillers decreased tensile strength from 706.4 MPa for hemp to 682.3 MPa for bamboo. The plasma-treated hemp formulation demonstrated a higher recovery (762.1 MPa), approaching the control value (804.2 MPa). Transverse shear strength increased from 117.0 MPa (untreated hemp) to 128.3 MPa (plasma-treated hemp). The bond strength with concrete remained unaffected across all groups. Scanning electron microscopy (SEM) revealed improved filler dispersion, reduced voids, and enhanced resin wetting in the plasma-treated specimens. Fourier-transform infrared spectroscopy (FTIR) confirmed the introduction of polar functional groups such as hydroxyl and carbonyl groups onto the fiber surfaces following plasma exposure. These modifications contributed to improved interfacial adhesion and mechanical integrity. Overall, the DBD plasma treatment effectively enhanced the performance and interfacial characteristics of natural fiber-filled GFRP rebars, supporting their potential as sustainable reinforcements in structural applications. Full article
Show Figures

Figure 1

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 (registering DOI) - 25 Aug 2025
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

29 pages, 3349 KB  
Review
Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential
by Mateusz Pęśko and Anna Masek
Polymers 2025, 17(17), 2286; https://doi.org/10.3390/polym17172286 - 23 Aug 2025
Viewed by 47
Abstract
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive [...] Read more.
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive and structured overview of the recent progress (2020–2025) in the integration of plant-based biofillers into both thermoplastic and thermosetting polymer matrices, with a focus on surface modification techniques, physicochemical characterization, and emerging industrial applications. Unlike the prior literature, this work highlights the dual environmental and material benefits of using plant-derived fillers, particularly in the context of waste valorization and circular material design. By clearly identifying a current research gap—the limited scalability and processing efficiency of biofillers—this review proposes a strategy in which plant-derived materials function as key enablers for sustainable composite development. Special attention is given to extraction methods of lignocellulosic fillers from renewable agricultural waste streams and their subsequent functionalization to improve matrix compatibility. Additionally, it delineates the principal approaches for biofiller modification, demonstrating how their properties can be tailored to meet specific needs in biocomposite production. This critical synthesis of the state-of-the-art literature not only reinforces the role of biofillers in reducing dependence on non-renewable fillers but also outlines future directions in scaling up their use, improving durability, and expanding performance capabilities of sustainable composites. Overall, the presented analysis contributes novel insights into the material design, processing strategies, and potential of plant biofillers as central elements in next-generation green composites. Full article
Show Figures

Figure 1

12 pages, 2908 KB  
Article
High-Surface-Area ZIF-67 Nanoflowers: Synthesis and Application Toward Enhanced CH4/N2 Separation in Mixed Matrix Membranes
by Dongze Li
Coatings 2025, 15(9), 987; https://doi.org/10.3390/coatings15090987 - 23 Aug 2025
Viewed by 54
Abstract
Under elevated loading conditions, the aggregation of fillers emerges as a pivotal factor driving the degradation of separation performance in mixed matrix membranes. The two-dimensional (2D) modification of fillers, aimed at enhancing interfacial contact with polymers, has been recognized as an effective strategy [...] Read more.
Under elevated loading conditions, the aggregation of fillers emerges as a pivotal factor driving the degradation of separation performance in mixed matrix membranes. The two-dimensional (2D) modification of fillers, aimed at enhancing interfacial contact with polymers, has been recognized as an effective strategy to improve interphase compatibility and increase filler loading capacity. However, it is worth noting that the BET surface area of 2D fillers is typically relatively low. In this study, a two-step approach was developed. First, a “diffusion-mediated” process was combined with a solvent optimization strategy based on first-principles (DFT) calculations, achieving a 20-fold suppression in ZIF-67 nucleation-crystallization rate. This enabled the successful synthesis of a 2D amorphous nanoflower structure. Subsequently, the processing parameters were fine-tuned to enhance the specific surface area of ZIF-67 to 403 m2/g while preserving its 2D structural integrity. Ultimately, the as-prepared 2D ZIF-67 was incorporated into a hydrogenated styrene-butadiene block copolymer (SEBS) matrix to fabricate a mixed matrix membrane. Remarkably, at a filler loading of 20 wt%, the CH4 permeability coefficient increased significantly from 11.7 barrer to 35.3 barrer, while the CH4/N2 selectivity was maintained at 3.21, indicating minimal interfacial defects and demonstrating the feasibility and effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

15 pages, 4167 KB  
Article
Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics
by Swapnil S. Bamane and Ozgur Keles
Appl. Nano 2025, 6(3), 15; https://doi.org/10.3390/applnano6030015 - 20 Aug 2025
Viewed by 215
Abstract
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes, [...] Read more.
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes, and metal oxides, the smallest of all the fillers, the graphene quantum dot (GQD), has not been explored thoroughly. The objective of this study is to investigate the effects of GQDs on the thermal properties of epoxy nanocomposites using all-atom molecular dynamics (MD) simulations. Specifically, the influence of GQDs on the glass transition temperature (Tg) and coefficient of linear thermal expansion (CTE) of the bisphenol F epoxy is evaluated. Further, the effects of surface functionalization and edge functionalization of GQDs are analyzed. Results demonstrate that the inclusion of functionalized GQDs leads to a 16% improvement in Tg, attributed to enhanced interfacial interactions and restricted molecular mobility in the epoxy network. MD simulations reveal that functional groups on GQDs form strong physical and chemical interactions with the polymer matrix, effectively altering its dynamics at the Tg. These results provide key molecular-level insights into the design of the next generation of thermally stable epoxy nanocomposites for high-performance applications in aerospace and defense. Full article
Show Figures

Figure 1

19 pages, 5241 KB  
Article
Photodegradation Behavior of Nanosilica-Filled PMMA Composite: Cooperative Effect of Mixed Solvents and Interfacial Functional Groups
by Zhiping Xu, Liangchen Li, Ying Liu and Rui Yang
Polymers 2025, 17(16), 2241; https://doi.org/10.3390/polym17162241 - 19 Aug 2025
Viewed by 296
Abstract
Poly(methyl methacrylate) (PMMA) and its composites are widely used in industrial applications; therefore, their durability is of great concern. In this study, the photooxidative degradation behavior of nanosilica-filled PMMA composite films and the cooperative effect of mixed solvents containing tetrahydrofuran (THF) and chloroform [...] Read more.
Poly(methyl methacrylate) (PMMA) and its composites are widely used in industrial applications; therefore, their durability is of great concern. In this study, the photooxidative degradation behavior of nanosilica-filled PMMA composite films and the cooperative effect of mixed solvents containing tetrahydrofuran (THF) and chloroform (TCM), as well as interfacial functional groups, was investigated. The surface functional groups of nanosilica fillers, such as polar, aryl, and alkyl moieties, significantly affect the photodegradation kinetics and pathways for PMMA. The key process lies in the modulation of solvent–solvent reaction selectivity at the polymer–filler interface. Functional groups that selectively promote the chlorination reaction between THF and TCM accelerate PMMA photodepolymerization, while those that suppress this reaction hinder degradation. This interfacial effect is validated by trends in molecular weight loss, volatile product profiles, and MMA yields during aging. Our findings reveal that the photodegradation behavior of PMMA composites is not only governed by environmental conditions but also critically influenced by interfacial chemistry. In this way, this study provides novel insight into the interfacial aging process for polymer nanocomposites, as well as guidance for the rational design of PMMA-based materials with improved durability. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

52 pages, 10078 KB  
Article
PLA, PBS, and PBAT Biocomposites—Part A: Matrix–Filler Interactions with Agro-Industrial Waste Fillers (Brewer’s Spent Grain, Orange Peel) and Their Influence on Thermal, Mechanical, and Water Sorption Properties
by Jules Bellon, Feriel Bacoup, Stéphane Marais and Richard Gattin
Materials 2025, 18(16), 3867; https://doi.org/10.3390/ma18163867 - 18 Aug 2025
Viewed by 300
Abstract
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by [...] Read more.
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by melt extrusion followed by thermo-compression. A full factorial design was implemented to assess matrix–filler interactions and compare biocomposites to pure polymer fragments. OP particles, smaller and rougher than BSG, exhibited a higher specific surface area, influencing composite morphology and behavior. The OP slightly plasticized PLA, possibly due to volatile release during processing, whereas BSG increased stiffness in PBS and PBAT. Both fillers reduced mechanical strength, especially in PLA, due to limited interfacial adhesion, and significantly decreased PLA’s thermal stability. The addition of fillers also increased water sorption and modified the sorption kinetics of the three main modes (Langmuir-type, Henry’s law sorption, and water molecule clustering), as well as the values of the half-sorption diffusion coefficients (D1 and D2), with notable differences between the OP and BSG linked to their structure and composition. These findings provide a better understanding of structure–property relationships in biodegradable composites and highlight their potential for sustainable packaging and other industrial applications. Full article
Show Figures

Figure 1

26 pages, 7205 KB  
Article
Influence of Different Dosages of Rice Husk Particles on Thermal, Physical, Mechanical and Rheological Properties of Polypropylene-Based Composites
by Ilnur Fayzullin, Aleksandr Gorbachev, Svetoslav Volfson, Gulnur Zhakypova, Saken Uderbayev, Abdirakym Nakyp and Nurgali Akylbekov
J. Compos. Sci. 2025, 9(8), 443; https://doi.org/10.3390/jcs9080443 - 17 Aug 2025
Viewed by 331
Abstract
This study investigates the effect of rice husk content (0–60 wt.%) on the thermal, mechanical and rheological properties of polypropylene composites prepared by extrusion and injection molding. A temperature-invariant approach was applied to analyze the viscoelastic properties, allowing the combination of data obtained [...] Read more.
This study investigates the effect of rice husk content (0–60 wt.%) on the thermal, mechanical and rheological properties of polypropylene composites prepared by extrusion and injection molding. A temperature-invariant approach was applied to analyze the viscoelastic properties, allowing the combination of data obtained at different temperatures. The results show that as the husk content increases, the elastic modulus and hardness rise linearly, while the impact strength and elongation at break significantly decrease. Composites with 40–50% filler exhibit a balanced combination of strength and stiffness, as confirmed by the summary data in the table (provide references). The application of the temperature-invariant viscosity method confirmed its effectiveness in evaluating the flow properties of composite melts. The obtained results have practical significance for the development of eco-friendly polymer materials with natural fiber fillers. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

27 pages, 4903 KB  
Article
Biodegradation in Freshwater: Comparison Between Compostable Plastics and Their Biopolymer Matrices
by Valerio Bocci, Martina De Vivo, Sara Alfano, Simona Rossetti, Francesca Di Pippo, Loris Pietrelli and Andrea Martinelli
Polymers 2025, 17(16), 2236; https://doi.org/10.3390/polym17162236 - 17 Aug 2025
Viewed by 471
Abstract
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem [...] Read more.
Plastic pollution in freshwater ecosystems is an increasing environmental concern, prompting the search for biodegradable polymer (BP) alternatives. However, their degradation in natural aquatic environments remains poorly investigated and understood. This four-month in situ study compared the degradation in a lentic freshwater ecosystem of two compostable items, Mater-Bi® shopping bag and disposable dish, with their respective pure polymer matrices, poly(butylene adipate-co-terephthalate) (PBAT) and polylactic acid (PLA). Additionally, biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and oil-based polypropylene (PP) were also tested. Changes in morphology, chemical composition and thermal and mechanical properties, as well as microbial colonization, were analyzed over time. A validated cleaning protocol was employed to ensure accurate surface analysis. Results showed detectable but limited degradation of pure polymers and their matrices in commercial products after 120 days of immersion with variations observed among polymer materials. Compostable materials exhibited significant leaching of fillers (starch, inorganic particles), leading to morphological changes and fragmentation. PHBV showed the fastest degradation among tested polyesters. PP exhibited only minor surface changes. Microbial colonization varied with polymer structure and degradability, but long-term degradation was limited by polymer properties and the gradual development of the plastisphere. This study highlights that standard laboratory tests may overestimate the environmental degradability of BPs and emphasizes the importance of in situ assessments, careful cleaning procedures and property characterizations to accurately assess polymer degradation in freshwater systems. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

19 pages, 7427 KB  
Article
Radiation Shielding Evaluation of Carbohydrate Hydrogel Radiotherapy Pads Containing High-Z Fillers: A Geant4 Study
by Hanan Akhdar and Samar Alghamdi
Polymers 2025, 17(16), 2234; https://doi.org/10.3390/polym17162234 - 17 Aug 2025
Viewed by 408
Abstract
This work analyzes the radiation shielding effectiveness of biocompatible hydrogel pads containing carbohydrate-based polymer matrices (Alginate, Chitosan, and Cellulose) integrated with the high atomic number (Z) fillers Bismuth Oxide (Bi2O3) and Zinc Oxide (ZnO). The Monte Carlo-based toolkit, Geant4, [...] Read more.
This work analyzes the radiation shielding effectiveness of biocompatible hydrogel pads containing carbohydrate-based polymer matrices (Alginate, Chitosan, and Cellulose) integrated with the high atomic number (Z) fillers Bismuth Oxide (Bi2O3) and Zinc Oxide (ZnO). The Monte Carlo-based toolkit, Geant4, was used to simulate the deposition of the dose throughout a multilayer phantom that mimics the skin (Epidermis, Dermis, Subcutaneous, and Muscle) with a pad on top irradiated with photon and electron beams from 50 keV to 1000 keV. The results indicated that Bi2O3 succeeded in causing greater absorption of photons at doses, particularly in deep-layer tissues, from the increase in the filler content as well as the pad thickness. The Cellulose–Bi2O3 composites (10 mm thick) not only showed the best deep-shielding property among all investigated combinations but also the Alginate-based pads generally performed better with regard to the surface dose attenuation. The results demonstrate the promising potential of high-Z-doped hydrogels in serving as flexible, light, and biocompatible shielding materials for superficial radiotherapy. Full article
Show Figures

Figure 1

25 pages, 4742 KB  
Article
Design and Evaluation of LLDPE/Epoxy Composite Tiles with YOLOv8-Based Defect Detection for Flooring Applications
by I. Infanta Mary Priya, Siddharth Anand, Aravindan R. Bishwakarma, M. Uma, Sethuramalingam Prabhu and M. M. Reddy
Processes 2025, 13(8), 2568; https://doi.org/10.3390/pr13082568 - 14 Aug 2025
Viewed by 195
Abstract
With the increasing demand for sustainable and cost-effective alternatives in the construction industry, polymer composites have emerged as a promising solution. This study focuses on the development of innovative composite tiles using Linear Low-Density Polyethylene (LLDPE) powder blended with epoxy resin and a [...] Read more.
With the increasing demand for sustainable and cost-effective alternatives in the construction industry, polymer composites have emerged as a promising solution. This study focuses on the development of innovative composite tiles using Linear Low-Density Polyethylene (LLDPE) powder blended with epoxy resin and a hardener as a green substitute for conventional ceramic and cement tiles. LLDPE is recognized for its flexibility, durability, and chemical resistance, making it an effective filler within the epoxy matrix. To optimize its material properties, composite samples were fabricated using three different LLDPE-to-epoxy ratios: 30:70, 40:60, and 50:50. Flexural strength testing revealed that while the 50:50 blend achieved the highest maximum value (29.887 MPa), it also exhibited significant variability, reducing its reliability for practical applications. In contrast, the 40:60 ratio demonstrated more consistent and repeatable flexural strength, ranging from 16 to 20 MPa, which is ideal for flooring applications where mechanical performance under repeated loading is critical. Scanning Electron Microscopy (SEM) images confirmed uniform filler dispersion in the 40:60 mix, further supporting its mechanical consistency. The 30:70 composition showed irregular and erratic behaviour, with values ranging from 11.596 to 25.765 MPa, indicating poor dispersion and increased brittleness. To complement the development of the materials, deep learning techniques were employed for real-time defect detection in the manufactured tiles. Utilizing the YOLOv8 (You Only Look Once version 8) algorithm, this study implemented an automated, vision-based surface monitoring system capable of identifying surface deterioration and defects. A dataset comprising over 100 annotated images was prepared, featuring various surface defects such as cracks, craters, glaze detachment, and tile lacunae, alongside defect-free samples. The integration of machine learning not only enhances quality control in the production process but also offers a scalable solution for defect detection in large-scale manufacturing environments. This research demonstrates a dual approach to material innovation and intelligent defect detection to improve the performance and quality assurance of composite tiles, contributing to sustainable construction practices. Full article
Show Figures

Figure 1

36 pages, 3088 KB  
Review
Underfill: A Review of Reliability Improvement Methods in Electronics Production
by Zbyněk Plachý, Anna Pražanová, Karel Dušek and Attila Géczy
Polymers 2025, 17(16), 2206; https://doi.org/10.3390/polym17162206 - 13 Aug 2025
Viewed by 819
Abstract
The increasing integration and miniaturization of electronic devices place serious pressure on packaging technologies to ensure long-term reliability. Polymer underfill encapsulation is a key process for reducing thermomechanical stress in modern assemblies. A systematic analysis that frames its diverse methods as solutions to [...] Read more.
The increasing integration and miniaturization of electronic devices place serious pressure on packaging technologies to ensure long-term reliability. Polymer underfill encapsulation is a key process for reducing thermomechanical stress in modern assemblies. A systematic analysis that frames its diverse methods as solutions to the fundamental trade-off between the final polymer composite’s thermomechanical performance and its liquid-state processability is lacking from the literature. The novelty of this review lies in establishing a decision-making framework that connects specific application requirements to the underlying material science and process limitations. This article analyzes and compares different underfill techniques through a systematic literature review, from conventional capillary flow to advanced wafer-level underfills. Our findings show that this core trade-off leads to three distinct strategies: (1) Maximum reliability: This is achieved with highly filled, post-applied composites, offering excellent thermomechanical properties at the cost of slow, viscosity-driven manufacturing speeds. (2) High productivity: This is realized through integrated, pre-applied processes that simplify manufacturing but impose significant constraints on the polymer chemistry and filler content. (3) Targeted reinforcement for board-level packages: At the localized positions applied, ductile polymers often enhance mechanical shock resistance. This review concludes that the optimal underfill choice is not universal but is a complex, application-driven decision balancing the cured material’s performance against the processing demands of the polymer system. Full article
(This article belongs to the Special Issue Polymers for Electronic Device Applications)
Show Figures

Figure 1

23 pages, 5300 KB  
Article
Biodegradable Antioxidant Composites with Almond Skin Powder
by Irene Gil-Guillén, Idalina Gonçalves, Paula Ferreira, Chelo González-Martínez and Amparo Chiralt
Polymers 2025, 17(16), 2201; https://doi.org/10.3390/polym17162201 - 12 Aug 2025
Viewed by 253
Abstract
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated [...] Read more.
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated polyvinilalcohol (PVA) were obtained by melt blending and compression moulding, incorporating different ratios of defatted AS powder (0, 5, 10, and 15 wt.%). The filler was better integrated in the polar PVA matrix, where more interactions were detected with the filler compounds, affecting glass transition and crystallization of the polymer. The AS particles provided the films with the characteristic colour of the powder and strong UV light-blocking effect, while improving the oxygen barrier capacity of both polymeric matrices (24% in PLA with 15% AS and 42% in PVA with 10% AS). The water vapour permeability increased in PLA (by 192% at 15% AS), but decreased in PVA films, especially with low AS content (by 19% with 5% particles). The filler also provided the PLA and PVA films with antioxidant properties due to its phenolic richness, improving the oxygen barrier capacity of the materials and delaying the unsaturated oil oxidation. This was reflected in the lower peroxide and conjugated dienes and trienes values of the sunflower oil packaged in single-dose bags of the different materials. The high oxygen barrier capacity of the PVA bags mainly controlled the preservation of the oil, which made the effect of the antioxidant AS powder less noticeable. Full article
Show Figures

Graphical abstract

18 pages, 3067 KB  
Article
Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications
by Paula Gómez-Contreras, Maite Cháfer, Amparo Chiralt and Chelo González-Martínez
Biomass 2025, 5(3), 46; https://doi.org/10.3390/biomass5030046 - 12 Aug 2025
Viewed by 402
Abstract
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and [...] Read more.
Development of biodegradable packaging materials and valorization of agri-food waste are necessary to produce more sustainable materials while reducing the environmental impact. Starch-based biocomposite films reinforced with beer bagasse fractions with different purification degrees were developed and characterized in structural, mechanical, thermal and optical properties. To this aim, 5% and 10% (w/w) of either beer bagasse (BB) or its lignocellulosic-rich fibers (LF), obtained by subcritical water extraction at temperatures between 110 and 170 °C, were incorporated into starch matrices. Elastic modulus and tensile strength values increased by up to eight-fold and 2.5-fold, respectively, compared to the control film. The incorporation of BB or LF significantly enhanced the mechanical resistance of the films. In general, the increment in the filler:polymer ratio significantly increased the EM values (p < 0.05), while decreasing the stretchability of the films around 80–85%, regardless of the type of filler. This effect suggests a good interfacial adhesion between the fillers and the polymeric matrix, as observed by FESEM. The biocomposite films exhibited a dark reddish appearance, reduced transparency, light blocking barrier capacity and remarkable antioxidant activity due to the presence of phenolic compounds in the fibers. The water vapor and oxygen barrier properties were better preserved when using the more purified LF obtained at 170 °C. Overall, starch films reinforced with beer bagasse fractions showed strong potential for the development of biodegradable food packaging materials. Full article
Show Figures

Figure 1

32 pages, 5766 KB  
Review
Carbon Nanohorns and Their Nanohybrid/Nanocomposites as Sensing Layers for Humidity Sensors—A Review
by Bogdan-Catalin Serban, Octavian Buiu, Marius Bumbac, Niculae Dumbrăvescu, Mihai Brezeanu, Ursăchescu Matei-Gabriel, Vlad Diaconescu, Maria Ruxandra Sălăgean and Cornel Cobianu
Polymers 2025, 17(16), 2198; https://doi.org/10.3390/polym17162198 - 12 Aug 2025
Viewed by 424
Abstract
Carbon nanohorns (CNHs), along with their nanocomposites and nanohybrids, have shown significant potential for humidity (RH) monitoring at room temperature (RT) due to their exceptional physicochemical and electronic properties, such as high surface area, tunable porosity, and stability in nanocomposites. Resistive sensors incorporating [...] Read more.
Carbon nanohorns (CNHs), along with their nanocomposites and nanohybrids, have shown significant potential for humidity (RH) monitoring at room temperature (RT) due to their exceptional physicochemical and electronic properties, such as high surface area, tunable porosity, and stability in nanocomposites. Resistive sensors incorporating CNHs have demonstrated superior sensitivity compared to traditional carbon nanomaterials, such as carbon nanotubes and graphene derivatives, particularly in specific RH ranges. This review highlights recent advancements in CNH-based resistive RH sensors, discussing effective synthesis methods (e.g., arc discharge and laser ablation) and functionalization strategies, such as the incorporation of hydrophilic polymers or inorganic fillers like graphene oxide (GO) and metal oxides, which enhance sensitivity and stability. The inclusion of fillers, guided by Pearson’s Hard–Soft Acid–Base (HSAB) theory, enables tuning of CNH-based sensing layers for optimal interaction with water molecules. CNH-based nanocomposites exhibit competitive response and recovery times, making them strong candidates for commercial sensor applications. However, challenges remain, such as optimizing materials for operation across the full 0–100% RH range. This review concludes with proposed research directions to further enhance the adoption and utility of CNHs in sensing applications. Full article
Show Figures

Figure 1

Back to TopTop