Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (142)

Search Parameters:
Keywords = polymer clay nanocomposites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1363 KiB  
Review
Bentonite-Based Composites in Medicine: Synthesis, Characterization, and Applications
by Sana K. Kabdrakhmanova, Aigul Z. Kerimkulova, Saule Z. Nauryzova, Kadiran Aryp, Esbol Shaimardan, Anastassiya D. Kukhareva, Nurgamit Kantay, Madiar M. Beisebekov and Sabu Thomas
J. Compos. Sci. 2025, 9(6), 310; https://doi.org/10.3390/jcs9060310 - 18 Jun 2025
Viewed by 1405
Abstract
One of the most interesting and poorly studied carriers of medicinal substances is the polymer clay composite material (PCCM). Bentonite clays are used in pharmacy for the manufacturing of various dosage forms, as well as in the adsorption of drugs to slow their [...] Read more.
One of the most interesting and poorly studied carriers of medicinal substances is the polymer clay composite material (PCCM). Bentonite clays are used in pharmacy for the manufacturing of various dosage forms, as well as in the adsorption of drugs to slow their release. Polymer–clay nanocomposites have demonstrated significantly improved properties compared to pure polymers. A review of recent scientific advances has shown promising results regarding the application of polymer–clay materials in medicine and bioengineering, particularly in the development of carrier sorbents with prolonged action for controlled drug release. As a result, interest in polymer–clay systems is steadily growing and gaining momentum. This paper focuses on the structure and properties of bentonite clays, including their sorption, ion exchange, binding, and rheological properties. The methods for preparing intercalated and exfoliated nanocomposites, such as radical intercalative polymerization in situ on clay surfaces, are reviewed. Furthermore, the improved efficacy and exposure times of PCCMs, combined with their enhanced bactericidal properties, are analyzed for the creation of universal and multifunctional preparations for medical use. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Graphical abstract

22 pages, 5685 KiB  
Article
Toxic Anionic Azo Dye Removal from Artificial Wastewater by Using Polyaniline/Clay Nanocomposite Adsorbent: Isotherm, Kinetics and Thermodynamic Study
by Mohammad Ilyas Khan, Saif Ahmed Yahya, Abubakr ElKhaleefa, Ihab Shigidi, Ismat Hassan Ali, Mohammad Rehan and Abdul Majeed Pirzada
Processes 2025, 13(3), 827; https://doi.org/10.3390/pr13030827 - 12 Mar 2025
Cited by 3 | Viewed by 935
Abstract
This study presents the synthesis and utilization of a conductive polymer/clay nanocomposite for the adsorptive removal of an azo dye, methyl orange (MO), from artificial wastewater. The PANI-CLAY nanocomposites were synthesized by means of the oxidative polymerization route and characterized using the Brunauer, [...] Read more.
This study presents the synthesis and utilization of a conductive polymer/clay nanocomposite for the adsorptive removal of an azo dye, methyl orange (MO), from artificial wastewater. The PANI-CLAY nanocomposites were synthesized by means of the oxidative polymerization route and characterized using the Brunauer, Emmett and Teller thermogravimetric analysis, Fourier-Transform Infrared spectra and Scanning Electron Microscopy. The surface area of the clay mineral decreased from 37.38 to 13.44 m2/g for 10 g of PANI/CLAY when made into a composite with PANI. Such behavior is most likely due to the possible coverage of the clay surface by a layer of PANI. Further, TGA revealed that incorporating CLAY significantly improved the thermal stability of PANI. The effects of adsorption process parameters such as adsorbent dosage (0.006–0.4 g), solution pH (1, 3, 5, 7, 9, 11 and 13), initial dye concentration (50–300 ppm), contact time (1–80 min) and temperature (25 °C, 30 °C, 35 °C and 40 °C) on the % removal efficiency were investigated. The experimental data were well fitted by the pseudo-second-order kinetic model. The maximum uptake capacity (qmax) values increased from 42.017 mg/g (PANI/CLAY 10 g) to 55.87 mg/g for PANI alone. The uptake capacity implies that the prepared adsorbents possess excellent adsorption characteristics with high affinity towards organic dye removal. Full article
(This article belongs to the Special Issue Advances in Adsorption of Wastewater Pollutants)
Show Figures

Figure 1

26 pages, 7894 KiB  
Article
Advanced Nanobiocomposite Hydrogels Incorporating Organofunctionalized LDH for Soft Tissue Engineering Applications
by Ionut-Cristian Radu, Eugenia Tanasa, Sorina Dinescu, George Vlasceanu and Catalin Zaharia
Polymers 2025, 17(4), 536; https://doi.org/10.3390/polym17040536 - 19 Feb 2025
Viewed by 765
Abstract
Nanocomposite hydrogels are gaining significant attention for biomedical applications in soft tissue engineering due to the increasing demand for highly flexible and durable soft polymer materials. This research paper focused on investigating and optimizing a procedure for the development of novel nanocomposite hydrogels [...] Read more.
Nanocomposite hydrogels are gaining significant attention for biomedical applications in soft tissue engineering due to the increasing demand for highly flexible and durable soft polymer materials. This research paper focused on investigating and optimizing a procedure for the development of novel nanocomposite hydrogels based on poly(2-hydroxyethyl methacrylate)-co-(2-acrylamido-2-methylpropane sulfonic acid) (HEMA/AMPSA) copolymers. These hydrogels were synthesized through a grafting-through process, where the polymer network was formed using a modified clay crosslinker. The layered double hydroxide (LDH) clay modified with 3-(trimethoxysilyl)propyl methacrylate (ATPM) was synthesized using a novel recipe through a two-step procedure. The nanocomposite hydrogel compositions were optimized to achieve soft hydrogels with high flexibility. The developed materials were analyzed for their mechanical and morphological properties using tensile and compressive tests, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and micro-computed tomography (micro-CT). The swelling behavior, network density, and kinetic diffusion mechanism demonstrated the specific characteristics of the materials. The modified LDH-ATPM was further characterized using Thermogravimetry (TGA), FTIR-ATR and X-ray diffraction (XRD). Biological assessments on human adipose-derived stem cells (hASCs) were essential to evaluate the biocompatibility of the nanocomposite hydrogels and their potential for soft tissue applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

17 pages, 2243 KiB  
Article
In Situ Preparation of Silver Nanoparticles/Organophilic-Clay/Polyethylene Glycol Nanocomposites for the Reduction of Organic Pollutants
by Amina Sardi, Bouhadjar Boukoussa, Aouicha Benmaati, Kheira Chinoune, Adel Mokhtar, Mohammed Hachemaoui, Soumia Abdelkrim, Issam Ismail, Jibran Iqbal, Shashikant P. Patole, Gianluca Viscusi and Mohamed Abboud
Polymers 2024, 16(24), 3608; https://doi.org/10.3390/polym16243608 - 23 Dec 2024
Cited by 3 | Viewed by 1216
Abstract
This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid [...] Read more.
This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples. The results showed that the catalyst with the highest molecular weight of polyethylene glycol had the highest AgNP content. Catalyst mass, NaBH4 concentration, and type of catalyst were shown to have a significant influence on the conversion and rate constant. The material with the highest silver nanoparticle content was identified as the optimal catalyst for the reduction of both pollutants. The measured rate constants for the reduction of methylene blue (MB) and 4-nitrophenol (4-NP) were 164 × 10−4 s−1 and 25 × 10−4 s−1, respectively. The reduction of MB and 4-NP in the binary system showed high selectivity for MB dye, with rate constants of 64 × 10−4 s−1 and 9 × 10−4 s−1 for MB and 4-NP, respectively. The reuse of the best catalyst via MB dye reduction for four cycles showed good results without loss of performance. Full article
Show Figures

Figure 1

15 pages, 9544 KiB  
Article
Preparation and Characterization of Melamine Aniline Formaldehyde-Organo Clay Nanocomposite Foams (MAFOCF) as a Novel Thermal Insulation Material
by Ahmet Gürses and Elif Şahin
Polymers 2024, 16(24), 3578; https://doi.org/10.3390/polym16243578 - 21 Dec 2024
Cited by 1 | Viewed by 894
Abstract
The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay [...] Read more.
The main purpose of this study is to prepare a melamine aniline formaldehyde foam, an MAF copolymer, with lower water sensitivity and non-flammability properties obtained by the condensation reaction of melamine, aniline, and formaldehyde. In addition, the preparation of MAFF composites with organoclay reinforcement was determined as a secondary target in order to obtain better mechanical strength, heat, and sound insulation properties. For the synthesis of foams, the microwave irradiation technique, which offers advantages such as faster reactions, high yields and purities, and reduced curing times, was used together with the heating technique and the effect of organoclay content on the structural and textural properties of foams and both heat insulation and mechanical stability was investigated. Virgin melamine formaldehyde foam, MFF, melamine aniline formaldehyde foam, MAFFF, and melamine aniline formaldehyde–organoclay nanocomposite foams prepared with various organoclay contents, MAFOCFs, were characterized by HRTEM, FTIR, SEM, and XRD techniques. From spectroscopic and microscopic analyses, it was observed that organoclay flakes could be exfoliated without much change in the resin matrix with increasing clay content. In addition, it was determined that aniline formaldehyde, which is thought to enter the main polymer network as a bridge, caused textural changes in the polymeric matrix, and organoclay reinforcement also affected these changes. Although the highest compressive strength was obtained in MAFOCF5 foam with high organoclay content (0.40 MPa), it was determined that the compressive strengths in the nanocomposites were generally quite high despite their low bulk densities. In the prepared nanocomposite with 0.30% organoclay content (MAFOCF2), 0.33 MPa compressive strength and 0.051 thermal conductivity coefficient were measured. For virgin polymers and composites, bulk density, thermal conductivity, and compressive strength values were determined in the order of magnitude as MFF > MAFOCF1 > MAFOCF5 > MAFOCF6 > MAFF > MAFOCF3 > MAFOCF2 > MAFOCF4; MFF > MAFF > MAFOCF6 > MAFOCF5 > MAFOCF1 > MAFOCF4 > MAFOCF3 > MAFOCF2 and MAFOCF5 > MAFOCF4 > MAFOCF2 > MAFF > MAFOCF6 > MFF > MAFOCF1 > MAFOCF3. As a result, both compressive strength and thermal conductivity values indicate that nanocomposite foam with 0.20 wt% organoclay content can be a promising new insulation material. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Figure 1

18 pages, 4159 KiB  
Article
Ultrasonic Molding of Poly(3-hydroxybutyrate) and Its Clay Nanocomposites: Efficient Microspecimens Production with Minimal Material Loss and Degradation
by Germán Pérez, Anyi Jin, Luis J. del Valle, Enric Fontdecaba and Jordi Puiggalí
Appl. Sci. 2024, 14(24), 11959; https://doi.org/10.3390/app142411959 - 20 Dec 2024
Cited by 1 | Viewed by 809
Abstract
Ultrasound micromolding (USM) is an emerging processing technology that offers advantages with regard to spatial resolution, material savings, minimum time residence, minimum exposure to high temperatures, and low cost. Recent advances have been focused on nodal point technology, which improves the homogeneity of [...] Read more.
Ultrasound micromolding (USM) is an emerging processing technology that offers advantages with regard to spatial resolution, material savings, minimum time residence, minimum exposure to high temperatures, and low cost. Recent advances have been focused on nodal point technology, which improves the homogeneity of the molded samples and the repeatability of the properties of processed specimens. The present work demonstrates the suitability of a modified USM technology to process the biodegradable poly(3-hydroxybutyrate) (P3HB), which is a polymer that has well-reported difficulties when processed by conventional methods. Specifically, conventional injection, microinjection, and USM technologies with and without nodal point configurations have been compared. Degradation studies and the evaluation of thermal and mechanical properties confirmed the successful preparation of P3HB microspecimens, maintaining their functional integrity with minimal molecular weight loss. Exfoliated clay structures were observed for P3HB nanocomposites incorporating the C20 and C166 clays and processed by USM. The results highlight the advantages of the modified USM technology, as conventional microinjection failed to produce nanocomposites of P3HB/C116 due to the enhanced degradation caused by C116. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

19 pages, 6572 KiB  
Article
Calcium Alginate/Laponite Nanocomposite Hydrogels: Synthesis, Swelling, and Sorption Properties
by Yurii Samchenko, Konrad Terpilowski, Kateryna Samchenko, Lyudmila Golovkova, Olena Oranska and Olena Goncharuk
Coatings 2024, 14(12), 1519; https://doi.org/10.3390/coatings14121519 - 2 Dec 2024
Cited by 1 | Viewed by 1583
Abstract
This study presents the synthesis, characterization, and evaluation of hybrid hydrogels based on calcium alginate (Ca-Alg) and synthetic nanoclay LaponiteRD (Lap), with an emphasis on their swelling and sorption properties. The motivation behind the development of these hybrid hydrogels stems from the need [...] Read more.
This study presents the synthesis, characterization, and evaluation of hybrid hydrogels based on calcium alginate (Ca-Alg) and synthetic nanoclay LaponiteRD (Lap), with an emphasis on their swelling and sorption properties. The motivation behind the development of these hybrid hydrogels stems from the need for sustainable materials with enhanced mechanical strength, swelling properties, and sorption capacity for environmental remediation and controlled-release applications. Synthesis methods for the ionotropically cross-linked Ca-Alg hydrogel and Alg–Lap composite hydrogels, based on Alg and Lap in the form of granules and fibres, have been developed. The Fourier-transform infrared spectroscopy (FTIR), Energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) analyses of composite hydrogels confirmed the successful incorporation of Lap into the Ca-Alg matrix, indicating strong interactions between the polymer and clay, which enhanced the structural integrity of the hydrogels. The morphology of the surface and pore structure of nanocomposites were studied using Scanning Electron Microscopy (SEM). The swelling behaviour of the nanocomposites was largely dependent on the concentrations of Lap and the cross-linking agent (CaCl2), with higher concentrations leading to more rigid, less swellable structures due to the increased cross-linking density. The sorption studies, specifically with Fe(II) ions, demonstrated that the hybrid hydrogels possess a large sorption capacity, with Lap contributing to selective sorption at lower Fe(II) ion concentrations and Alg enhancing overall capacity at higher concentrations. This suggests that the synergistic interaction between Alg and Lap not only improves mechanical stability but also tailors the sorption properties of the hydrogels. These findings position the Alg-Lap hydrogels as promising materials for a range of environmental applications, including wastewater treatment, heavy metal ion removal, and the design of advanced filtration systems. The study’s insights into the tunability of these hydrogels pave the way for further research into their use in diverse fields such as biomedicine, agriculture, and industrial water management. Full article
Show Figures

Figure 1

23 pages, 4396 KiB  
Review
Polymer/Clay Nanocomposites as Advanced Adsorbents for Textile Wastewater Treatment
by Adel Mokhtar, Boubekeur Asli, Soumia Abdelkrim, Mohammed Hachemaoui, Bouhadjar Boukoussa, Mohammed Sassi, Gianluca Viscusi and Mohamed Abboud
Minerals 2024, 14(12), 1216; https://doi.org/10.3390/min14121216 - 28 Nov 2024
Cited by 3 | Viewed by 1966
Abstract
This review explores the removal of textile dyes from wastewater using advanced polymer/clay composites. It provides an in-depth analysis of the chemical and physical properties of these composites, emphasizing how the combination of polymers and clays creates a synergistic effect that significantly improves [...] Read more.
This review explores the removal of textile dyes from wastewater using advanced polymer/clay composites. It provides an in-depth analysis of the chemical and physical properties of these composites, emphasizing how the combination of polymers and clays creates a synergistic effect that significantly improves the efficiency of dye removal. The structural versatility of the composites, derived from the interaction between the layered clay sheets and the flexible polymer matrices, is detailed, showcasing their enhanced adsorption capacity and catalytic properties for wastewater treatment. The review outlines the key functional groups present in both polymers and clays, which are crucial for binding and degrading a wide range of dyes, including acidic, basic, and reactive dyes. The role of specific interactions, such as hydrogen bonding, ion exchange, and electrostatic attractions between the dye molecules and the composite surface, is highlighted. Moreover, the selection criteria for different types of clays such as montmorillonite, kaolinite, and bentonite and their modifications are examined to demonstrate how structural and surface modifications can further improve their performance in composite materials. Various synthesis methods for creating polymer/clay composites, including in situ polymerization, solution intercalation, and melt blending, are discussed. These fabrication techniques are evaluated for their ability to control particle dispersion, optimize interfacial bonding, and enhance the mechanical and chemical stability of the composites. Furthermore, the review introduces advanced characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), to help researchers assess the morphological, structural, and thermal properties of the composites, aligning these features with their potential application in dye removal. Additionally, the review delves into the primary mechanisms involved in the dye removal process, such as adsorption, photocatalytic degradation, and catalytic reduction. It also provides an overview of the kinetic and thermodynamic models commonly used to describe the adsorption processes in polymer/clay composites. The environmental and operational factors influencing the efficiency of dye removal, such as pH, temperature, and composite dosage, are analyzed in detail, offering practical insights for optimizing performance under various wastewater conditions. In conclusion, this review not only highlights the promising potential of polymer/clay composites for textile dye removal but also identifies current challenges and future research directions. It underscores the importance of developing eco-friendly, cost-effective, and scalable solutions to address the growing concerns related to water pollution and sustainability in wastewater management. Full article
(This article belongs to the Special Issue Environmental Pollution and Assessment in Mining Areas)
Show Figures

Figure 1

11 pages, 3888 KiB  
Article
Prediction of Mechanical Properties of Nano-Clay-Based Biopolymeric Composites
by Rodica Cristina Voicu, Mihai Gologanu, Catalin Tibeica, Mercedes Santiago-Calvo, María Asensio, Esteban Cañibano, Oana Nedelcu and Titus Sandu
Nanomaterials 2024, 14(17), 1403; https://doi.org/10.3390/nano14171403 - 28 Aug 2024
Viewed by 1234
Abstract
An understanding of the mechanical behavior of polymeric materials is crucial for making advancements in the applications and efficiency of nanocomposites, and encompasses their service life, load resistance, and overall reliability. The present study focused on the prediction of the mechanical behavior of [...] Read more.
An understanding of the mechanical behavior of polymeric materials is crucial for making advancements in the applications and efficiency of nanocomposites, and encompasses their service life, load resistance, and overall reliability. The present study focused on the prediction of the mechanical behavior of biopolymeric nanocomposites with nano-clays as the nanoadditives, using a new modeling and simulation method based on Comsol Multiphysics software 6.1. This modeling considered the complex case of flake-shaped nano-clay additives that could form aggregates along the polymeric matrix, varying the nanoadditive thickness, and consequently affecting the resulting mechanical properties of the polymeric nanocomposite. The polymeric matrix investigated was biopolyamide 11 (BIOPA11). Several BIOPA11 samples reinforced with three different contents of nano-clays (0, 3, and 10 wt%), and with three different nano-clay dispersion grades (employing three different extrusion screw configurations) were obtained by the compounding extrusion process. The mechanical behavior of these samples was studied by the experimental tensile test. The experimental results indicate an enhancement of Young’s modulus as the nano-clay content was increased from 0 to 10 wt% for the same dispersion grades. In addition, the Young’s modulus value increased when the dispersion rate of the nano-clays was improved, showing the highest increase of around 93% for the nanocomposite with 10 wt% nano-clay. A comparison of the modeled mechanical properties and the experimental measurements values was performed to validate the modeling results. The simulated results fit well with the experimental values of Young’s modulus. Full article
Show Figures

Figure 1

18 pages, 4681 KiB  
Article
Ultrasound-Assisted Extrusion Compounding of Nano Clay/Polypropylene Nano Compounds
by Gaston Francucci, Elena Rodriguez and María Eugenia Rodriguez
Polymers 2024, 16(17), 2426; https://doi.org/10.3390/polym16172426 - 27 Aug 2024
Cited by 2 | Viewed by 1510
Abstract
The incorporation of nanoparticles can significantly enhance the properties of polymers. However, the industrial production of nanocomposites presents a technological challenge in achieving the proper dispersion of nanoparticles within the polymer matrix. In this work, a novel device is presented that can be [...] Read more.
The incorporation of nanoparticles can significantly enhance the properties of polymers. However, the industrial production of nanocomposites presents a technological challenge in achieving the proper dispersion of nanoparticles within the polymer matrix. In this work, a novel device is presented that can be seamlessly integrated with standard twin-screw extruders, enabling the application of ultrasonic vibration to molten polymeric material. The primary objective of this study is to experimentally validate the effectiveness of this technology in improving the dispersion of nanoparticles. To accomplish this, a comparative analysis was carried out between nanocomposites obtained through conventional compounding extrusion and those processed with the assistance of ultrasonic vibrations. The nanocomposites under investigation consist of a polypropylene (PP) matrix reinforced with nano clays (Cloisite 20A) at a target loading ratio of 5% by weight. To comprehensively evaluate the impact of the ultrasound-assisted compounding, various key properties were assessed, such as the melt flow index (MFI) to characterize the flow behavior, mechanical properties to evaluate the structural performance, oxygen barrier properties to assess potential gas permeability, and microstructure analysis using Scanning Electron Microscopy (SEM) for detailed morphology characterization. The results suggested an improvement in nanoparticle dispersion when using the ultrasound device, particularly when the intensity was adjusted to 60%. Full article
Show Figures

Figure 1

18 pages, 3926 KiB  
Review
The Development of Polylactide Nanocomposites: A Review
by Purba Purnama, Zaki Saptari Saldi and Muhammad Samsuri
J. Compos. Sci. 2024, 8(8), 317; https://doi.org/10.3390/jcs8080317 - 10 Aug 2024
Cited by 3 | Viewed by 1552
Abstract
Polylactide materials present a promising alternative to petroleum-based polymers due to their sustainability and biodegradability, although they have certain limitations in physical and mechanical properties for specific applications. The incorporation of nanoparticles, such as layered silicate (clay), carbon nanotubes, metal or metal oxide, [...] Read more.
Polylactide materials present a promising alternative to petroleum-based polymers due to their sustainability and biodegradability, although they have certain limitations in physical and mechanical properties for specific applications. The incorporation of nanoparticles, such as layered silicate (clay), carbon nanotubes, metal or metal oxide, cellulose nanowhiskers, can address these limitations by enhancing the thermal, mechanicals, barriers, and some other properties of polylactide. However, the distinct characteristics of these nanoparticles can affect the compatibility and processing of polylactide blends. In the polylactide nanocomposites, well-dispersed nanoparticles within the polylactide matrix result in excellent mechanical and thermal properties of the materials. Surface modification is required to improve compatibility and the crystallization process in the blended materials. This article reviews the development of polylactide nanocomposites and their applications. It discusses the general aspect of polylactides and nanomaterials as nanofillers, followed by the discussion of the processing and characterization of polylactide nanocomposites, including their applications. The final section summarizes and discusses the future challenges of polylactide nanocomposites concerning the future material’s requirements and economic considerations. As eco-friendly materials, polylactide nanocomposites offer significant potential to replace petroleum-based polymers. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Figure 1

21 pages, 39792 KiB  
Review
Eco-Friendly Polymer Nanocomposite Coatings for Next-Generation Fire Retardants for Building Materials
by Haradhan Kolya and Chun-Won Kang
Polymers 2024, 16(14), 2045; https://doi.org/10.3390/polym16142045 - 17 Jul 2024
Cited by 13 | Viewed by 5547
Abstract
The increasing global commitment to carbon neutrality has propelled a heightened focus on sustainable construction materials, with wood emerging as pivotal due to its environmental benefits. This review explores the development and application of eco-friendly polymer nanocomposite coatings to enhance wood’s fire resistance, [...] Read more.
The increasing global commitment to carbon neutrality has propelled a heightened focus on sustainable construction materials, with wood emerging as pivotal due to its environmental benefits. This review explores the development and application of eco-friendly polymer nanocomposite coatings to enhance wood’s fire resistance, addressing a critical limitation in its widespread adoption. These nanocomposites demonstrate improved thermal stability and char formation properties by integrating nanoparticles, such as nano-clays, graphene oxide, and metal oxides, into biopolymer matrices. This significantly mitigates the flammability of wood substrates, creating a robust barrier against heat and oxygen. The review provides a comprehensive examination of these advanced coatings’ synthesis, characterization, and performance. By emphasizing recent innovations and outlining future research directions, this review underscores the potential of eco-friendly polymer nanocomposite coatings as next-generation fire retardants. This advancement supports the expanded utilization of wood in sustainable construction practices and aligns with global initiatives toward achieving carbon neutrality. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites)
Show Figures

Figure 1

12 pages, 5304 KiB  
Article
Nanocomposite Perfluorosulfonic Acid/Montmorillonite-Na+ Polymer Membrane as Gel Electrolyte in Hybrid Supercapacitors
by Borislava Mladenova, Galin Borisov, Mariela Dimitrova, Desislava Budurova, Maya Staneva, Filip Ublekov and Antonia Stoyanova
Gels 2024, 10(7), 452; https://doi.org/10.3390/gels10070452 - 10 Jul 2024
Cited by 3 | Viewed by 1575
Abstract
Solid-state supercapacitors with gel electrolytes have emerged as a promising field for various energy storage applications, including electronic devices, electric vehicles, and mobile phones. In this study, nanocomposite gel membranes were fabricated using the solution casting method with perfluorosulfonic acid (PFSA) ionomer dispersion, [...] Read more.
Solid-state supercapacitors with gel electrolytes have emerged as a promising field for various energy storage applications, including electronic devices, electric vehicles, and mobile phones. In this study, nanocomposite gel membranes were fabricated using the solution casting method with perfluorosulfonic acid (PFSA) ionomer dispersion, both with and without the incorporation of 10 wt.% montmorillonite (MMT). MMT, a natural clay known for its high surface area and layered structure, is expected to enhance the properties of supercapacitor systems. Manganese oxide, selected for its pseudocapacitive behavior in a neutral electrolyte, was synthesized via direct co-precipitation. The materials underwent structural and morphological characterization. For electrochemical evaluation, a two-electrode Swagelok cell was employed, featuring a carbon xerogel negative electrode, a manganese dioxide positive electrode, and a PFSA polymer membrane serving as both the electrolyte and separator. The membrane was immersed in a 1 M Na2SO4 solution before testing. A comprehensive electrochemical analysis of the hybrid cells was conducted and compared with a symmetric carbon/carbon supercapacitor. Cyclic voltammetric curves were recorded, and galvanostatic charge–discharge tests were conducted at various temperatures (20, 40, 60 °C). The hybrid cell with the PFSA/MMT 10 wt.% exhibited the highest specific capacitance and maintained its hybrid profile after prolonged cycling at elevated temperatures, highlighting the potential of the newly developed membrane. Full article
(This article belongs to the Special Issue Gel Materials in Advanced Energy Systems)
Show Figures

Figure 1

13 pages, 7807 KiB  
Article
Investigating Degradation in Extrusion-Processed Bio-Based Composites Enhanced with Clay Nanofillers
by Ahmed Tara, Mouhja Bencharki, Angélique Gainvors-Claisse, Françoise Berzin, Omar Jbara and Sébastien Rondot
Biomass 2024, 4(3), 658-670; https://doi.org/10.3390/biomass4030036 - 1 Jul 2024
Cited by 2 | Viewed by 1360
Abstract
This research investigates the extrusion-based fabrication and characterization of nanocomposites derived from bio-sourced polypropylene (PP) and poly(butylene succinate) (PBS: a biodegradable polymer derived from renewable biomass sources such as corn or sugarcane), incorporating Cloisite 20 (C20) clay nanofillers, with a specific focus on [...] Read more.
This research investigates the extrusion-based fabrication and characterization of nanocomposites derived from bio-sourced polypropylene (PP) and poly(butylene succinate) (PBS: a biodegradable polymer derived from renewable biomass sources such as corn or sugarcane), incorporating Cloisite 20 (C20) clay nanofillers, with a specific focus on their suitability for electrical insulation applications. The research includes biodegradation tests employing the fungus Phanerochaete chrysosporium to evaluate the impact of composition and extrusion conditions. These tests yield satisfactory results, revealing a progressive disappearance of the PBS phase, as corroborated by scanning electron microscopy (SEM) observations and a reduction in the intensity of Fourier transform infrared spectroscopy (FTIR) peaks associated with C-OH and C-O-C bonds in PBS. Despite positive effects on various properties (i.e., barrier, thermal, electrical, and mechanical properties, etc.), a high clay content (5 wt%) does not seem to enhance biodegradability significantly, highlighting the specific sensitivity of the PBS phase to the addition of clay during this process. This study provides valuable insights into the complex interplay of factors conditioning nanocomposite biodegradation processes and highlights the need for an integrated approach to understanding these processes. This is the first time that research has focused on studying the degradation of nanocomposites for electrical insulation, utilizing partially bio-sourced materials that contain PBS. Full article
(This article belongs to the Special Issue Biomass Materials: Synthesis, Functionalisation, and Applications)
Show Figures

Figure 1

16 pages, 19173 KiB  
Article
Synthesis and Characterization of Nanocomposite Hydrogels Based on Poly(Sodium 4-Styrene Sulfonate) under Very-High Concentration Regimen of Clays (Bentonite and Kaolinite)
by Tulio A. Lerma, Enrique M. Combatt and Manuel Palencia
Gels 2024, 10(6), 405; https://doi.org/10.3390/gels10060405 - 18 Jun 2024
Cited by 1 | Viewed by 1473
Abstract
The aim of this work was to synthesize and study the functional properties of polymer-clay nanocomposite (PCNCs) based on poly(sodium 4-styrene sulfonate) (NaPSS) and two types of clay in the dispersed phase: bentonite and kaolinite, in order to advance in the development of [...] Read more.
The aim of this work was to synthesize and study the functional properties of polymer-clay nanocomposite (PCNCs) based on poly(sodium 4-styrene sulfonate) (NaPSS) and two types of clay in the dispersed phase: bentonite and kaolinite, in order to advance in the development of new geomimetic materials for agricultural and environmental applications. In this study, the effect of adding high concentrations of clay (10–20 wt. %) on the structural and functional properties of a polymer–clay nanocomposite was evaluated. The characterization by infrared spectroscopy made it possible to show that the PCNCs had a hybrid nature structure through the identification of typical vibration bands of the clay matrix and NaPSS. In addition, scanning electron microscopy allowed us to verify its hybrid composition and an amorphous particle-like morphology. The thermal characterization showed degradation temperatures higher than ~300 °C with Tg values higher than 100 °C and variables depending on the clay contents. In addition, the PCNCs showed a high water-retention capacity (>2900%) and cation exchange capacity (>112 meq/100 g). Finally, the results demonstrated the ability of geomimetic conditioners to mimic the structure and functional properties of soils, suggesting their potential application in improving soil quality for plant growth. Full article
Show Figures

Figure 1

Back to TopTop